Effect typing

Sam Lindley

The University of Edinburgh

OPLSS 2022

Effect polymorphism

To support flexible composition of effectful programs we need effect polymorphism.

Effect polymorphism

To support flexible composition of effectful programs we need effect polymorphism.

Example: choice and failure

 $maybeFail : \forall e.A!(e \uplus \{ fail : a.1 \twoheadrightarrow a \}) \Rightarrow Maybe A!e \\ allChoices : \forall e.A!(e \uplus \{ choose : 1 \twoheadrightarrow Bool \}) \Rightarrow List A!e$

Effect polymorphism

To support flexible composition of effectful programs we need effect polymorphism.

Example: choice and failure

$$\begin{array}{l} \mathsf{maybeFail} : \forall e.A! (e \uplus \{\mathsf{fail} : a.1 \twoheadrightarrow a\}) \Rightarrow \mathsf{Maybe} \ A!e \\ \mathsf{allChoices} : \forall e.A! (e \uplus \{\mathsf{choose} : 1 \twoheadrightarrow \mathsf{Bool}\}) \Rightarrow \mathsf{List} \ A!e \\ \end{array}$$

With explicit type applications we may write:

handle (handle drunkTosses 2 with maybeFail {choose : $1 \rightarrow Bool$ }) with allChoices \emptyset

or

handle (handle drunkTosses 2 with allChoices {fail : $a.1 \rightarrow a$ }) with maybeFail \emptyset

Intuitively, a row type is a type-level map from labels to value types $\ell_1: A_1, ..., \ell: A_n$

Intuitively, a row type is a type-level map from labels to value types $\ell_1: A_1, ..., \ell: A_n$

Row polymorphism supports abstracting over *the rest* of a row type: $\ell : A_1, ..., \ell : A_n; \rho$

There can be at most one row variable in a row type

Intuitively, a row type is a type-level map from labels to value types $\ell_1: A_1, ..., \ell: A_n$

Row polymorphism supports abstracting over *the rest* of a row type: $\ell : A_1, ..., \ell : A_n; \rho$

There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing [Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

Intuitively, a row type is a type-level map from labels to value types $\ell_1: A_1, ..., \ell: A_n$

Row polymorphism supports abstracting over *the rest* of a row type: $\ell : A_1, ..., \ell : A_n; \rho$

There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing [Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

For effect handlers labels are either operation names or effect names

Rémy-style row polymorphism

Rows as maps from labels to type-level maybes — each label is either present with type A (Pre(A)) or absent (Abs)

Duplicate labels disallowed

Rémy-style row polymorphism

Rows as maps from labels to type-level maybes — each label is either present with type A (Pre(A)) or absent (Abs)

Duplicate labels disallowed

Example:

```
 \begin{array}{l} \mathsf{maybeFail}: \forall (e : \mathsf{Row}_{\{\mathsf{fail}\}}), (p : \mathsf{Presence}). \\ & A!(\{\mathsf{fail}: (a : \mathsf{Type}).1 \twoheadrightarrow a; e\}) \Rightarrow \mathsf{Maybe} \ A!\{\mathsf{fail}: p; e\} \\ \mathsf{allChoices}: \forall (e : \mathsf{Row}_{\{\mathsf{choose}\}}), (p : \mathsf{Presence}). \\ & A!(e \uplus \{\mathsf{choose}: 1 \twoheadrightarrow \mathsf{Bool}; e\}) \Rightarrow \mathsf{List} \ A!\{\mathsf{choose}: p; e\} \end{array}
```

Leijen-style row polymorphism

Rows as maps from labels to type-level lists — each label may be present multiple times at different types

Duplicate labels allowed; order of duplicates matters

Leijen-style row polymorphism

Rows as maps from labels to type-level lists — each label may be present multiple times at different types

Duplicate labels allowed; order of duplicates matters

Example:

```
\begin{array}{l} \mathsf{maybeFail}: \forall (e : \mathsf{Row}). \\ & A!(\{\mathsf{fail}: (a : \mathsf{Type}).1 \twoheadrightarrow a; e\}) \Rightarrow \mathsf{Maybe} \ A!\{; e\} \\ \mathsf{allChoices}: \forall (e : \mathsf{Row}). \\ & A!(e \uplus \{\mathsf{choose}: 1 \twoheadrightarrow \mathsf{Bool}; e\}) \Rightarrow \mathsf{List} \ A!\{; e\} \end{array}
```

