Introduction to Category Theory*
OPLSS 2023

Daniela Petrisan

June. 28" to July 1°¢, 2023

Contents

|1 Categories and functors|

..
[L.11T Examples)

[[12 Tree category onm a graph] v v v v i i
[1.2 Isomorphisms|

I1.3.1 Examples|
[.3.2 Covariance and contravariancel o000
11.3.3 Subcategories|

2_Automatal

[5"Adjunctions|

6 Monads and Algebras|

*Transcribed by Noah Bertram, Zak Sines, Mateo Torres-Ruiz, Andrey Yao

12

14
14
17
20

21

25

1 Categories and functors

A category consists of objects, arrows between them, and a way to compose arrows together. As it
turns out, this kind of structure is pervasive throughout mathematics, providing the ability to view
seemingly completely separate mathematical structures through the same lens. We now make this
statement precise by defining a category and providing a plethora of examples.

1.1 Categories
Definition 1 (Category). A category C consists of the following data:

— a class of objects A, B,C, ...,

— a class of arrows (also called morphisms) f, g, h, ..., where for each arrow f there are objects
dom(f) and cod(f), respectively called the domain and codomain of f. We write f : A — B
whenever A = dom(f) and B = cod(f),

— a partial composition map, defined as go f : A — C for any two arrows f : A — B and
g : B — C where dom(g) = cod(f),

— for each object A in C, an identity arrow 14 : A — A,
subject to the following axioms:

— associativity: given arrows f: A — B,g: B— C,h:C — D, we have
(hog)of=ho(gof)
— identity laws: for each f: A — B,
fola=f=1pof

We will often make use of diagrammatic reasoning to talk about commutativity of arrows in our
categories. The edges of these diagrams will denote objects of our category, while the arrows will
be morphisms. We can diagrammatically express the two category axioms as

A—71 B A—14 4

I NN

Note 1. Note that our definition of a category refers to objects and morphisms each creating a
class and not a set. This can be explained by recalling Russell’s paradox. If objects formed a set,
it would be impossible to talk about a category of sets Set, given that no set can contain all sets.

Notation 1. There are multiple ways of refering to the collection of morphisms between two objects
within a category C: C(A, B), Hom¢ (A, B) or simply Hom(A, B) all refer to the collection of arrows
from A to B.

Category Objects Arrows
Set Sets Functions
Rel Sets Relations
(X,<) reX r—=y <= x<y
(M, . 1M) * meM
Mon Monoids Monoid homomorphisms
Top Topological spaces Continuous maps
Veck Vector spaces Linear maps
Pre Pre-orders Monotone maps

1.1.1 Examples

The following are examples of categories.

Definition 2 (Preorder). A set X together with a relation < C X x X is a preorder if x < x for
all x € X ((X, <) is reflexive) and < y and y < z implies « < z for all z,y,z € X (this is, (X, <)
is transitive).

Example 1 (Preorders). It is not hard to see that any category in which for every pair of objects
there exists a unique morphism between them can be seen as a preorder and, similarly, any preorder
(X, <) forms a category in which the objects are the elements of X and there is a morphism between
x,y € X whenever x < y.

Definition 3 (Monoid). A monoid, (M, -, 1p), is a set M, equipped with a binary operation
‘M M x M — M and an identity element 13, € M satisfying

— (myq -pp ma) ar m3 = my -y (Mg -ar ma) for all my, mg, mg € M
—m-pm L1y =1p ;s m =m for all m € M.

Example 2 (Matrices as a monoid). For each natural number n, the set Mat,, ,,(Z) of n x n
matrices with integer-valued entries forms a monoid under matrix multiplication. Note that matrix
multiplication is associative, which satisfies the corresponding monoid law. The monoid identity in
this case is the identity matrix I, with 1 on the diagonal and 0 on all other entries. Formally, the
monoid is (Mat,, ,(Z), -, I).

Example 3 (Integers as a monoid). The set of integers Z also forms a monoid under integer
multiplication. The monoid identity is the integer 1. In this case, since integer multiplication is
commutative, we say (Z, X, 1) is a commutative monoid.

Definition 4 (Monoid homomorphism). Recall that a monoid homomorphism is a function
f: M — N between (M, -, 15), (N, n,1x) monoids, such that f(m -3 n) = f(m) -n f(n) for
each m,n € M and h(lp/) = 1y. Informally, a monoid homomorphism "preserves" the monoid
structure by mapping identities to identities, and by preserving the monoid products.

Example 4 (Determinant as monoid homomorphism). Using the two example monoids
above, recall that the determinant is a map det : Mat,, ,(Z) — Z satisfying the properties that
for two matrices A, B, det(A - B) = det(A) det(B). Since the determinant of the identity matrix I
is 1, we can conclude that det is actually a monoid homomorphism.

Example 5 (Monoid as a one object category). We can equivalently think of a monoid as a
category with just one object, %, where the arrows are the elements of the monoid, the identity the
unit element 1,; of M, our monoid, and the composition the binary operation -j;.

Example 6 (Category of monoids). We can take a further step and consider Mon, the category
that has monoids as its objects and monoid homomorphisms as its arrows. It is easy to check
that composition of monoid homomorphisms is again a monoid homomorphism, and that such
composition is associative.

1.1.2 Free category on a graph

Let G = (V,E) be a directed graph. The free category on G, denoted C(G) has as objects the
elements of V', with morphisms being the set of paths on the vertices of G. That is, given any path,

€1 €2 €n
Vg —> V1 —> +++ —> Up

we consider
€1€2€p Vg — Up

a morphism in C(G), where the empty path on v € V provides the identity 1, : v — v, and where
composition is given by path concatenation.

Exercise Verify that path concatenation in a graph is associative, completing the construction

of C(G).

1.2 Isomorphisms
We briefly construct a notion of sameness amongst objects in a category.

Definition 5 (Isomorphism). In a category ¢, a morphism f : X — Y is an isomorphism if
there exists a morphism ¢ : Y — X such that go f =1x and fog=1y.

The morphism ¢ in the definition above, may referred to as the inverse of f. Let us see some
examples.

