
OPLSS 2023

INTRODUCTION TO HOTT NOTES

PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

Contents

1. Introduction 1
2. Martin-Löf Type Theory 2
2.1. Inductive Types 3
2.2. The Booleans 3
2.3. The Natural Numbers 4
2.4.

∑
-Types 4

2.5. Types as Logic, Sets, and Programs 5
3. Identity Types 5
4. The Space Interpretation 7
4.1. Functional Extensionality, UIP, and Univalence 9
5. Homotopy Levels 10
5.1. h-level 0 11
5.2. h-level 1 11
5.3. h-level 2 11
5.4. h-level 3 11
6. Equivalences 13
6.1. Univalence for Logic and Sets 13
7. Higher Inductive Types 15
7.1. Propositional Truncation 15
7.2. Set Truncation 15
7.3. Quotient Types 16
8. Category Theory 16
8.1. Univalent Categories 16
8.2. Rezk Completion 17
References 17
Appendix A. Transport and Fibrations 17
Appendix B. Digression: Pi-Types 18
Appendix C. Links and FAQ 19

1. Introduction

The fields of Type theory, Set theory, Topos theory, Category theory, Homotopy
theory, and Functional programming all matured in the 20th century as their own
distinct and influential fields of study. But near the beginning of the 21st century,

Date: July 2023.

1

2 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

more and more of the connections across these fields were recognized, which years
later culminated in the field of Homotopy Type Theory (HoTT).

Type theory Logic Set theory

Functional programming HoTT Topos theory

Homotopy theory Category theory

Figure 1. Connections across different fields of mathematics and
computer science. The blue squiggly line is the surprising connec-
tion between homotopy theory and functional programming.

HoTT has strong ties to each of these other fields, and provides a fertile ground
for investigating and proving s

:::::::
urprising connections between each of them. This

lecture series will provide an introduction to this growing field and will help illumi-
nate its relation to these other areas of study. HoTT is built on top of Martin-Löf
Type Theory (MLTT), which we introduce in §2.

2. Martin-Löf Type Theory

MLTT consists of 3 basic judgments. An in-depth treatment of judgments can
be found in [ML96]. The first judgment expresses that Γ is a valid context.

Γ ctx

The second judgment expresses that T is a type under the context Γ, presupposing
that Γ ctx.

Γ ⊢ T type

Finally, the last judgment expresses that t is an element of type T under the context
Γ, presupposing that Γ ctx and that Γ ⊢ T type.

Γ ⊢ t : T

These three judgments have their corresponding equality judgments. The first
judgment expresses that two valid contexts, Γ and Γ′, are definitionally equal.

Γ
·
= Γ′ ctx

The second judgment expresses that two types are definitionally equal under the
same context Γ.

Γ ⊢ T
·
= T ′ type

And the last judgment expresses that two terms, t and t′, of type T under the
context Γ are definitionally equal.

Γ ⊢ t
·
= t′ : T

For conciseness, we omit the context Γ. For example, we write ⊢ t : T for Γ ⊢ t : T ,
where Γ is an arbitrary context.

Example 2.1 (Some example types in MLTT).

INTRODUCTION TO HOTT NOTES 3

(1) Empty type ∅.
(2) Unit type 1.
(3) The type of Boolean Bool.
(4) The type of natural numbers N.

(5) The types of equalities =.
(6) Dependent product types Σ.
(7) Dependent function types Π.
(8) Universes Ui.

(5) The types of well-founded trees W.

MLTT can be extended with additional features. Two possible extensions are
summarized in Table 1.

Type Theory Univalence Axiom Higher Inductive Types
UTT ✓ ✗

HoTT ✓ ✓

Table 1. Univalent Type Theory (UTT) is MLTT extended with
the Univalence Axiom, and HoTT is UTT extended with higher
inductive types.

2.1. Inductive Types. An inductive type is freely generated by its canonical el-
ements. To define an inductive type in Coq, one can write

Inductive T : Type := foo : T | bar : T.

The type T is freely generated by its two canonical elements, namely foo and
bar. Coq generates an elimination rule for T automatically.

In general, to specify a new type in type theory we specify:

(1) how to form new types of this kind via formation rules. For example, if
A and B are types then A → B is a type.

(2) how to construct canonical elements of that type via introduction rules.
For example, a function type has one introduction rule, namely λ-abstraction.