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : $1 \rightarrow Bool$ } Abs) with allChoices \emptyset Abs

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1 \rightarrow Bool} Abs) with allChoices \emptyset Abs

Leijen style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : $1 \rightarrow Bool$ }) with allChoices \emptyset

```
catch : (1 \rightarrow b! \{ \text{fail} : a.1 \rightarrow a; e \}) \rightarrow (1 \rightarrow b! \{ \text{fail} : p; e \}) \rightarrow b! \{ \text{fail} : p; e \}
catch m \ h = \text{handle } m() with
return x \mapsto x
\langle \text{fail} () \rangle \rightarrow h()
```

```
\begin{aligned} \mathsf{catch} &: (1 \to b!\{\mathsf{fail} : a.1 \to a; e\}) \to (1 \to b!\{\mathsf{fail} : p; e\}) \to b!\{\mathsf{fail} : p; e\} \\ \mathsf{catch} \ m \ h = \mathsf{handle} \ m() \ \mathsf{with} \\ & \mathsf{return} \ x \mapsto x \\ & \langle \mathsf{fail} \ () \rangle \ \mapsto h \ () \end{aligned}
```

If h can itself fail then p is instantiated to $Pre(a.1 \rightarrow a)$

catch :
$$(1 \rightarrow b! \{ \text{fail} : a.1 \rightarrow a; e \}) \rightarrow (1 \rightarrow b! \{ \text{fail} : p; e \}) \rightarrow b! \{ \text{fail} : p; e \}$$

catch $m \ h = \text{handle } m()$ with
return $x \mapsto x$
 $\langle \text{fail}() \rangle \rightarrow h()$

If *h* can itself fail then *p* is instantiated to $Pre(a.1 \rightarrow a)$ Leijen style:

> catch : $(1 \rightarrow b! \{ \text{fail} : a.1 \rightarrow a; e \}) \rightarrow (1 \rightarrow b! \{; e\}) \rightarrow b! \{; e\}$ catch m h = handle m() with return $x \mapsto x$ $\langle \text{fail} () \rangle \rightarrow h()$

$$\begin{array}{l} \operatorname{catch} : (1 \to b! \{ \operatorname{fail} : a.1 \twoheadrightarrow a; e \}) \to (1 \to b! \{ \operatorname{fail} : p; e \}) \to b! \{ \operatorname{fail} : p; e \} \\ \operatorname{catch} m \ h = \mathbf{handle} \ m() \ \mathbf{with} \\ \mathbf{return} \ x \mapsto x \\ \langle \operatorname{fail} () \rangle \ \mapsto h () \end{array}$$

If *h* can itself fail then *p* is instantiated to $Pre(a.1 \rightarrow a)$ Leijen style:

catch :
$$(1 \rightarrow b! \{ \text{fail} : a.1 \rightarrow a; e \}) \rightarrow (1 \rightarrow b! \{; e\}) \rightarrow b! \{; e\}$$

catch $m \ h =$ handle $m()$ with
return $x \mapsto x$
 $\langle \text{fail} () \rangle \rightarrow h()$

If *h* can itself fail then *e* is instantiated to (fail : $a.1 \rightarrow a; e'$) for some *e'*, which means the type of *m* is $(1 \rightarrow b! \{ \text{fail} : a.1 \rightarrow a, \text{fail} : a.1 \rightarrow a; e' \})$

Key observation: for higher-order functions the effect variables almost always match up because we typically *use* the function arguments

Key observation: for higher-order functions the effect variables almost always match up because we typically *use* the function arguments

Example (Leijen style):

$$\begin{aligned} \mathsf{catch} &: (1 \to b! \{\mathsf{fail} : a.1 \twoheadrightarrow a; e\}) \to (1 \to b! \{; e\}) \to b! \{; e\} \\ \mathsf{map} &: (a \to b! \{; e\}) \to \mathsf{List} \ a \to \mathsf{List} \ b! \{; e\} \end{aligned}$$

