
Formal Verification of Monadic Computations: Lecture 1

Steve Zdancewic

27 June 2022

Motivation and Challenges

Formal verification and Coq can be applied to real-life code that are safety-critical. However,
these systems involve complex specifications and behaviors that are difficult to model and verify.
Verifying these systems at increased scale and low cost is also a challenge.

However there are several success stories in applying formal verification to software including
CompCert, CakeML, CertiKOS, Bedrock2, sel4, IronFleet, FSCQ, and DeepSpec.

In these lectures, we will cover verifying monadic programs in Coq, which touches on many recurring
themes in OPLSS and dependent type theory.

Imp: A simple imperative language

Has simple BNF grammar

c := skip | x := a | c;c | if b then c else c end | while b do c end

We can express this in Coq as an inductive type:

Inductive com : Type :=

| CSkip

| CAsgn (x : string) (a : aexp)

| CSeq (c1 c2 : com)

| CIf (b : bexp) (c1 c2 : com)

| CWhile (b : bexp) (c : com).

Factorials as a simple example

We can implement the factorial function within Imp, as shown below. We observe that (after taking
out junk code) we get that the program outputs the correct factorial; and provably so via Coq.

Definition fact_in_coq : com :=

<{ Z := X;

Y := 1;

while Z 0 do

Y := Y × Z;

Z := Z - 1

end }>.
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We would then like to evaluate functions written in Imp. We want to do this semantically. If we
want to write this denotationally, we can make each command in our syntax correspond to some
mathematical function.

Fixpoint ceval_fun_no_while (st : state) (c : com) : state :=

match c with

| <{ skip }>

st

| <{ x := a }>

(x !-> (aeval st a) ; st)

| <{ c1 ; c2 }>

let st' := ceval_fun_no_while st c1 in

ceval_fun_no_while st' c2

| <{ if b then c1 else c2 end}>

if (beval st b)

then ceval_fun_no_while st c1

else ceval_fun_no_while st c2

| <{ while b do c end }>

st (* bogus *)

end.

However, here we’ve run into an issue with the denotational approach because the while command
can have infinite loops, but Coq wants a pure and total semantics! So instead we make a relational
operational semantics using the rules below. The type of our semantics in Coq is com x mem x

mem, a triple relation between a command, input memory, and final memory.

st = [skip] => st
E Skip

aeval st a = n
st = [x := a] => (x!− > n; st)

E Asgn

st = [c1] => st′ st′ = [c2] => st′′

st = [c1; c2] => st′′
E Seq

beval st b = true st = [c1] => st′

st = [if b then c1 else c2 end] => st′
E IfTrue

beval st b = false st = [c2] => st′

st = [if b then c1 else c2 end] => st′
E IfFalse

beval st b = false

st = [while b do c end] => st
E WhileFalse

beval st b = true st = [c] => st′ st′ = [while b do c end] => st′′

st = [while b do c end] => st′′
E WhileTrue

Inductive ceval : com → state → state → Prop :=

| E_Skip : forall st,

2



st =[ skip ]=> st

| E_Asgn : forall st a n x,

aeval st a = n →
st =[ x := a ]=> (x !-> n ; st)

| E_Seq : forall c1 c2 st st' st'',

st =[ c1 ]=> st' →
st' =[ c2 ]=> st'' →
st =[ c1 ; c2 ]=> st''

| E_IfTrue : forall st st' b c1 c2,

beval st b = true →
st =[ c1 ]=> st' →
st =[ if b then c1 else c2 end]=> st'

| E_IfFalse : forall st st' b c1 c2,

beval st b = false →
st =[ c2 ]=> st' →
st =[ if b then c1 else c2 end]=> st'

| E_WhileFalse : forall b st c,

beval st b = false →
st =[ while b do c end ]=> st

| E_WhileTrue : forall st st' st'' b c,

beval st b = true →
st =[ c ]=> st' →
st' =[ while b do c end ]=> st'' →
st =[ while b do c end ]=> st''

where "st =[ c ]=> st'" := (ceval c st st').

We observe a couple drawbacks. The first is that this semantics is partial, as in there is no mem for
a diverging program. It is not structural, as some rules are defined in terms of themselves. It is
also not executable, as we can’t extract the semantics as a program to be executed. And finally, it
is a deep embedding so we can’t reuse meta-level Coq functionality.

The question now becomes: can we do it differently? Unsurprisingly, yes.

Enter the Monad

A Monad is a datatype that can represent some kind of computational behavior. A monad supports
a “well-behaved” notion of sequential composition. Some examples are mutable state, exceptions,
nondeterminism, I/O, and divergence.