(3) how to use elements of that type via elimination rules. For example, a
function type has one elimination rule, namely function application.

(4) how elimination rules act on introduction rules via computation rules.
For example, applying a λ-abstraction (λx.e) to a term e′ is definitionally
equal to substituting e′ for x in e, namely e[e′/x].

See the HoTT book [Uni13].

2.2. The Booleans. The type Bool is freely generated by two terms, true and
false. To use a Boolean (to construct a dependent function out of Bool), it suffices
to specify its behaviors on the canonical terms. The computation rules express that
indBool,f,t(b) works as expected when applied to one of the canonical terms.

⊢ Bool type
Form

⊢ true : Bool ⊢ false : Bool
Intros

b : Bool ⊢ D(b) type ⊢ f : D(false) ⊢ t : D(true)

b : Bool ⊢ indBool,f,t(b) : D(b)
Elim

b : Bool ⊢ D(b) type ⊢ f : D(false) ⊢ t : D(true)

⊢ indBool,f,t(false)
·
= f : D(false) ⊢ indBool,f,t(true)

·
= t : D(true)

Comp

4 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

Exercise 2.1. Define a function not : Bool → Bool. Note that → works as usual.

2.3. The Natural Numbers. The type N is freely generated by 0 and the suc-
cessor function S. One may recognize that the elimination rule is the usual math-
ematical induction.

⊢ N type
Form

⊢ 0 : N
Intros

⊢ n : N

⊢ S(n) : N
Intros

n : N ⊢ D(n) type ⊢ z : D(0) n : N, h : D(n) ⊢ i : D(S(n))

n : N ⊢ indN,z,i(n) : D(n)
Elim

n : N ⊢ D(n) type ⊢ z : D(0) n : N, h : D(n) ⊢ i : D(S(n))

indN,z,i(0)
·
= z : D(0) n : N ⊢ indN,z,i(S(n))

·
= i[indN,z,i(n)/h] : D(S(n))

Comp

Example 2.2. To construct a function add : N→ N→ N, it suffices to construct a
term n : N,m : N ⊢ e : N. To this end, we do induction onm (apply the elimination
rule for N), choosing n : N,m : N ⊢ N type to be the motive of induction. Now it
suffices to produce two terms: n : N ⊢ z : N, corresponding to the base case, and
n : N,m : N, h : N ⊢ i : N, corresponding to the inductive case. Choosing z to be n
and i to be S(h) gives the usual addition function λn : N. λm : N. indN,n,S(h)(m)
with the following definitional equalities:

• add n 0
·
= n, and

• add n S(m)
·
= S(add n m).

Exercise 2.2. Define ι : Bool → N.

Exercise 2.3. Define mult : N→ N→ N.

2.4.
∑

-Types. Given x : B ⊢ E(x) type (in Coq: E (x : B) : UU), sigma type
is freely generated by dependent pairs ⟨b, e⟩ where b : B and e : E(b).

x : B ⊢ E(x) type

⊢
∑
x:B

E(x) type
Form

⊢ b : B ⊢ e : E(b)

⊢ ⟨b, e⟩ :
∑
x:B

E(x)
Intros

z :
∑
x:B

E(x) ⊢ D(z) type x : B, y : E(x) ⊢ d(x, y) : D(⟨x, y⟩)

z :
∑
x:B

E(x) ⊢ indΣ,d(z) : D(z)
Elim

z :
∑
x:B

E(x) ⊢ D(z) type x : B, y : E(x) ⊢ d(x, y) : D(⟨x, y⟩)

b : B, e : E(b) ⊢ indΣ,d(⟨b, e⟩)
·
= d(b, e) : D(⟨b, e⟩)

Comp

We can think of
∑
x:B

E(x) as the disjoint union of sets indexed by the elements

of B. See Figure 2.

Example 2.3. Given x : Bool ⊢ N type, the type Σx:BoolN corresponds to the set
N⊔N, and Πx:BoolN corresponds to the set N×N because there is no dependency
between x and N in the Π type.

INTRODUCTION TO HOTT NOTES 5

B

Σx:BE(x)

a

b
c

E(a)

E(b)

E(c)

π1

Figure 2. A graphical illustration of a
∑

-type over some type B.

Exercise 2.4. Construct a function π1 :
∑

x:B E(x) → B.