Key observation: for higher-order functions the effect variables almost always match up because we typically *use* the function arguments

Example (Leijen style):

$$\begin{aligned} \mathsf{catch} &: (1 \to b!\{\mathsf{fail} : a.1 \twoheadrightarrow a; e\}) \to (1 \to b!\{; e\}) \to b!\{; e\} \\ \mathsf{map} &: (a \to b!\{; e\}) \to \mathsf{List} \ a \to \mathsf{List} \ b!\{; e\} \end{aligned}$$

We adopt a convention that omitted effect variables are all the same

$$\begin{aligned} \mathsf{catch} &: (1 \to b! \{\mathsf{fail} : a.1 \twoheadrightarrow a\}) \to (1 \to b! \{\}) \to b! \{\} \\ \mathsf{map} &: (a \to b! \{\}) \to \mathsf{List} \ a \to \mathsf{List} \ b! \{\} \end{aligned}$$

Key observation: for higher-order functions the effect variables almost always match up because we typically *use* the function arguments

Example (Leijen style):

$$\begin{aligned} \mathsf{catch} &: (1 \to b!\{\mathsf{fail} : a.1 \twoheadrightarrow a; e\}) \to (1 \to b!\{; e\}) \to b!\{; e\} \\ \mathsf{map} &: (a \to b!\{; e\}) \to \mathsf{List} \ a \to \mathsf{List} \ b!\{; e\} \end{aligned}$$

We adopt a convention that omitted effect variables are all the same

$$\begin{aligned} \mathsf{catch} &: (1 \to b!\{\mathsf{fail} : a.1 \twoheadrightarrow a\}) \to (1 \to b!\{\}) \to b!\{\} \\ \mathsf{map} &: (a \to b!\{\}) \to \mathsf{List} \ a \to \mathsf{List} \ b!\{\} \end{aligned}$$

And further that empty polymorphic effects need not be written at all:

$$\begin{array}{l} \mathsf{catch}: (1 \to b! \{ \mathsf{fail}: a.1 \twoheadrightarrow a \}) \to (1 \to b) \to b \\ \mathsf{map}: (a \to b) \to \mathsf{List} \ a \to \mathsf{List} \ b \end{array}$$

Key observation: for higher-order functions the effect variables almost always match up because we typically *use* the function arguments

Example (Leijen style):

$$\begin{aligned} \mathsf{catch} &: (1 \to b!\{\mathsf{fail} : a.1 \twoheadrightarrow a; e\}) \to (1 \to b!\{; e\}) \to b!\{; e\} \\ \mathsf{map} &: (a \to b!\{; e\}) \to \mathsf{List} \ a \to \mathsf{List} \ b!\{; e\} \end{aligned}$$

We adopt a convention that omitted effect variables are all the same

$$\begin{aligned} \mathsf{catch} &: (1 \to b!\{\mathsf{fail} : a.1 \twoheadrightarrow a\}) \to (1 \to b!\{\}) \to b!\{\} \\ \mathsf{map} &: (a \to b!\{\}) \to \mathsf{List} \ a \to \mathsf{List} \ b!\{\} \end{aligned}$$

And further that empty polymorphic effects need not be written at all:

$$\begin{array}{l} \mathsf{catch}: (1 \to b! \{ \mathsf{fail}: a.1 \twoheadrightarrow a \}) \to (1 \to b) \to b \\ \mathsf{map}: (a \to b) \to \mathsf{List} \ a \to \mathsf{List} \ b \end{array}$$

We do now need to use explicit syntax to denote a closed row (\emptyset), but with row-based effect typing closed rows are uncommon

Handlers

$$\begin{array}{ll} \mathsf{maybeFail} : b! \{ \mathsf{fail} : a.1 \twoheadrightarrow a \} \Rightarrow \mathsf{Maybe} \ b\\ \mathsf{maybeFail} = \mathbf{return} \ x & \mapsto \mathsf{Just} \ x\\ & \langle \mathsf{fail} () \to r \rangle & \mapsto \mathsf{Nothing} \end{array}$$

bad : List $b \to (1 \to b! \{ get : 1 \twoheadrightarrow Nat, fail : a.1 \twoheadrightarrow a \}) \to Maybe b$ bad ns t = handle (handle t () with reads ns) with maybeFail

bad : List $b \rightarrow (1 \rightarrow b! \{ get : 1 \twoheadrightarrow Nat, fail : a.1 \twoheadrightarrow a \}) \rightarrow Maybe b$ bad ns t = handle (handle t () with reads ns) with maybeFail

