
Effect typing

Sam Lindley

The University of Edinburgh

OPLSS 2022

Effect polymorphism

To support flexible composition of effectful programs we need effect polymorphism.

Example: choice and failure

maybeFail : ∀e.A!(e] {fail : a.1� a}) ⇒ Maybe A!e
allChoices : ∀e.A!(e] {choose : 1� Bool}) ⇒ List A!e

With explicit type applications we may write:

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}) with allChoices ∅

or

handle (handle drunkTosses 2 with allChoices {fail : a.1� a}) with maybeFail ∅

Effect polymorphism

To support flexible composition of effectful programs we need effect polymorphism.

Example: choice and failure

maybeFail : ∀e.A!(e] {fail : a.1� a}) ⇒ Maybe A!e
allChoices : ∀e.A!(e] {choose : 1� Bool}) ⇒ List A!e

With explicit type applications we may write:

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}) with allChoices ∅

or

handle (handle drunkTosses 2 with allChoices {fail : a.1� a}) with maybeFail ∅

Effect polymorphism

To support flexible composition of effectful programs we need effect polymorphism.

Example: choice and failure

maybeFail : ∀e.A!(e] {fail : a.1� a}) ⇒ Maybe A!e
allChoices : ∀e.A!(e] {choose : 1� Bool}) ⇒ List A!e

With explicit type applications we may write:

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}) with allChoices ∅

or

handle (handle drunkTosses 2 with allChoices {fail : a.1� a}) with maybeFail ∅

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types `1 : A1, ..., ` : An

Row polymorphism supports abstracting over the rest of a row type: ` : A1, ..., ` : An; ρ

There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing
[Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

For effect handlers labels are either operation names or effect names

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types `1 : A1, ..., ` : An

Row polymorphism supports abstracting over the rest of a row type: ` : A1, ..., ` : An; ρ

There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing
[Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

For effect handlers labels are either operation names or effect names

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types `1 : A1, ..., ` : An

Row polymorphism supports abstracting over the rest of a row type: ` : A1, ..., ` : An; ρ

There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing
[Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

For effect handlers labels are either operation names or effect names

Effect polymorphism via row polymorphism

Intuitively, a row type is a type-level map from labels to value types `1 : A1, ..., ` : An

Row polymorphism supports abstracting over the rest of a row type: ` : A1, ..., ` : An; ρ

There can be at most one row variable in a row type

Originally row polymorphism was designed for polymorphic record typing
[Wand, LICS 1989]

Row polymorphism also works nicely for polymorphic variants and effect polymorphism

For effect handlers labels are either operation names or effect names

Rémy-style row polymorphism

Rows as maps from labels to type-level maybes — each label is either present with type
A (Pre(A)) or absent (Abs)

Duplicate labels disallowed

Example:

maybeFail : ∀(e : Row{fail}), (p : Presence).
A!({fail : (a : Type).1� a; e}) ⇒ Maybe A!{fail : p; e}

allChoices : ∀(e : Row{choose}), (p : Presence).
A!(e] {choose : 1� Bool; e}) ⇒ List A!{choose : p; e}

Rémy-style row polymorphism

Rows as maps from labels to type-level maybes — each label is either present with type
A (Pre(A)) or absent (Abs)

Duplicate labels disallowed

Example:

maybeFail : ∀(e : Row{fail}), (p : Presence).
A!({fail : (a : Type).1� a; e}) ⇒ Maybe A!{fail : p; e}

allChoices : ∀(e : Row{choose}), (p : Presence).
A!(e] {choose : 1� Bool; e}) ⇒ List A!{choose : p; e}

Leijen-style row polymorphism

Rows as maps from labels to type-level lists — each label may be present multiple times
at different types

Duplicate labels allowed; order of duplicates matters

Example:

maybeFail : ∀(e : Row).
A!({fail : (a : Type).1� a; e}) ⇒ Maybe A!{; e}

allChoices : ∀(e : Row).
A!(e] {choose : 1� Bool; e}) ⇒ List A!{; e}

Leijen-style row polymorphism

Rows as maps from labels to type-level lists — each label may be present multiple times
at different types

Duplicate labels allowed; order of duplicates matters

Example:

maybeFail : ∀(e : Row).
A!({fail : (a : Type).1� a; e}) ⇒ Maybe A!{; e}

allChoices : ∀(e : Row).
A!(e] {choose : 1� Bool; e}) ⇒ List A!{; e}

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}Abs)
with allChoices ∅Abs

Leijen style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool})
with allChoices ∅

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}Abs)
with allChoices ∅Abs

Leijen style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool})
with allChoices ∅