Exercise 2.5. Construct a function π2 :
∏

s:Σx:BE(x) E(π1s). This is a dependently

typed function that takes a term s :
∑

x:B E(x) and returns something of type
E(π1s).

2.5. Types as Logic, Sets, and Programs. This section compares previously
presented terms in light of the Curry-Howard correspondence, which relates logic
to programs, and the Brouwer–Heyting–Kolmogorov interpretation, which provides
an explanation of constructive logic. Table 2 summarizes the interpretation of type
theory in logic, sets, and programs.

3. Identity Types

In Example 2.2, add 0 m
·
= m : N doesn’t hold judgmentally because we don’t

know whether m is 0 or is the successor of some natural number. To “prove” this

equality, we need to use the elimination rule for N. However, since
·
= is not a type,

it does not make sense to make the judgment ⊢ t : add 0 m
·
= 0. We can internalize

the existing notion of equalities, namely judgmental equalities (
·
=). This yields the

identity types, giving us another notion of equalities, propositional equalities.
Type formers often internalize existing concepts, i.e., turn them into types. For

example, Bool, N, ∅ and 1 internalize existing notions of those things; Σ-types
internalize context extensions (Figure 3); Π-types internalize dependent types; and
the universe type U internalizes the notion of something being a type. We will see
how the identity types internalize judgmental equalities.

Given a type A and two terms, a : A and b : A, we can ask whether a equals b,
i.e., we can form the type a =A b. A term a : A is equal to itself; thus the canonical
terms of this type family are ra : a =A a. The elimination rule tells us that to use

6 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

Type Theory Logic Sets Programs
Γ ctx hypotheses indexing set names in scope

Γ ⊢ T type predicate T on Γ family T of sets
indexed by Γ

program specification us-
ing values from Γ

Γ ⊢ t : T proof of T elements program t meeting the
specification T

N - N collection of programs
with no input that out-
put a natural number

S + T (Σi:BoolTi) ∨ (disjunction) ⊔ (disjoint
union)

∨ over specifications

S × T (Σs:ST) ∧ (conjunction) × (Cartesian
product)

∧ over specifications

S → T (Πs:ST) ⇒ (implication) TS (exponen-
tial)

turns a program of type
S into a program of type
T

Σb:BE(b) ∃b : B,E(b)
(constructive
existential)

⊔b:BE(b) specification for produc-
ing an element b :
B meeting specification
E(b)

Πb:BE(b) ∀b : B,E(b) Π (set of sec-
tions)

specification for taking
any program b : B
and outputting a pro-
gram matching specifica-
tion E(b)

Table 2. Type theory interpreted in logic, sets, and programs.

x : B ⊢ E(x) type

x : B, y : E(x) ctx ⊢ Σx:BE(x) type

Co
nt
ex
t e
xt
en
sio
n Σ-formation

Internalization

Figure 3. Σ-type internalizes context extension.

a term x : a =A b, it suffices to assume that x is ra : a =A a. The elimination rule
is also called path induction.

INTRODUCTION TO HOTT NOTES 7

⊢ A type ⊢ a : A ⊢ b : A

⊢ a =A b type
Form

⊢ a : A

⊢ ra : a =A a
Intros

x : A, y : A, z : x =A y ⊢ D(x, y, z) type x : A ⊢ d(x) : D(x, x, rx)

x : A, y : A, z : x =A y ⊢ ind=,d(x, y, z) : D(x, y, z)
Elim

x : A, y : A, z : x =A y ⊢ D(x, y, z) type x : A ⊢ d(x) : D(x, x, rx)

x : A ⊢ ind=,d(x, x, rx)
·
= d(x) : D(x, x, rx)

Comp

Example 3.1 (Symmetry). We define a function (−)−1 : (a = b) → (b = a) that
produces the inverse of a path. To this end, assume that x : (a = b). By path
induction, it suffices to assume that x is ra : a = a. In this case, the goal also
follows by reflexivity.

Transitivity of equality can be proved in a number of ways.

Example 3.2 (Transitivity). We define a function − · − : (a = b) → (b = c) →
(a = c) that produces the composite of two paths. To this end, assume x : a = b
and y : b = c. By path induction on x and y, it suffices to assume that both x and
y are ra. The result follows immediately by ra.

