
Pfenning Proof Theory Lecture 5: Linear Logic &

Communication

June 23 2022

1 Introduction

Our goal is to define logical foundations without assuming what
already exists in mathematics. There is a strong connection between
constructive proof and functional programming.

Questions for Today:

1. In ND (i.e. natural deduction), we check soundness by these reductions.
Can we do a similar test on SEQ (i.e. sequent calculus)?

2. ND has a nice computational interpretation as functional programming.
What about computational interpretation of SEQ?

We will address these questions by looking at intuitionistic linear logic, as
that is an easier setting.

The key difference in the linear setting is that when you use an assumption,
it’s gone; you don’t get to reuse them.

The correspondence between regular intuitionistic logic and intuitionistic
linear logic is roughly:

Intuitionistic Intuitionistic Linear

⊃ ⊸ (neg)

∧ & (neg)
⊗ (pos)

⊤ ⊤ (neg)
1 (pos)

∨ ⊕ (pos)
⊥ 0 (pos)

1

2 Sequent Calculus for Intuitionistic Linear Logic

Γ, A ⊢ B

Γ ⊢ A ⊸ B
⊸ R

Γ ⊢ A ∆, B ⊢ C

Γ,∆, A ⊸ B ⊢ C
⊸ L

⊢ 1
1R

Γ ⊢ C

Γ, 1 ⊢ C
1L

Γ ⊢ A Γ ⊢ B

Γ ⊢ A&B
&R

Γ, A ⊢ C

Γ, A&B ⊢ C
&L1

Γ, B ⊢ C

Γ, A&B ⊢ C
&L2

Γ ⊢ A ∆ ⊢ B

Γ,∆,⊢ A⊗B
⊗R

Γ, A,B ⊢ C

Γ, A⊗B ⊢ C
⊗L

Γ ⊢ A

Γ ⊢ A⊕B
⊕R1

Γ ⊢ B

Γ ⊢ A⊕B
⊕R2

Γ, A ⊢ C Γ, B ⊢ C

Γ, A⊕B ⊢ C
⊕L

A ⊢ A
ID

Γ, A ∆, A ⊢ C

Γ,∆ ⊢ C
CUT

Γ ⊢ ⊤
⊤R

Γ, 0 ⊢ C
0L

Note: There is no T-L rule and no 0-R rule

2

Example Let’s look at cut for &.

Γ ⊢ A(D1) Γ ⊢ B(D2)

Γ ⊢ A&B
&R

∆, A ⊢ C(E1)
∆, A&B ⊢ C

&L1

Γ,∆ ⊢ C
CUTA&B

reduces to

Γ ⊢ A(D1) ∆, A ⊢ C(E1)
Γ,∆ ⊢ C

CUTA

Our goal was to provide a computational interpretation of a sequent calculus.
It turns out that we can interpret these rules in terms of channels!

Γ ⊢ A(D1) Γ ⊢ B(D2)

Γ ⊢ x : A&B
&R

∆, A ⊢ C(E1)
∆, x : A&B ⊢ C

&L1

Γ,∆ ⊢ C
CUTA&B

View the derivation of the left premise of the cut (P) and the derivation of
the right premise of the cut (Q) as processes interacting along a communication
channel x. The right side is making a choice to ask for the first part (A) and
sending that information along the channel, which is going to respond with an
element of type A.

So we can annotate the preceding derivations with the channel name x.

Γ ⊢ A(D1)

Γ ⊢ x : A⊕B
⊕R1

∆, A ⊢ C(E1) ∆, B ⊢ C(E2)
∆, x : A⊕B ⊢ C

⊕L

Γ,∆ ⊢ C
CUTA⊕B

reduces to

Γ ⊢ A(D1) ∆, A ⊢ C(E1)
Γ,∆ ⊢ C

CUTA

If you’re familiar with the pi calculus, this would be the program (ν.x)(P |Q),
with Q sending either π1 or π2 to P .

Question Do we need to interpret these as processes? No, we don’t need to,
but it is natural.

Question Does information always flow from right tree to left tree? No, it
depends on whether the type being cut on is positive or negative.

3

Going one step further, we can give CUT a proof term:

Γ ⊢ Px :: (x : A) ∆, x : A ⊢ Qx :: (w : C)

Γ,∆ ⊢ (x← P (x);Q(x)) :: (w : C)
CUTA

Here, x is a new, unidirectional communication channel along which exactly
one message will be sent. The process P will write to it, and the process Q will
read from it.

2.1 Communication direction and polarity of types

When we introduced the intuitionistic linear connectives, we mentioned that
connectives are “positive” or “negative”. Computationally, this corresponds
to whether you have all the information (positive) or need to make a choice
(negative). Positive connectives send information from the first premise to the
second premise of a cut (left to right in the proof tree, but right rule to left
rule). Negative connectives send information in the opposite direction, from the
second premise to the first.