Handler composition with row polymorphism

Instantiating an effect variable supports handler composition

Rémy style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool}Abs)
with allChoices ∅Abs

Leijen style (explicit instantiation):

handle (handle drunkTosses 2 with maybeFail {choose : 1� Bool})
with allChoices ∅

Example: abstracting over an exception handler
Rémy style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{fail : p; e}) → b!{fail : p; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then p is instantiated to Pre(a.1� a)

Leijen style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then e is instantiated to (fail : a.1� a; e ′) for some e ′, which means
the type of m is (1 → b!{fail : a.1� a, fail : a.1� a; e ′})

Example: abstracting over an exception handler
Rémy style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{fail : p; e}) → b!{fail : p; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then p is instantiated to Pre(a.1� a)

Leijen style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then e is instantiated to (fail : a.1� a; e ′) for some e ′, which means
the type of m is (1 → b!{fail : a.1� a, fail : a.1� a; e ′})

Example: abstracting over an exception handler
Rémy style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{fail : p; e}) → b!{fail : p; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then p is instantiated to Pre(a.1� a)

Leijen style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then e is instantiated to (fail : a.1� a; e ′) for some e ′, which means
the type of m is (1 → b!{fail : a.1� a, fail : a.1� a; e ′})

Example: abstracting over an exception handler
Rémy style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{fail : p; e}) → b!{fail : p; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then p is instantiated to Pre(a.1� a)

Leijen style:

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
catch m h = handle m() with

return x 7→ x
〈fail ()〉 7→ h ()

If h can itself fail then e is instantiated to (fail : a.1� a; e ′) for some e ′, which means
the type of m is (1 → b!{fail : a.1� a, fail : a.1� a; e ′})

Invisible effect polymorphism
Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
map : (a → b!{; e}) → List a → List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 → b!{fail : a.1� a}) → (1 → b!{}) → b!{}
map : (a → b!{}) → List a → List b!{}

And further that empty polymorphic effects need not be written at all:

catch : (1 → b!{fail : a.1� a}) → (1 → b) → b
map : (a → b) → List a → List b

We do now need to use explicit syntax to denote a closed row (∅), but with row-based
effect typing closed rows are uncommon

Invisible effect polymorphism
Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
map : (a → b!{; e}) → List a → List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 → b!{fail : a.1� a}) → (1 → b!{}) → b!{}
map : (a → b!{}) → List a → List b!{}

And further that empty polymorphic effects need not be written at all:

catch : (1 → b!{fail : a.1� a}) → (1 → b) → b
map : (a → b) → List a → List b

We do now need to use explicit syntax to denote a closed row (∅), but with row-based
effect typing closed rows are uncommon

Invisible effect polymorphism
Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
map : (a → b!{; e}) → List a → List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 → b!{fail : a.1� a}) → (1 → b!{}) → b!{}
map : (a → b!{}) → List a → List b!{}

And further that empty polymorphic effects need not be written at all:

catch : (1 → b!{fail : a.1� a}) → (1 → b) → b
map : (a → b) → List a → List b

We do now need to use explicit syntax to denote a closed row (∅), but with row-based
effect typing closed rows are uncommon

Invisible effect polymorphism
Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
map : (a → b!{; e}) → List a → List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 → b!{fail : a.1� a}) → (1 → b!{}) → b!{}
map : (a → b!{}) → List a → List b!{}

And further that empty polymorphic effects need not be written at all:

catch : (1 → b!{fail : a.1� a}) → (1 → b) → b
map : (a → b) → List a → List b

We do now need to use explicit syntax to denote a closed row (∅), but with row-based
effect typing closed rows are uncommon

Invisible effect polymorphism
Key observation: for higher-order functions the effect variables almost always match up
because we typically use the function arguments

Example (Leijen style):

catch : (1 → b!{fail : a.1� a; e}) → (1 → b!{; e}) → b!{; e}
map : (a → b!{; e}) → List a → List b!{; e}

We adopt a convention that omitted effect variables are all the same

catch : (1 → b!{fail : a.1� a}) → (1 → b!{}) → b!{}
map : (a → b!{}) → List a → List b!{}

And further that empty polymorphic effects need not be written at all:

catch : (1 → b!{fail : a.1� a}) → (1 → b) → b
map : (a → b) → List a → List b

We do now need to use explicit syntax to denote a closed row (∅), but with row-based
effect typing closed rows are uncommon

Effect pollution example

Handlers

reads : List Nat → a!{get : 1� Nat} ⇒ a

reads ([]) = return x 7→ x
〈get () → r〉 7→ fail ()

reads (n :: ns) = return x 7→ x
〈get () → r〉 7→ r ns n

maybeFail : b!{fail : a.1� a} ⇒ Maybe b
maybeFail = return x 7→ Just x

〈fail () → r〉 7→ Nothing

Effect pollution example

bad : List b → (1 → b!{get : 1� Nat, fail : a.1� a}) → Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (λ().get () + fail ()) : Maybe Nat =⇒ Nothing

How can we encapsulate the use of fail as an intermediate effect?