We talk about judgemental equalities (e.g., a
·
= b : A) at a “meta” level. The

identity types (e.g., ra : a =A b) internalize these into the “type-and-term” level.
The congruence rules for judgmental equalities say that

a : A, b : A ⊢ a
·
= b : A a : A ⊢ a =A a type

a : A, b : A ⊢ (a =A a)
·
= (a =A b) type

and that

a : A ⊢ ra : a =A a a : A, b : A ⊢ (a =A a)
·
= (a =A b) type

a : A, b : A ⊢ ra : a =A b

Thus, judgmentally equal terms are propositionally equal by reflexivity.

Exercise 3.1. Show that, for all n : N, add 0 n = n for the addition function
defined in Example 2.2. In other words, find a term that inhabits the type∏

n:N

add 0 n = n

4. The Space Interpretation

In §3, we informally referred to terms of an identity type as paths. In this
section, we explore the space interpretation of types due to the late mathematician
Vladimir Voevodsky, who showed that MLTT can be interpreted in a category of
spaces (the category of Kan complexes).

A type A can be interpreted as a space, and inhabitants p and q of the identity
type a =A b can be interpreted as two parallel paths from a to b in the space A.
Then since p and q are themselves terms, the equality formation rule allows us to
form a new type.

8 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

MLTT Space
types T spaces T
terms t points t ∈ T

dependent types x : B ⊢ E(x) type fibrations
E
↓
B

equalities paths/homotopies
Table 3. The space interpretation of MLTT.

⊢ p : a =A b ⊢ q : a =A b

⊢ p =a=Ab q type

The inhabitants of the type p =a=Ab q can then be interpreted as 2-dimensional
paths, or homotopies, between the two 1-dimensional paths p and q. Similarly,
we can form the type r =p=(a=Ab)q s of 3-dimensional paths between two parallel
2-dimensional paths. This process can be repeated ad infinitum, giving higher
dimensional structures. See Figure 4.

a b

Figure 4. An illustration of higher dimensional paths.

Figure 5. A disk-shaped space A and points a, b, and c and paths
p, q, and r.

INTRODUCTION TO HOTT NOTES 9

Figure 6. A torus-shaped space B and points a and b and paths
p and q.

Reflexivity, symmetry, and transitivity of paths suggest groupoidal behaviors of
types.

Equality Homotopy
reflexivity constant path
symmetry inverse path
transitivity path concatenation

Table 4. Examples 3.1 and 3.2 reveal the connections between
identity types and homotopies.

Exercise 4.1. Show that functions f : A → B respect equalities. In other words,
construct the following function:

apf : (a =A b) → (f(a) =B f(b))

The notation apf can be read as the action on paths of f [Uni13].

Exercise 4.2 (Transport). Show that for any dependent type x : B ⊢ E(x) type,
any terms b, b′ : B, and any path p : b =B b′, there is a function p∗ : E(b) → E(b′).

This ensures that every dependent type we can construct respects propositional
equality. If we think of E as a predicate on B, this means that if E(b) is true
and b =B b′, then E(b′) is true. This is part of a more sophisticated relationship
between type theory and homotopy theory (Quillen model category theory, or QMC
theory). Transport says that π1 : Σb:BE(b) → B behaves like a fibration in a QMC.
For more information, see Appendix A.

4.1. Functional Extensionality, UIP, and Univalence. For Bool, we can show
that false = false, true = true, and that false ̸= true. For N, we can show that if

10 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

S(n) = S(m), then n = m for all n,m : N, and that 0 ̸= S(n) for all n : N. A more
involved example is the Σ-types, for which we can show that

(s = t) ≃
∑

p:π1(s)=π1(t)
p∗(π2(s)) = π2(t) for all s, t :

∑
a:A B(a).

This roughly says that the identity type s = t is “equivalent” (a notion that we will
introduce later) to the disjoint union of paths in the fibers.

4.1.1. Functional Extensionality. We consider two set-theoretic functions equal when
they are pointwise equal. This property is called functional extensionality (Fu-
nExt). We might want Π-types to have this property, but this is not provable in
MLTT. However, this is validated by interpretations into logic, sets, and spaces.

4.1.2. Uniqueness of Identity Proofs. The Uniqueness of Identity Proofs (UIP)
states that any two proofs of an identity p = q are equal. This property is not
provable in MLTT. However, it is validated by interpretations into logic and set,
but not in spaces because there may be multiple paths in a space. See Figure 6.