Example 7 (Isomorphisms). The following are examples of isomorphisms in various categories:

e In Set, the isomorphisms are the bijective functions.
e In Grp the category of groups, the isomorphisms are the bijective group homomorphisms.

e In Pre the category of preorders and monotone maps, the isomorphisms are bijective monotone
maps whose inverses are also monotone.

e In Cat the category of small categories with functors as morphisms, the isomorphisms are
functors F': € — Z s.t. there exist F': 2 — ¥ where the composition both ways yields the
identity functors on F': ¥ and 2.

e In [, 2], the functor category, the isomorphisms are the natural isomorphisms. A natural
transformation « : F' = G is a natural isomorphism if each component ax for object X in €
is an isomorphism.

Definition 6 (Isomorphic). We say two objects X,Y are isomorphic, denoted X =Y, if there is
an isomorphism from X to Y.

1.3 Functors

Following the intuition from previous examples, the most important thing about our categories
is not the objects but the morphisms. It is then natural to ask, what then is a good notion for
morphisms between categories themselves. The answer to this will be functors, which capture the
notion of arrows between categories.

Definition 7 (Functor). Let C, D be categories. A functor F': C — D
— associates to each object A in C an object F'A in D,
— to each morphism f: A — B in C a morphism Ff: FA — FB,
subject to the following axioms:
— F(fog)=F(f)o F(g) whenever f and g compose in C,

— F(14) = 1pa whenever A is in C.

1.3.1 Examples

Example 8 (Forgetful functor). Consider the category of monoids Mon. Each of the objects in
this category has an underlying set giving the elements of a particular monoid. We can “forget” the
monoid structure on this category and recover the underlying sets through a forgetful functor that
acts on objects of Mon by only taking its underlying set (and forgetting the monoid’s composition
operation and unit), and on arrows f : (M, -ar,1p) = (N, N, 1) by recovering a mapping between
the two underlying sets,

U : Mon — Set
(MvMalM)}_)M
f:(M,~M,1M)—>(N,-N,1N)I—>f:M—)N

Example 9 (Free monoid functor). This time, we will define a functor F' that goes the opposite
direction of the forgetful functor above. For any set X € Set, we can define A* the free monoid
over A as the set of all formal finite length (possibly empty) strings, with characters taken from
the elements of A. Formally, A* = (J:2 {z122... 2|1, 22,...,2; € A}. The monoid composition
operation -4+ is string concatenation, which is easily checked as associative. The monoid unit 1 4~
is the empty string, which is a two-sided unit with regards to string concatenation. For example, if
A ={a,b,c,d, e}, then addb, cac € A*, and addb - 4+ cac = addbcac.

The functor F' acts on morphisms in Set, which are just functions between sets, in the following
way. For each function f : A — B, F(f) : A* — B* is a function that takes any string z; ...z, € A*
and sends it to the string of the same length f(z1)... f(z,) € B*. Obviously, this sends the empty
string to the empty string. It can also be shown easily that it commutes with string concatenation
-a=. Thus, F(f) is a monoid homomorphism.

It remains to check that F' follows the functor laws. For each set A and the identity function
ida, F(ida) obviously sends each string in A* to itself, so F'(f) = ida~, the identity morphism on
the monoid A*. It is also straightforward to show that F' preserves function compositions.

To summarize, we have the free functor:

F : Set — Mon
A (A*7'A*71A*)
f :A— B~ F(f) : (A*v'A*a]-A*) — (B*a'B*a]-B*)

Note 2. We will later see that the free and forgetful functors between Set and Mon above together
form an instance of a concept called “adjunction”, and those two functors are called adjoint functors.
There are many other free-forgetful pairs between other categories that also form adjunctions.

Example 10 (Preorder categories and monotone maps). Let (X, <) and (Y, <) be two pre-
orders. We can view (X, <) as a category 2 where the objects are the elements of X, and for
any x1,re € X, there is a morphism x; — x5 in the category iff 1 < x5. Since preorders are
reflexive, all elements x has x < x, so every object has an identity morphism. The transitivity of
preorders means that composition of morphism is well-defined, as if f : ;1 — z2 and g : z5 — 3
are morphisms, then g o f corresponds to that x; < x3. Similarly, we can view % as a category.
Note that in preorder categories, for each pair of objects there is at most one morphism between
them.

We show that functors from 2" to # are just monotone maps. Take any functor F': &~ — #.
The action of F' on the objects of the category makes it exactly a function: X — Y. Whenever
1 < 19 € X, there exists morphism f : 1 — z2 in £ by definition. Since functors preserve
domains and codomains of morphisms, F(f) is a morphism F(z1) — F(x2) in %/, but the existence
of such morphism means that F(z;) < F(z3) in Y. We have thus shown that F' is monotonic as
a function X — Y. Conversely, for any monotone map F' : X — Y, we can view it as a functor
Z — % . Define F’s actions on morphisms by sending each f : z1 — @2, which means z; < o,
to the morphism F' : F(x;) — F(z3), which exists because of monotonicity, and is unique by
definition of preorder categories. This uniqueness then ensures that F' commutes with composition
of morphisms, and that it preserves identity morphisms.

Example 11 (Monoids as one-object categories and monoid homomorphisms as func-
tors). Recall from Example 1 that monoids can be seen as one-object categories. Let (M, -pr, 1as)
and (N, -y, 15) be two monoids, and let the one-object categories .4, A4 be their categorifications.
We claim that functors from .# to .4 are just monoid homomorphisms from M to N. Note that
in this setting, since both categories have a single object each, all morphisms in each category can
compose with each other, and we can disregard the action of functors on objects.

Given a monoid homomorphism f : M — N, we can use the same function as the functor’s
action on the morphisms. Conversely, given each functor F' : .# — 4 we can view its action on
morphisms as a function from .Z — A". It’s quite easy to see that the functor laws match the
definition of monoid homomorphism quite directly.

1.3.2 Covariance and contravariance

Sometimes you may run into something that morally should be a functor but isn’t due to composition
not behaving quite right:

F(fog)=FgoFf. (1)
This can be corrected by considering the opposite category. Given a category €, the opposite
category €°P has objects the objects of ¥ and morphisms €°P(X,Y) = € (Y, X), that is, X Ly

n?¢isY L X in €°P, with composition g o°P f = f o g. Visually, €°P just flips all the arrows of
%. Then, a functor-like map from € to 2 that satisfies is actually a functor €°P — D: given
g€B(X,Y)and feF(Y,Z), then f € €°°(Z,Y) and g € €°P(Y, X). Thus

F(go™ f)=F(fog)=FgoFf.