This distinguishes A⊕B and A&B: to introduce both of them, we provide
left and right derivations, but operationally, different processes choose left vs
right. A⊕B is positive, and the producer (left derivation) decides whether it’s
an A or a B (like a regular intuitionistic ∨). A&B is negative, and is a lazy
pair where the consumer (right derivation) will ask for an A or a B. A ⊗ B is
positive, and is simply a pair of an A and a B which is passed to the consumer.
A ⊸ B is negative, and is a function waiting for be applied (waiting for the
consumer to send an argument of type A).

For the other connectives, ⊤ is negative, 0 is positive, 1 is positive.

2.2 Synchronous and Asynchronous Calculi

From before, what channel do they talk on after the initial reduction?

Γ ⊢ y : A(D1)

Γ ⊢ x : A⊕B
⊕R1

∆, y : A ⊢ C(E1) ∆, B ⊢ C(E2)
∆, x : A⊕B ⊢ C

⊕L

Γ,∆ ⊢ C
CUTA⊕B

reduces to

Γ ⊢ y : A(D1) ∆, y : A ⊢ C(E1)
Γ,∆ ⊢ C

CUTA

by communicating not just π1, but π1(y), including the continuation (y).
The computational interpretation of this sequent calculus is synchronous

concurrency, with cut being the communication step. Synchronous concurrency
is basically impossible to implement, so we’ll now try to make things asyn-
chronous.

4

For asynchronous communication, we’re going to want the cut to disappear
entirely, rather than just being pushed inward. We’re going to “axiomatize” the
right rule for ⊕ and the left rules for &. We will have that things of positive
types will be messages and things of negative type will be processes.

We get rid of &L1 and &L2 and we add axioms:

A&B ⊢ A &A1

A&B ⊢ B &A2

So now we might build the derivation:

Γ ⊢ A(D1) Γ ⊢ B(D2)

Γ ⊢ A&B
&R

π1

A&B ⊢ A
&A1

Γ ⊢ A
CUTA&B

reducing to

Γ ⊢ A(D1)

The axioms represent messages: π1 is a message saying “give me the first
part”. The rest of the derivations are processes. So this reduction is a “message
receive”.

We can do this for the other connectives as well. For ⊕:

π1

A ⊢ A⊕B
⊕A1

π2

B ⊢ A⊕B
⊕A2

(Reusing the name π between ⊕ and & is fine because they are distinguished
by the types.)

We can give proof terms to these rules:

x : A ⊢ msg y(π1x) :: (y : A⊕B) x : B ⊢ msg y(π2x) :: (y : A⊕B)

x : A&B ⊢ msg y(π1x) :: (y : A) x : A&B ⊢ msg y(π2x) :: (y : B)

Γ1, x : A ⊢ P :: (w : C) Γ1, x : B ⊢ Q :: (w : C)

Γ, y : A⊕B ⊢ recv y(π1x⇒ P |π2x⇒ Q)(w : C)

5

We can use this to write a simple program

msg y(π2a)| recv y(π1x⇒ P |π2x⇒ Q)

which steps to

P [x := a]

Instead of the message-passing interpretation, we can also interpret these as
a kind of shared memory: “recv” is like reading from a location, “msg” is like
writing to it, and :: (y : A) specifies the location Y where a process’s return
value should be written.

2.3 Doing computation

Finally, let’s see how we can actually write programs in such a language.
Consider the (recursive) type of binary sequences:

bin = (b0 : bin)⊕ (b1 : bin)⊕ (e : 1)

Suppose we wish to write a function that flips sequences. We might try some-
thing like:

x : bin ⊢ flip :: (y : bin) = recv x(

b0(x′)⇒
b1(x′)⇒
be(x′)⇒
)

But this won’t work because we don’t have a continuation after sending a
message in our asynchronous language. So instead we annotate flip with x, y:

x : bin ⊢ flipx,y :: (y : bin) = recv x(

b0(x′)⇒ y′ ← flip(x′, y′);msg y(b1(y′))

b1(x′)⇒ y′ ← . . .

e(x′)⇒ y′ msg y(e(x′))

)

2.4 Parting thoughts on linear logic

Two ways of recovering general computation:

• Introduce !A (read “of course A”) as a type constructor, which recovers
nonlinearity.

• Introduce recursive types and recursive definitions.

6

After starting with the first option, Frank has found the second option to be
preferable.

For more on linear logic, you can check out Frank’s lecture notes on linear
logic (http://www.cs.cmu.edu/~fp/courses/15816-s12/), plus notes from
last fall that provide a somewhat more computational interpretation (http:
//www.cs.cmu.edu/~fp/courses/15814-f21/schedule.html).

7

http://www.cs.cmu.edu/~fp/courses/15816-s12/
http://www.cs.cmu.edu/~fp/courses/15814-f21/schedule.html
http://www.cs.cmu.edu/~fp/courses/15814-f21/schedule.html

	Introduction
	Sequent Calculus for Intuitionistic Linear Logic
	Communication direction and polarity of types
	Synchronous and Asynchronous Calculi
	Doing computation
	Parting thoughts on linear logic

