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Effect polymorphism

To support flexible composition of effectful programs we need effect polymorphism.

Example: choice and failure

maybeFail : ∀e.A!(e ] {fail : a.1� a}) ⇒ Maybe A!e
allChoices : ∀e.A!(e ] {choose : 1� Bool}) ⇒ List A!e

With explicit type applications we may write:

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}) with allChoices ∅

or

handle (handle drunkTosses 2 with allChoices {fail : a.1� a}) with maybeFail ∅
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Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types `1 : A1, ..., ` : An

Row polymorphism supports abstracting over the rest of a row type: ` : A1, ..., ` : An; ρ

There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing
[Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

For effect handlers labels are either operation names or effect names
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Rémy-style row polymorphism

Rows as maps from labels to type-level maybes — each label is either present with type
A (Pre(A)) or absent (Abs)

Duplicate labels disallowed

Example:

maybeFail : ∀(e : Row{fail}), (p : Presence).
A!({fail : (a : Type).1� a; e}) ⇒ Maybe A!{fail : p; e}

allChoices : ∀(e : Row{choose}), (p : Presence).
A!(e ] {choose : 1� Bool; e}) ⇒ List A!{choose : p; e}
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Leijen-style row polymorphism

Rows as maps from labels to type-level lists — each label may be present multiple times
at different types

Duplicate labels allowed; order of duplicates matters

Example:

maybeFail : ∀(e : Row).
A!({fail : (a : Type).1� a; e}) ⇒ Maybe A!{; e}

allChoices : ∀(e : Row).
A!(e ] {choose : 1� Bool; e}) ⇒ List A!{; e}
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Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}Abs)
with allChoices ∅Abs

Leijen style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool})
with allChoices ∅



Handler composition with row polymorphism

Instantiating an effect variable supports handler composition
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Example: abstracting over an exception handler
Rémy style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{fail : p; e}) → b!{fail : p; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then p is instantiated to Pre(a.1� a)

Leijen style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then e is instantiated to (fail : a.1� a; e ′) for some e ′, which means
the type of m is (1 → b!{fail : a.1� a, fail : a.1� a; e ′})
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Invisible effect polymorphism
Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
map : (a → b!{; e}) → List a → List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 → b!{fail : a.1� a}) → (1 → b!{}) → b!{}
map : (a → b!{}) → List a → List b!{}

And further that empty polymorphic effects need not be written at all:

catch : (1 → b!{fail : a.1� a}) → (1 → b) → b
map : (a → b) → List a → List b

We do now need to use explicit syntax to denote a closed row (∅), but with row-based
effect typing closed rows are uncommon
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Effect pollution example

Handlers

reads : List Nat → a!{get : 1� Nat} ⇒ a

reads ([]) = return x 7→ x
〈get () → r〉 7→ fail ()

reads (n :: ns) = return x 7→ x
〈get () → r〉 7→ r ns n

maybeFail : b!{fail : a.1� a} ⇒ Maybe b
maybeFail = return x 7→ Just x

〈fail () → r〉 7→ Nothing



Effect pollution example

bad : List b → (1 → b!{get : 1� Nat, fail : a.1� a}) → Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (λ().get () + fail ()) : Maybe Nat =⇒ Nothing

How can we encapsulate the use of fail as an intermediate effect?

The aim is to define

good : List b → (1 → b!{get : 1� Nat}) → Maybe b

by composing reads and maybeFail such that

good [1, 2] (λ().get () + fail ()) : Maybe Nat!{fail : a.1� a}

performs the fail operation.
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Effect encapsulation

Two solutions to the effect pollution problem:

I Mask the intermediate effect (only works for Leijen-style row-typing)

good : List b → (1 → b!{get : 1� Nat}) → Maybe b
good ns t = handle (handle (〈fail〉 (t ())) with reads ns) with maybeFail

Frank, Koka, and Helium support this approach.
[Biernacki, Piróg, Polesiuk, Sieczkowski, POPL 2018, “Handle with care”]
[Convent, Lindley, McBride, McLaughlin, JFP 2019, “Doo bee doo bee doo”]

I Add support for fresh effects

Helium and Links support this approach.
[Biernacki, Piróg, Polesiuk, Sieczkowski, POPL 2019, “Abstracting algebraic
effects”]



Effect masking

∆; Γ ` M : A!{R}
∆; Γ ` 〈op〉 M : A!{op : B � C ;R}

Akin to weakening for effects



Doo bee doo bee doo

Shall I be pure or impure?
—Philip Wadler

A value is. A computation does.
—Paul Blain Levy

‘To be is to do’—Socrates.
‘To do is to be’—Sartre.
‘Do be do be do’—Sinatra.

—anonymous graffiti, via Kurt Vonnegut



Frank

[Lindley, McBride, McLaughlin, POPL 2017, “Do be do be do”]
[Convent, Lindley, McBride, McLaughlin, JFP 2019, “Doo bee doo bee doo”]

Frank is an unequivocally effect handler oriented research programming language

Key features include:

I invisible effect polymorphism

I call-by-handling

I multihandlers

I adjustments

I adaptors (a generalisation of mask)

Probably a misfeature: unusual syntax



  

Links
http://www.links-lang.org
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With thanks to Simon Fowler



Handlers in Links and Frank (demo)



Effect typing scalability challenges

Effect encapsulation

Linearity

Generativity

Indexed effects

Equations