4.1.3. Univalence. From a topologist’s perspective, two homeomorphic spaces are
equal; from a group theorist’s perspective, two isomorphic groups are equal. Simi-
larly, two equivalent types in a universe U should be considered equal. Univalence
states that

(T = S) ≃ (T ≃ S)

This is not provable in MLTT, but it is validated by interpretation into spaces.
Univalence is a consequence of the univalent axiom (UA), which we will introduce
later.

As it turns out, UA and UIP are incompatible, and both UA and UIP imply
FunExt. To avoid inconsistency, we cannot have both UA and UIP. We choose UA.
Both choices make sense, but choosing UIP would send us in the direction of set
theory, not HoTT.

UA UIP&ER

FunExt

Implies Implies

Incompatible

Figure 7. Both UA and UIP with equality reflection (ER) imply
functional extensionality. However, UA and UIP are incompatible.

5. Homotopy Levels

Types in HoTT come equipped with higher-dimensional structures. In some
types, however, these structures are trivial above a certain dimension. In this
section, we introduce homotopy levels, or h-levels for short, and discuss some
special cases.

INTRODUCTION TO HOTT NOTES 11

5.1. h-level 0. A type T is contractible (has h-level 0) if there is a center of
contraction t, and for every inhabitant s of that type there is a path from s to t.

isContr(T) :=
∑
t:T

∏
s:T

(s = t)

Figure 8. A type T with h-level 0 has a center of contraction t
and every inhabitant has a path to t.

For example, the unit type 1 is contractible. Choose tt to be the center of
contraction. The result follows by the elimination rule for 1.

Exercise 5.1. Show that if T is contractible and inhabited, then T ≃ 1.

5.2. h-level 1. A type T is a proposition (has h-level 1) if for any s, t : T the
identity type s = t is contractible.

isProp(T) :=
∏
s,t:T

isContr(s = t)

Note that a proposition does not need to be inhabited. For example, the empty
type ∅ is a proposition. See Exercise 5.2.

Exercise 5.2. Show that ∅, 1 are propositions.

Exercise 5.3. Show that any contractible type is a proposition.

Exercise 5.4. Show that if a proposition is inhabited, then it is contractible. (This
says that a proposition is informally equivalent to ∅ or 1, i.e., truth values)

5.3. h-level 2. A type T is a set (has h-level 2) if for any s, t : T the identity type
s = t is a proposition.

isSet(T) :=
∏
s,t:T

isProp(s = t)

The type T looks like a discrete collection of points. For example, the types N and
Bool are sets.

5.4. h-level 3. A type T is a groupoid (has h-level 3) if for any s, t : T the identity
type s = t is a set.

isGroupoid(T) :=
∏
s,t:T

isSet(s = t)

12 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

Figure 9. If a type T has h-level 1, then the identity type s = t
between any two inhabitants s and t is contractible. This means
that any two proofs of a proposition are equal.

Figure 10. If a type T has h-level 2, then the identity type s = t
between any two inhabitants s and t is a proposition. Thus, T
looks like a set.

In general, isofhlevel n T is defined recursively as follows:

isofhlevel 0 T := isContr(T)

isofhlevel S(n) T :=
∏
s,t:T

isofhlevel n (s = t)

Exercise 5.5. Show that if a type T has h-level n, then it has h-level n+ 1.

INTRODUCTION TO HOTT NOTES 13

Figure 11. If a type T has h-level 3, then the identity type s = t
between any two inhabitants s and t is a set. Thus, T looks like a
groupoid.

6. Equivalences

Given a function f : A → B, we can define isEquiv(f) by∑
g:B→A

(g ◦ f = 1A)× (f ◦ g = 1B)

Sadly, this type is not a proposition. Thus, it has nontrivial high-dimensional
structures that we don’t want. To remedy this, recall that a set-theoretic function
f : A → B is a bijection if for all b ∈ B, the fiber over b is a singleton set. This
suggests an alternative definition for isEquiv(f).

Definition 6.1.

isEquiv(f) :=
∏
b:B

isContr

(∑
a:A

f(a) = b

)
This states that for every b : B, the fiber over b is contractible, i.e., there exists a

unique element in the preimage of f . One can prove that isEquiv(f) is a proposition.