We would refer to F' as a contravariant functor. One can think of contravariance as just flipping
the direction of the arrows. We also say a functor is covariant if it is a normal functor, i.e. the
direction of the arrows stays the same.

1.3.3 Subcategories

Before continuing, we provide the following definitions.

Definition 8. A subcategory A of C is a category whose objects are all objects of C' and whose
morphisms are all morphisms of C.

Definition 9. A subcategory A of C is full if every morphism in C between objects that are also
in A is also a morphism in A.

Given a subcategory A of C, we always have the inclusion functor i : A — C, which sends
X5 Xand (X L) S (x Ly

Example 12. The category FinSet has finite sets as objects and functions between them as mor-
phisms. This clearly is a full subcategory of Set.

2 Automata

Throughout, fix a finite set X. First we recall the following forms of automata:

Definition 10 (Deterministic automata). A deterministic autormaton is a tuple (Q,d,i € Q, f C
Q), where @Q is a set and ¢ : ¥ x Q — Q. Here, @Q is the set of states, i is the initial state, f is the
set of accepting states, and ¢ is the transition function, where each state has exactly one transition
for each letter in 3. The path of word w € ¥* in the automaton is the sequence

. a1 asz an
P g S gy

where w = ajag - - an, and 64, (1) = q1, 0a,(q1) = G2, -+, Oa, (@n-1) = an, for ¢1,q2,...,qn € Q.
We say the automaton accepts w if in the path of w, g, € f. Then the language accepted by the
automaton, £ C 3* is the set of words accepted by the automaton.

Definition 11 (Non-deterministic automata). A non-deterministic automaton is a tuple (Q, 6,7 C
Q,f € Q), where Q is a set and § : ¥ x Q — 29. Again, Q is the set of states, i are the initial
states, f is the set of accepting states, and ¢ is the transition function, which now has possibly
many transitions for a given element. A path of word w € ¥* in the automaton is a sequence

al a [e7%)
o —>q1 —> " —>(qn

where w = ajas - an, and ¢1 € da,(q0), 42 € Gay(q1), - -+, dn € Ga, (qn-1), for q1,G2,...,¢n € Q.
We say the automaton accepts w if for some path of w, ¢, € f where g, is the final state in the
path. Then the language accepted by the automaton, £ C ¥*, is the set of words accepted by the
automaton.

For both deterministic and non-deterministic automata, the language accepted by the automaton
is the subset of words that are accepted by the automaton. The definition of a language is relaxed
in the case of weighted automata.

Definition 12. A weighted automaton over a field K, is a tuple (@, 4,1, F) , where Q is a set,
0:Y xQ — (Q — K) is the transition function, assigning for each element of ¥ and @, weights
in K for each element of Q, I : Q@ — K, and F' : () — K, assigning initial and final weights to the
states @ respectively. The language of a weighted automaton, A is a function £ : ¥* — K given as
follows: Given a word w € ¥*, a path for w in A is a sequence of states

al az [0 7%
o —>q1 —> " —>(qn
where w = ajag - - - a,,. Call this path p. The weight of this path, denoted w(p), is

I(qo) - 0a, (q0)(q1) - 0as(q1)(q2) - - - bay, (@n—1)(qn) - Fqn).

Then L(w) = >, cp, W(p). Observe that when either {q € Q|I(q) # 0} or {q € Q|F(q) # 0} is
finite (which occurs in particular when @ is finite), then the sum is finite.

Example 13. As an example, suppose that ¥ = {a,b} and consider the following weighted au-
tomaton over Q:

la la

2
O OS
1b 1b

This automaton exhibits the language £(w) = 2|w|, where |w|p is the number of occurrences of b
in w. All paths with non-zero value start at gy and end at ¢;.

Now suppose that @ is finite, and that |Q] = n. Then we can equivalently define a weighted
automaton as (I, u,T) where I € K" T € K*™! and p: ¥ — K"*" where the language of A
for w € £* is given by Iu(a1) - p(az) - - - p(an)T, where w = ajag - - - ap.

Exercise Verify this equivalent definition.

We would like to arrange the data for the automata above in a categorical way. Consider the
following graph:

n st out

Denote by # the free category on this graph. Observe that #(in,st) = {pw|jw € ¥*} and
S (st,st) = ¥*, that is, we can identify every morphism from st to st with a word from 3. Now let
% be a category and I, F' two objects of €. Then a (%, I, F)-automaton is a functor A : .4 — ¢
such that A(in) = I and A(out) = F. The graph above becomes

Aa),a € A

A(P) A(9)

I —— A(st) — 5 F

Now let O be the full subcategory of .# consisting of the objects in and out. Then the morphisms
of this category are those of the form pw< : in — out for w € X*. We refer to O as the observational
category. Then a (%, I, F)-language is a functor £ : O — € such that L£(in) = I and L(out) = F.
Given an automaton A : . — €, the language accepted by A is the composition Aoi: O — €
where i : O — . is the inclusion functor.

Let’s consider the following examples:

Example 14. If we set € = Set, I = {x}, and F = {T, L}, we obtain a deterministic automaton
over A. In this case,

— A(in) = {x}

— A(out) ={T, L}

— @ := A(st) becomes the set of states

— i:= A(>) : {#} = @Q becomes the choice of initial state

— f:=A(<): Q = {T, L} becomes the choice of final states

— 0g := A(a) : Q@ — @Q becomes the transitions for the element a € ¥

Then the graph above becomes

Q {7, 1}

Then the language accepted by this automaton takes the morphism >w< : in — out to a function
A(w<) : {*} — {T,L}. In particular, there are exactly two functions {*} — {T, L}, namely,
x +— T and * — L, the former corresponding to accepting and the latter to rejecting. Thus A
accepts w if A(bw<)(x) = T and rejects w if A(pw<)(x) = L.

Example 15. If we set € = Rel, and I = F = {x} we obtain a non-deterministic automaton
over A. This is similar to the case for the deterministic automaton, but we relax functions to be
relations, allowing for multiple transitions. In this case,

— A(in) = {x}

— A(out) = {}

— @ := A(st) becomes the set of states

— i:= A(>) : {#} - Q becomes the choice of initial states

— f:=A(<€) : Q - {+} becomes the choice of final states

— 04 := A(a) : @ -» @ becomes the (possibly many) transitions for the element a € ¥
Then the graph above becomes

ba,a €A

n
py— g

{*}

Then the language accepted by this automaton takes the morphism pw< : in — out to a relation
A(>w<) : {*} - {x}. In particular, there are exactly two relations {*} - {x}, namely, {(x,x*)}
and @, the former corresponding to accepting and the latter to rejecting. Thus A accepts w if
A(>w<) = {(*, %)} and rejects w if A(pw<) = 0.