One of the biggest features of Imp was sequential composition. Intuitively what we do for a
command c1 ; c2 with input memory st is to let st’ be the memory after c1 then let st’’ be
the memory after running c2 on st’. Then st’’ is the final memory state. In fact we can write
what we explained above as a program using let statements in Coq. However this doesn’t work.
We need to find an appropriate semantic domain. But before we do, more monads!

Consider the thought that an Imp-like factorial function would take in an initial memory state,
change it up a bit, then return a memory state and our desired factorial. In essence, a function
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S → S ×B. This is exactly what we want in a monad! In particular, S is the monad.

There are some common operations associated with a state monad. One of them, bind, generalizes
let. bind explicitly passes state through the monad. k can be seen as a continuation.

Definition state_bind {S A B} (m : state S A) (k:A → state S B) : state S B :=

fun s => let (s', a) := m s in k a s'.

Another operation, ret, lifts a pure computation that doesn’t change the state of the program.

Definition state_ret {S A} : A -> state S A :=

fun (a:A) (s:S) => (s, a).

get and put operations work generically on any state. get returns the current value of the state,
leaving the state unchanged. put updates the state, returning the trivial unit value.

Definition get {S} : state S S :=

fun s => (s, s).

Definition put {S} (s:S) : state S unit :=

fun _ => (s, tt).

Monads, generally

A Monad M : Type → Type supports:

• A function ret to embed pure computations

• A function bind to sequence computations

Some examples include identity, options supporting fail, and nondeterminism supporting choice.

Monads have to follow some laws. In particular, a well-behaved notion of sequential composition.
Consider that these two programs should be equal:

(c1 ; c2) ; c3

c1 ; (c2 ; c3)

We can easily visualize this using nested let statements, and it’s not too hard to generalize this
mental image using binds. We can even just substitute.

The laws a monad must comply with are:

1. Bind associativity.

2. Ret is left unit.

3. Ret is right unit.
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Class MonadLaws {M} `{Monad M} := {

bind_associativity :

forall A B C (ma : M A) (kb : A -> M B) (kc : B -> M C),

x <- (y <- ma ;; kb y) ;; kc x

=

y <- ma ;; x <- kb y ;; kc x

; bind_ret_l :

forall A B (a : A) (kb : A -> M B),

x <- ret a ;; kb x

=

kb a

; bind_ret_r :

forall A (m : M A),

x <- m ;; ret x

=

m

}.

Monad Equivalences

Now that we’ve introduced monads, it’s interesting to consider what it means for two monadic
computations to be equivalent. We can define a monad equivalence as a relation between two
monads. This relation should have the usual properties of equivalence relations: that is it should be
reflexive, symmetric, and transitive. However, we should also have a property that binds be proper ;
that is, the bind operation respects Monad equivalence. This can be expressed as maintaining the
logical relation. We can then define a monad with a particular notion of equivalence as:

Class MonadLaws M `{Monad M} `{EqM M} := {

bind_associativity :

forall A B C (ma : M A) (kb : A -> M B) (kc : B -> M C),

eqM (* <---- NEW! *)

(x <- (y <- ma ;; kb y) ;; kc x)

(y <- ma ;; x <- kb y ;; kc x)

; bind_ret_l :

forall A B (a : A) (kb : A -> M B),

eqM

(x <- ret a ;; kb x)

(kb a)

; bind_ret_r :

forall A (m : M A),

eqM

(x <- m ;; ret x)

m
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(* NEW! *)

; Proper_bind : forall {A B},

@Proper (M A -> (A -> M B) -> M B)

(eqM ==> pointwise_relation _ eqM ==> eqM) bind

}.

Important! This generalization to use eqM for equality is the stepping stone to more powerful
relational reasoning principles.

Extensible Semantics and the Free Monad

We’ll eventually talk about handling loops using coinduction and interaction trees, but first we
must learn about free monads.

Our motivating example is the expression problem where we want to define a datatype by cases
while still being able to both add new cases and define new functions over the datatype without
recompiling existing code.

A free monad is parameterized by a function E : Type → Type and a return type R : Type.
Essentially we say that “every operation knows what kind of value it computes”. E can be seen as
the type of events. op : E X represents an operation that will return a value of type X which can
be fed into the continuation k. This free monad allows us to support operations are generic using
dependent types.

Inductive FFree (E : Type -> Type) (R : Type) : Type :=

| Ret (x : R)

| Do {X} (op : E X) (k : X -> FFree E R).

We can then define sequential composition for the free monad. This sequential composition function
is a bind function while the return function is a monadic return function. As a consequence, our
free monad is in fact a monad.

Fixpoint seq {E X Y} (e : FFree E X) (k : X -> FFree E Y) : FFree E Y :=

match e with

| Ret x => k x

| Do op h => Do op (fun n => seq (h n) k)

end.

#[export] Instance FFreeM {E} : Monad (FFree E) :=

{|

ret := @Ret E

; bind := @seq E

|}.
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