Definition 6.2 (Equivalence). Given any two types A,B : U , we write A ≃ B to

denote the type
∑

f :A→B

isEquiv(f).

For any two types A,B : U , we can construct a function idToEquiv : (A = B) →
(A ≃ B) by path induction.

Definition 6.3 (Univalence Axiom). The univalence axiom asserts that

ua : isEquiv(idToEquiv)

An immediate consequence of this axiom is that (A = B) ≃ (A ≃ B).

6.1. Univalence for Logic and Sets.

Definition 6.4. We define the type of propositions as the following sigma type:

Prop :=
∑
P :U

isProp(P)

The univalence axiom implies that the type Prop is univalent. That is, for any
P,Q : Prop,

(P = Q) ≃ (P ↔ Q)

14 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

As a corollary, the type Prop is a set rather than a proposition because there
are propositions that are not interprovable, but all the interprovable ones can be
identified. We define the type of sets in the same fashion.

Definition 6.5.
Set :=

∑
S:U

isSet(S)

Similarly, the univalence axiom implies that Set is univalent.

(S = T) ≃ (S ∼= T)

As a consequence, Set is a groupoid because, for example, the set containing two
elements is isomorphic to itself in two different ways.

With Set in hand, we can define the type of groups. Recall that a group consists
of a carrier set G, a neutral element e, a multiplication operator ·, and an inverse
operator −−1 such that

(1) e · g = g for all g ∈ G,
(2) g · e = g for all g ∈ G,
(3) (g · h) · k = g · (h · k) for all g, h, k ∈ G,
(4) g−1 · g = e for all g ∈ G, and
(5) g · g−1 = e for all g ∈ G.

Definition 6.6.

Grp :=
∑
G:Set

∑
e:G

∑
·:G→G→G

∑
−−1:G→G

∏
g:G

e · g = g

×

∏
g:G

g · e = g

×

 ∏
g,h,k:G

(g · h) · k = g · (h · k)

×

∏
g:G

g−1 · g = e

×

∏
g:G

g · g−1 = e


The role of the inhabitants of the group axioms is to serve as a witness that the
neutral element, the multiplication, and the inverse of a group interact properly.
We don’t want the group axioms to carry additional structures. Thus, the carrier
G needs to be a set to ensure that the group axioms are propositions.

Again, the univalence axiom implies that for any two groups, G and H,

(G = H) ≃ (G ∼= H).

Similarly, we can define the type of groupoids by

Grpd :=
∑
T :U

isGroupoid(T)

And the type Grpd is univalent. In fact, any algebraic structure on a set has a
univalence result [CD13].

The moral of the story is that univalence allows us to do mathematics up to some
appropriate notion of “sameness”. For example, the appropriate notion of sameness
for groups is group isomorphisms. The Structure Identity Principle, or SIP
(Aczel, Coqand), is the idea that an isomorphism (or our notions of equivalence)
should respect the structure of a given type. The Identity of Indiscernables

INTRODUCTION TO HOTT NOTES 15

(Leibniz) states that any two objects that have all their properties in common
cannot be distinct. Univalence allows us to treat equivalent types as exactly equal,
incorporating these principles into our theory.

7. Higher Inductive Types

An ordinary inductive type, such as Bool, is freely generated by its canonical
terms true and false. Since we now consider types as having terms, equalities,
equalities between equalities, etc, we can consider higher inductive types whose
constructors can generate terms, equalities, equalities between equalities, etc. For
example, we can define the typeD1 to be the higher inductive type generated by two
points • and ⋆, and a path between them p : • = ⋆. The topological intuition here is
that we connect the points • and ⋆ by adding the path p. (S0 is the 0-dimensional
sphere, and D1 is the the 1-dimensional disc.)

⊢ D1 type
Form

⊢ • : D1 ⊢ ⋆ : D1 ⊢ p : • = ⋆
Intros

x : D1 ⊢ E(x) type ⊢ t : E(•) ⊢ f : E(⋆) ⊢ π : p∗t = f

x : D1 ⊢ indD1,t,f,π(x) : E(x)
Elim

x : D1 ⊢ E(x) type ⊢ t : E(•) ⊢ f : E(⋆) ⊢ π : p∗t = f

⊢ indD1,t,f,π(•)
·
= t : E(•) ⊢ indD1,t,f,π(⋆)

·
= f : E(⋆)

⊢ indD1,t,f,π(p) = π : p∗t = f

Comp

We explore a few more higher inductive types.