10

Example 16. If we set ¥ = Veck, and I = F' = K, we obtain a weighted automaton over A.
In this case,

- A(in) =K
— A(out) =K

Q := A(st) becomes a vector space spanned by the states

— i := A(>) : K = @ becomes the linear map providing the choice of initial weights when
evaluated at 1

— f:=A(<) : @ = K becomes the linear map of final weights when evaluated at 1

— 04 = A(a) : @ = Q becomes the linear map providing transition weights for the element
a€d

Then the graph above becomes
0q,0 € A

A
Kt .o f

K

Then the language accepted by this automaton takes the morphism pw< : in — out to a linear
map A(pw<) : K — K. Recall that classically, the language of a weighted automaton is a map
L :3* — K. This can be recovered by evaluating A(bw<) at 1, that is, L(w) = A(>bw<)(1).

11

3 Natural transformations

Just like objects have arrows between them, we have seen that categories also have arrows in the
form of functors. It is no surprise then that we can put arrows between our functors, resulting in
what we call natural transformations.

Definition 13 (Natural transformation). Let C,D be two categories and F,G : C — D two
functors between them. A natural transformation from F' to G, denoted « : F' = G, consists of a

family of morphisms,
(ac : FC = GC)ceonj(c)

such that for every morphism f : C — C’ in C, the following diagram commutes
FC —2°— GC
Ff Gf
PO ——(—— GC'

Algebraically,
(Gfeac =ac o Ff)

Notation 2. Diagrammatically, we write natural transformations as vertical arrows between func-
tors. For a natural transformation « : F' = G we have

Given §: G = H, their composition foa : F = H is

F
/ﬂh /E\
CT;)D C Boa D

This is

Definition 14 (Functor category). Let €, 2 be categories. Then [¢, %] is a category where
the objects are the functors from % to 2 and the arrows are natural transformations between the
functors.

Exercise 1. Verify that this is a category by checking that composition, often referred to as vertical
composition, is associative.

12

Example 17 (Functor category [.#,Set]). Let (M, ps,15) be a monoid. We can view M as
a one-object category .# with objects {x}. It follows that the functor category [.#,Set] has the
following properties. Each object of the [.#, Set], which will just be a functor F : .# — Set, has to
send * to some set X, and for all morphism m in .#, which is just an element of M, F(m) is a set
function from F'(x) = X to itself, with F'(1,,) = idx. Thus, F is a left monoid action on the set X.

Exercise 2. Let F, G be functors from .# to Set, where .# is a monoid M viewed as a category.
Show that morphisms « : F = G in [.#, Set], which are just natural transformations from F to G,
corresponds to M-action homomorphisms.

Exercise 3 (Graph homomorphisms as natural transformations). A directed graph G =
(E,V), where E CV x V, can defined as a functor F : € — Set in the following way. Define € to
be this category below (identity morphisms are omitted):

0 1

t
Where we define F' to have:
F(O)£FE The edge set
F(1)£V The vertex set
F(s): E=V The “source” function
Fit):E—=V The “target” function

A graph homomorphism between two direct graphs G = (V, E) and G’ = (V', E’) is a function f :
V' — V such that for all (v1,v3) € E, (f(v1), f(v2)) € E’ as well. Show that graph homomorphisms
correspond to natural transformations between these “graphs as functors” as defined above.

13

4 Limits and colimits

4.1 Instances of limits and colimits

Before formally defining limits and colimits, which are constructs defined by some "universal prop-
erty", we introduce common instances of these limits and colimits and illustrate them using concrete
examples.

Definition 15 (Initial object). An object X in a category % is initial if for every object Y in
%, there exists a unique morphism !: X —» Y.

Example 18 (Initial object). In Set, the empty set & is initial because for any set X, there is
exactly one function from @ to X, namely the empty function.

In Mon, the monoid with one element ({“OPLSS”},-, “OPLSS”), or if you like, the isomorphic
copy ({“SAM”}, -, “SAM”), is the initial object.

Example 19 (Category without initial object).

f
V—"
g

The category generated by this diagram does not have an initial object. A cannot be initial because
there are two morphisms from A to B, violating uniqueness. B cannot be initial because there is
no morphism from B to A, violating existence.

Theorem 1. If X and Y are two initial objects in a category %, then X = Y via a unique
isomorphism.

Proof. By definition there exists unique morphisms X Xy andy 2 X , then composition
provides arrows

X XX, ¥ and Y Xy

Because both X and Y are initial, both exhibit unique arrows to themselves, and moreover must
be 1x and 1y respectively. This says that

!yO!X = lX and !XO!Y =].y,

giving us the desired isomorphism. Lastly, because !x and !y are unique, this isomorphism is
unique. O

Exercise 4. In the category Auto(L) for some language £, show that the following object is initial:

{w — aw},

(1
1 o

Here, € is the constant function that sends the unique element of 1 to the empty string in A*.
The function L£? takes any word in A* and returns true if and only if the word is in L.

14

Definition 16 (Terminal object). An object X in a category € is terminal if for every object
Y in %, there exists a unique morphism ! : ¥ — X.

Exercise 5. Show that terminal objects are isomorphic via a unique isomorphism.
Example 20 (Terminal object). The following are examples of terminal objects:
e In Set, any singleton set, i.e. {“Sam”} is a terminal object.

e in Mon, the trivial monoid of one element is both initial and terminal. When this occurs, the
object is commonly referred to by either the zero object or the null object.

Example 21 (No terminal objects).

f
V E—
g

This category from before doesn’t have terminal objects, for similar reasons to why it doesn’t have
an initial object.

Definition 17 (Product). Let % be a category, and let A and B be two objects in €. A product of
A and B is a tuple (A x B, 71, 72) where A x B is an object of ¢, m1 : AXB — A, m: Ax B — B,
such that for any object C' and morphisms f : C — A and g : C — B, there exists a unique
morphism k : C — A X B such that 1y ok = fand mook =g.