 $\mathsf{bad}\left[1,2\right](\lambda().\mathsf{get}\left()+\mathsf{fail}\left(\right)):\mathsf{Maybe}\;\mathsf{Nat}\Longrightarrow\mathsf{Nothing}$

bad : List $b \rightarrow (1 \rightarrow b! \{ get : 1 \twoheadrightarrow Nat, fail : a.1 \twoheadrightarrow a \}) \rightarrow Maybe b$ bad ns t = handle (handle t () with reads ns) with maybeFail

 $\mathsf{bad}\left[1,2\right](\lambda(),\mathsf{get}\left()+\mathsf{fail}\left(\right)):\mathsf{Maybe}\;\mathsf{Nat}\Longrightarrow\mathsf{Nothing}$

How can we encapsulate the use of fail as an intermediate effect?

bad : List $b \rightarrow (1 \rightarrow b! \{ get : 1 \twoheadrightarrow Nat, fail : a.1 \twoheadrightarrow a \}) \rightarrow Maybe b$ bad ns t = handle (handle t () with reads ns) with maybeFail

 $\mathsf{bad}\left[1,2\right](\lambda().\mathsf{get}\left()+\mathsf{fail}\left(\right)):\mathsf{Maybe}\;\mathsf{Nat}\Longrightarrow\mathsf{Nothing}$

How can we encapsulate the use of fail as an intermediate effect?

The aim is to define

good : List $b \rightarrow (1 \rightarrow b! \{ get : 1 \twoheadrightarrow Nat \}) \rightarrow Maybe b$

by composing reads and maybeFail such that

 $good [1,2] (\lambda().get () + fail ()) : Maybe Nat! {fail : <math>a.1 \rightarrow a$ }

performs the fail operation.

Effect encapsulation

Two solutions to the effect pollution problem:

Mask the intermediate effect (only works for Leijen-style row-typing)

good : List $b \to (1 \to b! \{ \text{get} : 1 \twoheadrightarrow \text{Nat} \}) \to \text{Maybe } b$ good $ns t = \text{handle (handle (<math>\langle \text{fail} \rangle (t()))$ with reads ns) with maybeFail

Frank, Koka, and Helium support this approach. [Biernacki, Piróg, Polesiuk, Sieczkowski, POPL 2018, "Handle with care"] [Convent, Lindley, McBride, McLaughlin, JFP 2019, "Doo bee doo bee doo"]

Add support for fresh effects

Helium and Links support this approach. [Biernacki, Piróg, Polesiuk, Sieczkowski, POPL 2019, "Abstracting algebraic effects"]

Effect masking

$$\frac{\Delta; \Gamma \vdash M : A! \{R\}}{\Delta; \Gamma \vdash \langle \text{op} \rangle \ M : A! \{\text{op} : B \twoheadrightarrow C; R\}}$$

Akin to weakening for effects

Doo bee doo bee doo

Shall I be pure or impure? —Philip Wadler

A value is. A computation does. —Paul Blain Levy

'To be is to do'—Socrates.
'To do is to be'—Sartre.
'Do be do be do'—Sinatra.
—anonymous graffiti, via Kurt Vonnegut

Frank

[Lindley, McBride, McLaughlin, POPL 2017, "Do be do be do"] [Convent, Lindley, McBride, McLaughlin, JFP 2019, "Doo bee doo bee doo"]

Frank is an unequivocally effect handler oriented research programming language

Key features include:

- invisible effect polymorphism
- call-by-handling
- multihandlers
- adjustments
- adaptors (a generalisation of mask)

Probably a misfeature: unusual syntax

Handlers in Links and Frank (demo)

Effect typing scalability challenges

Effect encapsulation

Linearity

Generativity

Indexed effects

Equations