The aim is to define

good : List b → (1 → b!{get : 1� Nat}) → Maybe b

by composing reads and maybeFail such that

good [1, 2] (λ().get () + fail ()) : Maybe Nat!{fail : a.1� a}

performs the fail operation.

Effect pollution example

bad : List b → (1 → b!{get : 1� Nat, fail : a.1� a}) → Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (λ().get () + fail ()) : Maybe Nat =⇒ Nothing

How can we encapsulate the use of fail as an intermediate effect?

The aim is to define

good : List b → (1 → b!{get : 1� Nat}) → Maybe b

by composing reads and maybeFail such that

good [1, 2] (λ().get () + fail ()) : Maybe Nat!{fail : a.1� a}

performs the fail operation.

Effect pollution example

bad : List b → (1 → b!{get : 1� Nat, fail : a.1� a}) → Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (λ().get () + fail ()) : Maybe Nat =⇒ Nothing

How can we encapsulate the use of fail as an intermediate effect?

The aim is to define

good : List b → (1 → b!{get : 1� Nat}) → Maybe b

by composing reads and maybeFail such that

good [1, 2] (λ().get () + fail ()) : Maybe Nat!{fail : a.1� a}

performs the fail operation.

Effect pollution example

bad : List b → (1 → b!{get : 1� Nat, fail : a.1� a}) → Maybe b
bad ns t = handle (handle t () with reads ns) with maybeFail

bad [1, 2] (λ().get () + fail ()) : Maybe Nat =⇒ Nothing

How can we encapsulate the use of fail as an intermediate effect?

The aim is to define

good : List b → (1 → b!{get : 1� Nat}) → Maybe b

by composing reads and maybeFail such that

good [1, 2] (λ().get () + fail ()) : Maybe Nat!{fail : a.1� a}

performs the fail operation.

Effect encapsulation

Two solutions to the effect pollution problem:

I Mask the intermediate effect (only works for Leijen-style row-typing)

good : List b → (1 → b!{get : 1� Nat}) → Maybe b
good ns t = handle (handle (〈fail〉 (t ())) with reads ns) with maybeFail

Frank, Koka, and Helium support this approach.
[Biernacki, Piróg, Polesiuk, Sieczkowski, POPL 2018, “Handle with care”]
[Convent, Lindley, McBride, McLaughlin, JFP 2019, “Doo bee doo bee doo”]

I Add support for fresh effects

Helium and Links support this approach.
[Biernacki, Piróg, Polesiuk, Sieczkowski, POPL 2019, “Abstracting algebraic
effects”]

Effect masking

∆; Γ ` M : A!{R}
∆; Γ ` 〈op〉 M : A!{op : B � C ;R}

Akin to weakening for effects

Doo bee doo bee doo

Shall I be pure or impure?
—Philip Wadler

A value is. A computation does.
—Paul Blain Levy

‘To be is to do’—Socrates.
‘To do is to be’—Sartre.
‘Do be do be do’—Sinatra.

—anonymous graffiti, via Kurt Vonnegut

Frank

[Lindley, McBride, McLaughlin, POPL 2017, “Do be do be do”]
[Convent, Lindley, McBride, McLaughlin, JFP 2019, “Doo bee doo bee doo”]

Frank is an unequivocally effect handler oriented research programming language

Key features include:

I invisible effect polymorphism

I call-by-handling

I multihandlers

I adjustments

I adaptors (a generalisation of mask)

Probably a misfeature: unusual syntax

Links
http://www.links-lang.org

Database
Integration

Concurrency
& Distribution

Effect
Handlers

WeB
Development

Interactive
Programming

Linking theory to practice
for the web

Query
Shredding

Language-
Integrated

Query

Provenance

Relational
Lenses

Typed
HTML +

antiquotes

Formlets
Model-
View-

Update

CPS
Translation

(Client)

Row-based
Effects

CEK
Machine
(Server)

RPC
Calculus Session

Exceptions
Distributed

Session
Types

TryLinks

Notebook
Programming

With thanks to Simon Fowler

Handlers in Links and Frank (demo)

Effect typing scalability challenges

Effect encapsulation

Linearity

Generativity

Indexed effects

Equations