We often refer to the maps m; and 7y as projections of A x B, and typically we omit mention
of them, just referring to A x B as the product. We can represent the product of A and B in the
following commutative diagram:

C

PR

A —F AXB —— B

Example 22 (Product). Examples of products:

e In Set, products are cartesian products of sets. The unique morphism &k : C' — A x B, given
functions f, g from set C, sends each ¢ to (f(c), g(c)).

e In Mon, a product of two monoids (M, -pr,1p7) and (N, -, 1x) has object the monoid (M x
N, (1np,1n)), where - is component-wise multiplication. The projections are obvious.

e More generally, in categories that are “algebraic structures” over Set defined by generators
and equations, such as Grp, BoolAlg, Ab, Ring, etc., the product of two objects is defined using
the product of the underlying sets, and the algebraic operations are defined component-wise.

e Viewing a preorder (X, <) as a category 2, the product of two elements z,y € X viewed as
objects of 2 is just the meet x Ay, if it exists.

15

The coproduct is dual to the product. Like the product, we often refer to it with just the object,
having i; and i5 implicit. We can represent the coproduct of A and B in the following commutative
diagram:

Definition 18 (Coproduct). Let & be a category, and let A and B be two objects in €. A
product of A and B is a tuple (A x B,i1,i2) where A + B is an object of ¢, i1 : A - A+ B,
i3 : B — B+ A, such that for any object C' and morphisms f: A — C and g : B — C, there exists
a unique morphism k : A+ B — C such that koi; = f and ko iy = g.

I

A—>A+B<7B

> Q

I
B

Example 23 (Coproducts). Examples of coproducts:
e In Set, coproducts are disjoint unions of sets.
e In Mon, coproducts are the free products of monoids.

Exercise 6. Show that products are coproducts, if they exist, are unique up to a unique isomor-
phism.

Definition 19 (Pullback). Let € be a category and let A, B, and C be objects in C, along with
morphisms u : A — C and v : B — C. A pullback of w and v is the tuple (D,7m : D — A 7y :
D — B) satisfying u o m; = v o 9, and for which the following condition holds: for all objects E
of € and morphisms f: E — A, g: F — B such that uo f = v o g, there exists unique morphism
k : E — D such that

uomok=uof=vog=vomgok.

The pullback can be expressed by the following commutative diagram:

\
/

;

E ---—-3%---» D

!

As we had with the initial object and product, there is a dual notion for pullback.
Exercise 7. Define the dual notion of the pullback, known as a pushout (pushforward).

Definition 20 (Equalizer). Consider two morphisms f,g: A — B in a category C. An equalizer
of f and ¢ is an object X together with an arrow u : X — A such that f ou = g ou and for all
v:Y — A there exists a unique k: Y — X,

16

Example 24 (Equalizer in Set). Let us consider what an equalizer is in the category Set. For
two morphisms f,g : A — B, an equalizer X is a set {a € A : f(a) = g(a)} withu : X — A
the inclusion function. This is, an equalizer in Set gives us the set of all solutions to the equation

f(a) = g(a).

Similar to previous instances of limits, we can get the colimit verison of what an equalizer is by
considering an equalizer in the opposite category.

Definition 21 (Coequalizer). Given two morphisms f,¢g: A — B in a category C, a coequalizer
is an object X together with an arrow u : B — X such that uo f =uogand forallv: B —Y
there exists a unique £ : X — Y,

f /—\
A g B u k

—_—

Before introducing an example of a concrete coequalizer, let us recall the concept of an equiva-
lence class and how these quotient a set.

Definition 22 (Equivalence class). Given an equivalence relation ~, we define the equivalence
class [z] of x € X as

[zl ={ye X :z~y}

and we say that the equivalence classes of X form a partition of X.

Definition 23 (Quotient). Given a set X together with an equivalence relation ~ on it, we define
the quotient of X by ~ as the set of all equivalence classes on X, denoted by X/ ~.

Example 25 (Coequalizer in Set). Given two morphisms f,g : A — B in Set, a coequalizer X
is the set {f(a) ~ g(a) : a € A} with u: A — X the quotient map.
4.2 Limits and colimits

One may be able to notice that all these instances of limits have an associated diagram that seeming
provides all the data. We can indeed take advantage of our categorical language to formalize these
diagrams as well. Before this, we say that a category is small if the class of objects and morphisms
forms a set.

Definition 24 (Diagram). A diagram on a category ¢ is a functor D : ¢ — €, where ¢ is a
small category. In this case, we say D has shape 7.

Example 26 (Diagram). Here is an example of a diagram from _# to Set, where # can be
represented pictorially below on the left.

. o {1} {2,3}
NS , T
. — {4,5,6,7}

I a diagram inside Set

17

Here is the index category _# for each of the (co)limit examples we saw before:

o o e —— e {i—— o L L

Initial & Terminal (Co)product Pullback (Co)equalizer

Note that the index category corresponding to the initial and terminal objects is the empty category,
the category with no objects. As can be seen by the examples, the picture is not quite complete.
Before we can complete it, we need to define a new functor. Given an object U of €, let Ay :
J — € be the functor that sends all objects of # to U and all morphisms to the identity. This
is known as the constant functor. Now we can complete the pictures.

Definition 25 (Cone). A cone over a diagram D : _# — % is an object U of € together with a
natural transformation 7 : Ay = D.

Unpacking the definition, we obtain that for each object j of ¢, there is a morphism 7; :
U — D(y) that is natural in j. This exactly gives us the following commutative diagram for each

U
2N
. Df .
D(j) ————— D(j’)
To better see why they are called cones, consider the following not completely accurate diagram
representing an instance of a cone:

morphism j EN i’

D(jx)
ij:% %fj;lvjk

D(jg) —— -+ —— D(jr-1)

Exercise 8. Draw the cones corresponding to the product, pullback, and equalizer.

We have almost arrived at the complete picture of a limit. If you recall the definitions for initial
object, product, etc. above, you will notice that their definitions rely on having a unique morphism
to the object whenever another object also has a similar commuting diagram. We can state this
differently, saying that whenever we have another cone, the morphisms of that cone factor through
the limiting cone. Note that since ¢ is small, and, assuming that ¢ is locally small, we have that
[Z,€] is locally small. Then [_#,€¢](Ay, D) can be considered a set which consists of the cones
with object U.

18

Definition 26 (Limit). An object lim D in a locally small category C' is a limit of a diagram
D : _# — € if there is a natural (contravariant) isomorphism

¢ (V,limD) = [#,¢](Av, D),
for every object V in %.

