
Pfenning Proof Theory Lecture 3

June 22 2022

1 Logistics

- Implicitly, all “prove X” problems are “or show that it can’t be done”

2 Exercises

1. Prove or refute (using SEQ)

• A → (B ∨ C) ⊣⊢ (A → B) ∨ (A → C)

• (A → B) → C ⊣⊢ (A ∨ C) ∧ (B → C)

For those that hold, extract a proof.

(Frank tried hard to ensure that these are all clasically true, but not all
are intuitionistically true.)

• Give A ·B left and right rules.

3 Propositions as Types Review

• Assign computational meaning to proofs -

• Assign logical meanings to programs

4 Classical Logic: More Problems

You may think that there is nothing interesting left to do in classical logic. We
have done all of the usual operators. But actually there are some interesting
classical logic avenues to explore.

1

4.1 S4

S4 is a modal logic. S4 allows propositions to be true sometimes. □A means
that A is always true. For example A ⊃ A is always true so the prop □A ⊃ A
holds. However in S4 A → boxA would not necessarily hold because things can
be true some of the time but not always.

This is analogous to quoted code (well typed syntax objects inside a pro-
gramming language). □A is like quote A. Run is like unquoting and running
the quoted code. run : □A ⊃ A

4.2 Other Interesting Paths

Temporal logic is another interesting. Certain propositions only hold at specific
times. This can be used for both linear logic, and for modeling running time of
programs.

The diamond and circle modalities from modal logic correspond to monadic
and strong monadic computation

At least two axes we can change: adding operators (modal logic), changing
the presentation (e.g. combinatory logic has a different computational interpre-
tation than what we have seen)

5 Sequent Calculus

Previously we use natural deduction to derive propositions. These hypothetical
judgments may look something like this:

A1 true, . . . , An true
...

C true

A1; true, . . . , An true are the assumptions and C true is the conclusion. This
is the main idea of sequent calculus. We will condense this into easier syntax:

A sequent is:
A1, . . . , An ⊢ C The assumptions A1, . . . , An are called the antecedents

and the conclusion is the succedent.

5.1 Left and Right Rules

In natural deduction we construct proofs by using elimination rules top down
and introduction rules bottom up. In sequent calculus rules all go bottom up.
Instead we have left rules that change the antecedents and right rules that
change the succedent.

6 Sequent Conjunction

The right-rule for conjunction is:

2

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧B
∧R

Corresponding to:

Γ Γ Γ (1)

... −→
...

... (2)

A ∧B A B (3)

We can see that this means if we want to prove A ∧ B we can split it into
two proofs, one of A and one of B.

We also have the left rules

Γ, A ∧B,A ⊢ C

Γ, A ∧B ⊢ C
∧ L1

Γ, A ∧B,B ⊢ C

Γ, A ∧B ⊢ C
∧ L2

We can see from these left rules if given a proof of conjunction we can
destruct and get both components.

7 Sequent Implication

We can do a right-rule for ⊃:

Γ, A ⊢ B

Γ ⊢ A ⊃ B
⊃ R

What does the elimination rule for ⊃ do?

Γ, A ⊃ B Γ, A ⊃ B Γ, A ⊃ B,B
... →

...
...C A C

Frank used to think it was the following, but this isn’t right:

Γ, A,A ⊃ B Γ, A,A ⊃ B,B
... →

...C C

This is incorrect because it has too strong an assumption. We can not assume
we will be given an A. Instead we require a proof of A before we can destruct
A ⊃ B. Aside on ordered logic: You could treat Γ as a list, and then be explicit
about the order of propositions in it. This is ordered logic. We do not do this
however. Assume that the order elements appear in Γ is inconsequential.

The correct left rule for ⊃ is:

Γ, A ⊃ B ⊢ A Γ, A ⊃ B,B ⊢ C

Γ, A ⊃ B ⊢ C
⊃ L

3

How do we know when we have finished a proof? We need an identity rule:

Γ, A ⊢ A
ID

When doing a natural deduction proof, we typically use introduction rules
from the bottom up and elimination rules from the top down. When they meet
we have finished the proof. In sequent calculus, left rules correspond to the
reverse of natural deduction elimination rules, and right rules correspond to
introduction rules. They both go bottom up. So we know the proof is finished
when all that is left are the antecedents i.e. we can only apply ID.

An example sequent calculus proof:

WRONG

A⊃(B⊃C),A,B∧B,A,B⊢A A⊃(B⊃C),A,B∧B,A,B⊢C
A⊃(B⊃C),A,B∧B,A⊢C
A⊃(B⊃C),A∧B,A⊢C

A⊃(B⊃C),A∧B⊢C

A ⊃ (B ⊃ C) ⊢ (A ∧B) ⊃ C
⊃ R

8 Back to Natural Deduction

In order to show that this sequent calculus corresponds to natural deduction,
we’re doing to annotate our sequent calculus rules with proof terms.

E.g. M1 : A1, . . .Mn : An ⊢ N : C
Here are our annotated rules:

Γ ⊢ M : A Γ ⊢ N : B

Γ ⊢ ⟨M,N⟩ : A ∧B
∧R

We can see that just as in natural deduction conjunction corresponds to
pairs.

Γ,M : A ∧B, π1M : A ⊢ N : C

Γ,M : A ∧B ⊢ N : C

Γ,M : A ∧B, π2M : B ⊢ N : C

Γ,M : A ∧B ⊢ N : C

We can then destruct the pairs with projection functions.

Γ, x : A ⊢ M : B

Γ ⊢ (λx.M) : A ⊃ B
⊃ Rx

Implication corresponds to functions.

Γ,M : A ⊃ B ⊢ N : A Γ,M : A ⊃ B,MN : B ⊢ P : C

Γ,M : A ⊃ B ⊢ P : C
⊃ L

Elimination of functions is application.

Γ,M : A ⊢ M : A
ID

4

- [] Example annotated with proof terms
We see how we can unroll from sequent into natural deduction. If this

holds for all sequents then we have the following metatheorem: If for all of the
antecedent Ai we can construct a term Mi : Ai then we can construct a term
for the succedent N : C.

If we can always go from a sequent to a well-typed proof term then we know
it is in natural deduction, this is a proof of soundness.

9 Why Sequent Calculus?

Consider ⊥. There is no way to introduce it so we have no right rule. The left
rule is

Γ,⊥ ⊢ C
⊥L

There is no proof of falsehood! · ⊢ ⊥ This means that sequent calculus is
a consistent system. Since we know sequent is mappable to natural deduction
natural deduction is also consistent.

It is easier to disprove certain things in sequent, if they can’t be proved we
know they also can’t be proved in natural deduction.

Here are the rules for disjunction:

· ⊢ A

· ⊢ A ∨B

· ⊢ B

· ⊢ A ∨B
Suppose I wanted to prove LEM:

· ⊢ A ∨ (A ⊃ ⊥)

For arbitrary A, we can’t prove this because we can’t prove A or A ⊃ ⊥.
Of course, we can also sometimes prove something is unprovable is by show-

ing that it’s unprovable in classical/boolean logic. (We could add A∨¬A as an
axiom, which would allow us to prove at least as much as without it.)

In response to a question about how/why this sequent calcluls is a bit dif-
ferent than e.g. linear logic:

We can refactor the rules to add an explicit “contraction rule”

Γ, A,A ⊢ C

Γ, A ⊢ C
CONTR

And then have the left rules remove the thing their acting upon from the
antecedents

E.g.

Γ, A,B ⊢ C

Γ, A ∧B ⊢ C
∧ L

5