To elaborate, for lim D to be a limit means that for every cone 7 : Ay — D, there exists a
unique morphism f : V — lim D in C such that for every morphism g : W — V the following
diagram commutes (in Set):

¢ (V,limD) —— [7,€¢](Ay, D)

g#l J{C(g)

¢(W,limD) —— [#,%]|(Aw, D)

#
Here, € (V,1lim D) £— € (W, lim D) is the morphism given by precomposition of g, that is

I g* g oy
(V= lim D) — (W =V = lim D),
and ¢(g) is the function

W
/Df\ /Df\
D(j) ————— D(J’ D(j) ————— D(j’

") ")

The isomorphism is really a set bijection, meaning that there is a one-to-one correspondence between
diagrams with V' as an object and morphisms from V to lim D. But how do we recover the complete
diagrams, seen in the definition of product, equalizer, and pullback? We can recover the correct cone
for lim D by using the isomorphism with 13, p € €(lim D,lim D) to obtain a corresponding cone
in [#,€](Ay,D); call this cone mim p. Now to see that every cone factors through it, consider
any cone my : Aw = D. Then by the set isomorphism, there is a corresponding morphism
k:W — lim D. Applying this morphism to the commuting square above, we obtain

c(g)

W = C(Trlim D)7

which says that 7y factors through 7y, p.

Where does this naturality notion come from? It is exactly the same condition that arises in
that of a natural transformation. In fact, that is exactly what it lurking in the definition of a limit.
The isomorphism of sets above comes from an isomorphism of functors. On the left, we have the
functor €(—,lim D) : ¥°P — Set which sends V to € (V,lim D) and morphisms f : X — Y to
f# :€(Y,lim D) — € (X,lim D) as defined above. The other functor sends an object V to the set
[Z,€)(Av, D), but the remaining part of the definition is left to the following exercise:

Exercise 9. Show that the naturality condition given in the definition of a limit, and elaborated
on below it, arises from a natural isomorphism between two functors.

19

4.2.1 Alternative definitions

We now give alternative (but equivalent) definitions of limits and colimitsﬂ The following definitions
are commonly found in algebra texts and can be useful for grasping how limits and colimits of
algebraic categories look like.

Definition 27 (Directed set). We say that a preordered set (D, <) is a directed set if every pair
of elements has an upper bound.

Definition 28 (Inverse system). Given a directed set Z = (D, <), (4;);cz a family of objects
in 7 and f;; : A; — A; a family of morphisms (sometimes called the transition morphisms) for all
i < j, we say that (A;, fi;)z forms an inverse system over Z.

Definition 29 (Inverse limit). We define the inverse limit of an inverse system (A4;, f;;)z as

A= liinAi ={ae HAi :a; = fij(a;) for all i < j in T}
i€T

Categorically, the (inverse) limit of a system (A,, fi;)z is an object X together with a family of
morphisms z; : X — A; satisfying z; = f;; o x; for all ¢ < j (we call all such triangles cones) with
the universal property that for every other pair (Y,y;) there is a unique morphism u : X — Y such
that the following diagram commutes:

X

™~
I
I
|

fij A
«— -
ZTq %
Yi Yi
u

Y

It should be noted that this is precisely a limit. We can similarly define algebraic colimits.

Definition 30 (Direct system). Given a directed set Z = (D, <), (A4;)iez a family of objects
indexed by D and f;; : A; — A; a morphism for every ¢ < j such that f;; is the identity of A; and
fik = fjr o fi; for all i < j <k, we say that (A;, f;;) forms a direct system over I.

Definition 31 (Direct limit). We define the direct limit of a direct system (A;, fi;)z as
A=timA; = |4/ ~.

Where ~ is an equivalence relation and x; ~ z; for x; € A;,z; € A; iff there is some k € I with
7 S k andj S k such that fzk(ZE?) = fjk(xj)-

Exercise 10. Similar to what we did with limits, relate the above with a diagram of a colimit.

INote that these were not shown during lectures.

20

5 Adjunctions

Adjunctions are another way of relating two categories, ¥ and 2 by means of a pair of related
functors, F': ¢ — 2 and G : 9 — ¥ . Stated rather loosely, an adjunction means that morphisms
in ¥ when sent to 2 by F' as morphisms in 2 when sent to ¥ by G. Throughout, we assume we
are working with locally small categories, that is, categories where the morphisms form a set.

Definition 32 (Adjunction). Let F': C — D and G : D — C be two functors. We say that F is
left adjoint to G and write F' 4 G if there is an isomorphism D(FX,Y) = C(X,GY) natural in X
and Y,

In this case, we also say that G is right adjoint to F.

Notation 3. We can also write an adjunction between the functors F' and G as

FX =Y (D)
X > FY (C)

Since we specified that the categories are locally small, the isomorphism here lies in Set, meaning
that there is a one-to-one correspondence between morphisms in Z(FX,Y) and morphisms in
¢ (X,GY). Drawn out,

(-)*
—_—
2(FX,Y) » ¢ (X,GY)
=)
More explicitly, given f : FX — Y, we have f : X — GY, and given g : X — GY, we get
g FX =Y:

f:FX =X~ f1: X 5GY
g: X —=>GY ~» g FX =Y

But what does it mean for the isomorphism to be natural in X and Y here? We will see that,
loosely speaking, this naturality condition says that for two adjoint funtors F : C — D, G : D — C,
F - G, the morphisms FF.X — Y are essentially the same as the morphisms in X — GY, with X in
Cand Y in D.

We now elaborate on what it means to be natural in X and Y. For the isomorphism to be
natural in X would mean that for any morphism f : X — X', the following diagram commutes

Y
DIFX,Y) — " s c(x,qy)

D(FfY) C(f,GY)

O\
DFXY) — 2 s e(x!,ay)

21

where 2(Ff,Y) : 2(FX')Y) —» 9(FX,Y) is the function given by preimaging morphisms from
2(FX')Y) with Ff : FX — FX'. Spelled out,

(Fx' % y) 25 (px B pxr vy,

Similarly, €(f,GY) is a set function that preimages morphisms from % (X', GY) to obtain mor-
phisms in € (X,GY). The diagram gives us the identity

ufo f=(uoFf) (2)

for any u: FX' — Y.
Being natural in Y is quite similar: for any morphism ¢ : Y — Y’ we have that

(gov)y = Ggouvy (3)
for any other morphism v : FX — Y.
Exercise 11. Let 1 be the category with exactly one object {+} and one morphism, 1,.

1. Show that 1 is the terminal object in Cat.

2. If exists, what is a left adjoint (resp. right adjoint) to the unique functor o 25 1 for each
category &77

Example 27. We have an adjunction between monoids and sets,

where U is the forgetful functor and F' the free monoid functor. Indeed, we have that for a monoid
M = (M, o0,1), it is the same to give a morphism in Mon(FX, M) than to give a function living in
Set(X,UM).

Example 28.

— T
Set 1 Rel

o

U

The functor F : Set — Rel behaves as the identity on objects, i.e., FX = X, and for a function
f:X =Y inSet, Ff: FX — FY isagraph F'f C X xY defined as {(z, f(z)) : * € X}. On the
other direction, U : Rel — Set is given by the powerset functor, PX. We claim that it is the same
to give a relation from FX to Y than a function from X to UY, this is, Rel(FX,Y) = Set(X,UY),
i.e., giving a relation from X — Y is no different from having a set from X — PY.

Exercise 12. Show that F : Set — Rel is a functor (this is, verify the functor axioms).

Example 29. Using above’s adjunction, note that Rel(1,1) = Set(1,2). This looks similar to
something we have seen before. We claim that if we fix a language L over an alphabet A, and

22

consider the set of automata on Auto(L) on Set(1, 2), the deterministic automata on L, and Auto(L)
on Rel(1,1), the nondeterministic automata, we get the adjunction

F
DA(L) C NDA(L)

U

where U is the powerset construction from theory of computation.

We have the following important theorem:
Theorem 2. Left adjoints preserve colimits, right adjoints preserve limits.

The proof is omitted here, but we leave the following special case as an exercise:
Exercise 13. Right adjoints preserve products.
Naturality Where does the notion of naturality come from in the definition of an adjunction?
As noted in the limit discussion, it always comes from a natural isomorphism between functors.
For adjunctions, there are two functors at play, one giving the naturality in X while the other gives
naturality in Y. Naturality in X comes from the natural isomorphism between the contravariant
functors 2(F—,Y) and €(—, GY). For a treatment on the contravariant case, see the discussion

above on limits. The other natural isomorphism, providing naturality in Y, arises between covariant
functors Z(FX,—) and € (X, G—)E| which we describe as follows:

We first explicitly define the functors Z(FX,—) : Z — Set and € (X,G—) : Z — Set.
On objects:

Yy 25, gpx,y) and v 2 @(x,qy)
On morphisms:
(g:Y = 2) 255 (grx,y) 259, grx, 7))
and
(g:Y = 2) 22, (wx,ay) 259 ¢ (x,qz)),
where
(FX 5 y) 2559 (px %y % 7) and (X % GY) 29 (x & qy 99 qz).
Finally,

D(FX,—) € (X,G-)
1y i 1@(FX,Y) and]_y —]_cg(X7gy).

It is left as a quick exercise to check that these functors preserve composition.
Now we can continue. We have the natural isomorphism

n: 2(FX,—) = €(X,G-).

2These four functors are all examples of representable functors.

23

Expanded, we have a family of isomorphisms (ny : Z(FX,Y) — €(X,GY))ycob(2), such that for
every morphism g : Y — Z, the following diagram commutes:

2(FX,Y) % €(X,GY)
@(FX,f)J{ J{%”(X,Gf)
P(FX,Z) —— C(X,GZ)

Notice that this exactly describes the identity

nz(gov) = Ggony(v)

for every v : FX — Y. Now if we call by (—); instead, we exactly replicate (3):

(gov)y = Ggowvy.

24

6 Monads and Algebras

Ever since the work of Moggi [3], monads have been ubiquitous in computer science. To motivate
the topic, we will begin by looking at the algebra for a monad. An algebraic theory is given by
a signature X, which is a set of operations of a given arity, and a set of equations E. Given our
signature X, a monad Ty, maps a set X to the set of 3-terms where each term has x € X as variables,
and a morphism f : X — Y to a term over Y by substituting the elements x € X according to
f. The unit of this monad T¥ is given by the identity (i.e., it maps each element of X to itself)
and the multiplication by term composition. Expanding this monad with F, our set of equations,
we can form now a monad Tx g, which quotients the set of ¥-terms by E. One way of looking at
monads is thus by thinking about them as a consistent way for forming expressions over a fixed set,
together with a set of operations that can be used on these.

Definition 33 (Monads). Let € be a category. A monad on % is a triple (T, u,n7) where:
e T :% — € a functor
e 1 :T? = T a natural transformation called “multiplication”
e 1: 1 = T a natural transformation called “unit”

Such that for each X, the following diagrams commute:

TX — X, T2 e X T 2y
\ Bx / Tpx mx
T TX

The two commuting triangles on the left specify how the “unit” and “multiplication” maps
interact. The commuting square on the right means that the “multiplication” map is associative in
some sense.

Note 3. We can see what the above commuting square does by intuitively looking at a collection
of terms of terms of terms. There are two ways in which we can flatten these. Either we take a
bottom-up approach, or we start from the top. These two ways of flattening our terms correspond
to the maps Tux and prx respectively. Finally, we can flatten our terms once more by using
the monad multiplication, thus ending with a collection where all our original terms are contained.
Pictorially:

25

wr

| J»

Whenever we have a category of alebras, we can come up with a monad. Let us look at Mon,
the category of monoids. We will associate it with the following monad on 7 : Set — Set. A set X
is mapped to X*, the set of finite strings over X (including the empty one, which is the unit of our

monoid),
X—X*={}

In order to give a monad, we have to provide a natural transformation from the identity on Set
to T, n: lset = T, we do this by mapping an element z € X to a singleton list containing only x:

nx : X - TX
X - X"
x> 2]

The last piece of data that we have to give to have a monad is the multiplication, which will go
from lists of lists of X to lists of X,

px :T?X - TX
px (X)) — X~
Hxlla e 71'1n]a [xQIa s 7x2n]7 RRR] [xmla s axmn]] — [xlh AR xmn]
Notice that this is just concatenation. Let us spell out this:

Example 30 (List monad). Let us consider the following functor in Set, usually called the list
functor, L : Set — Set. It acts on a set X by forming a list £X whose elements are exactly
the elements © € X, i.e., [xg,21,...,%y,], and given a function f : X — Y, it induces a function
Lf:LX — LY by applying f elementwise to members of the list £LX. We can equip this functor
with a monad structure by considering the unit 7 to be the list with a single element, [x], and the
multiplication p* : £2X — L£X to be given by flattening a double list.

This is all good, but where are all the monoids? How can we recover from the above monad
the category of all monoids, Mon? Let us assume we have a set A and we put a monoid structure
on A, this is, we must give a way of multiplying elements of A. This corresponds to giving a map
A* % A. We introduce now the following:

26

Definition 34 (Algebras over a monad). Let (T, u,n) be a monad on category . An algebra
for ¥ is a morphism a : TA — A in ¥, where A is an object of ¥, and the following diagrams
commute:

A—" s TA T2A —™2 s TA
a Ta a

1a
A TA ——— A

The above not only gives us a way for multiplying terms of A (through the map 74), but a way
to flatten elements of A* to end up with elements in A (a: TA — A).

Let us look at a concrete example. If the algebra that we consider is such that TX is X*, the
above square acting on a list of elements in X, [a, b,],

[[a], [b, ¢]] ———— la,b o (]

[a,b ¢] —————— a e (b e ¢)
We can now see that the above diagrams are telling us that that X* is nothing else but a monoid.
Proposition 1. An algebra for the free monoid functor T' as defined earlier is just a monoid.

Definition 35 (Algebra homomorphisms). If o : TA — A and b: TB — B are algebras for T.
A morphism from a to b is defined to be a morphism f: A — B in % such that

TA — " . 7TB

Exercise 14. Convince yourself that the above with TX = X* gives us precisely the monoid
homomorphisms.

Definition 36 (Eilenberg-Moore Algebras). The Eibenberg-Moore category over a monad
(T, p,m) is denoted EM(T). It is also called the category of algebras over the monad 7. It has
objects the algebras over T', and morphisms the algebra homomorphisms.

We can now examine a subcategory of these algebras, the Kleisli category of a monad T, which
is equivalent to the category of free T'—algebras. These will be determined by its set of generators.
We start by defining what a Kleisli category is,

Definition 37 (Kleisli Category). Let T be a monad over 4. The Kleisli category KI(T) over
T has:

e Objects exactly the objects of €

27

e Morphisms are morphisms f: A —-TB in ¢

For each object X € KI(T), the identity morphisms of X in ICI(T"), which is a morphism X — T'X in
%, is just the component of the monad unit nx. The composition of two morphisms g : B — C, f :
A — B in KI(T), which are morphisms g: B — TC and f: A — TBin ¢, is gof = uco(Tg)o f,
where the compositions on the right hand side happen in €.

Tg

A f TB TTC # TC

As stated above, a free algebra is determined by its set of generators. If we want to give a
morphism from A* — B* (i.e., from the free algebra on A to the free algebra on B) , it suffices to
tell what this morphism is doing on the generators, i.e., it is enough to have a morphism A — B*.

Then if we are interested in a free algebra, we can keep the elements of our category C and
consider the arrows A — T'B. This is, we take the Kleisli category of T'

Note 4. The objects in the Kleisli category are the “free algebras”. For example, if T is the free
group monad, then KI(T) is the full subcategory of Grp ~ EM(T) where the objects are all the free
groups. In general, KI(T') can be viewed as a full subcategory of EM(T') with only the free objects.

Exercise 15. Prove KI(T) is actually a category, i.e. that the category axioms for associatity of
composition and the equations for identity morphisms actually hold.

If we start with a monad T : C — C and take an adjunction Fp 4 Ur, then we can get the
monad back by grabbing the composite of the two functors, i.e., T'= U o Fp. In general, we may
have different adjunctions giving us the monad T', but there are two very special ones. Namely, the
KI(T) and EM(T). If we start with an adjunction Fr 4 Ur we can construct KI(T), and similarly,
EM(T) can be constructed from FT - U”T. Diagrammatically,

Proposition 2. KI(T) and EM(T) are initial and terminal among adjunctions.
Examples of monads are listed below.

Definition 38 (Finitary distribution monad). Let D : Set — Set be the finitary distribution
functor, which sends a set X to the set DX of all finitely supported probability distributions onf
X,
DX ={¢: X —[0,1]: Z o(x) = 1,supp(yp) is finite}
zeX
and a funtion f: X =Y to Df : DX — DY, the pushforward of measures along f, this is,

Df()=Xy. > (x).

ze€f~1(y)

28

The finitary distribution monad (D, n?, uP) is given by taking the unit n? : X — DX to be the
Dirac distribution, 7P (z) = §x and we define the multiplication uP : D2X — DX by

pEDX
Note 5. The distribution monad captures probabilistic behavior.
e KI(D) is FinStoch, the category of finitary stochastic maps.
e EM(D) is the category of convex algebras.

Definition 39 (Powerset monad). Let P : Set — Set be the powerset functor, which sends a set
X to its powerset PX and maps functions f: X = Y to Pf : PX — PY, which sends sets to their
image under f. This is, (Pf)(X) := f[X] ={y € Y : y = f(z) for some z € X}. The powerset
monad (P,n”, u”) is given by taking the unit n” : X — PX to be the singleton set, " (z) = {z}
and the multiplication p* : P2X — PX the common union of sets,

pP{XiePXiel}) =X,
i€l

Note 6. The powerset monad captures nondeterminism.
e KI(P) is Rel, the category of sets and binary relations.

e EM(P) is the category of complete join semilattices.

29

References

[1] S. Awodey. Category Theory. Oxford Logic Guides. OUP Oxford, 2010. 1SBN: 9780191612558.
[2] Tom Leinster. Basic Category Theory. 2016. arXiv: [1612.09375 [math.CT].

[3] Eugenio Moggi. “Notions of computation and monads”. In: Information and Computation 93.1
(1991). Selections from 1989 IEEE Symposium on Logic in Computer Science, pp. 55-92. ISSN:
0890-5401. DOI: https://doi.org/10.1016/0890-5401(91)90052-4!

30

https://arxiv.org/abs/1612.09375
https://doi.org/https://doi.org/10.1016/0890-5401(91)90052-4

	Categories and functors
	Categories
	Examples
	Free category on a graph

	Isomorphisms
	Functors
	Examples
	Covariance and contravariance
	Subcategories

	Automata
	Natural transformations
	Limits and colimits
	Instances of limits and colimits
	Limits and colimits
	Alternative definitions

	Adjunctions
	Monads and Algebras