7.1. Propositional Truncation. Given two propositions P and Q, we can prove
that the types P × Q, P → Q, and ¬P are propositions. Thus, we can define
conjunctions, implications, and negations in the most obvious way. However, P +Q
is not necessarily a proposition since if we have p : P and q : Q, then we have
inl(p) : P +Q and inr(q) : P +Q. We can turn this into a proposition by identifying
inl(p) and inr(q).

Definition 7.1. In general, given a type T , the propositional truncation ∥T∥1
of T is the higher inductive type generated by an injection | · |1 : T → ∥T∥1 and a
path identifying any pair of inhabitants:

p :
∏
x,y:T

|x|1 = |y|1

With this, we can define P ∨Q := ∥P +Q∥1.

Exercise 7.1. Show that for all T , isProp(∥T∥1).

7.2. Set Truncation. We can define the type of circles S1 to be the higher induc-
tive type generated by a base point b : S1 and a loop ℓ : b = b. A classical result in
algebraic topology is that the fundamental group of the circle is isomorphic to Z.
Indeed, we have that

π1(S
1) ≃ Z

We define π1(T, t) := (S1, b) → (T, t) to be the “set” of base-perserving functions.
However, there no reason for this type to be a set. Set truncation allows us to
remedy this.

16 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

Definition 7.2. Given a type T , the set truncation ∥T∥2 of T is the higher
inductive type generated by an injection | · |2 : T → ∥T∥2, and a 2-path identifying
any two 1-paths:

p :
∏
x,y:T

∏
p,q:x=y

|p|2 = |q|2

Now, we can define π1(T, t) := ∥(S1, b) → (T, t)∥2.

Exercise 7.2. Show that for all T , isSet(∥T∥2).

7.3. Quotient Types.

Definition 7.3. Given an equivalence relation ∼ on a set S, we can take the
quotient S/ ∼ to be the higher inductive type given by:

• an injection ι : S → S/ ∼;
• a dependent function j :

∏
x,y:S x ∼ y → ι(x) = ι(y);

• constructors for ∥ · ∥2.

8. Category Theory

Traditionally, a category C consists of

(1) a set ob(C) of objects,
(2) a set hom(X,Y) of morphisms for all X,Y ∈ ob(C),
(3) an identity morphism 1X ∈ hom(X,X) for all X ∈ ob(C),
(4) a composition function ◦ : hom(Y,Z) → hom(X,Y) → hom(X,Z) for all

X,Y, Z ∈ ob(C).

These data are subject to the identity and associativity laws.
We could talk about categories in the set level (like most classical mathematics).

However, the structural identity principle for structures on sets tells us that

(C =Cat D) ≃ (C ∼= D).

But isomorphism is not the right kind of sameness for categories; they are too
strong. Instead of squashing everything down to the level of sets, HoTT affords
higher dimensional structures.

8.1. Univalent Categories. Observe that every category has a “core groupoid”
contained within it: the objects and all isomorphisms. With a groupoid of objects in
hand, we can then glue additional morphisms to this groupoid, forming a category.

Definition 8.1. A univalent category C consists of:

• a groupoid of objects ob(C) : Grpd;
• a set hom(X,Y) for every pair X,Y : ob(C), i.e.,

X,Y : ob(C) ⊢ hom(X,Y) : Set;

• a term 1X : hom(X,X) for every X : ob(C), i.e.,

X : ob(C) ⊢ 1X : hom(X,X);

• a function ◦ : hom(Y,Z) → hom(X,Y) → hom(X,Z) for every X,Y, Z :
ob(C), i.e.,

X,Y, Z : ob(C) ⊢ ◦ : hom(X,Y) → hom(Y,Z) → hom(X,Z)

INTRODUCTION TO HOTT NOTES 17

These data are subject to the usual axioms of categories and that the function

idToIso : (X = Y) → Iso(X,Y)

is an equivalence, where

Iso(X,Y) :=
∑

f :hom(X,Y)

∑
g:hom(Y,X)

(g ◦ f = 1X)× (f ◦ g = 1Y).

Thus, the right notion of sameness for objects is isomorphism. This additional
requirement is often called (internal) univalence.

The type of categories Cat can then be defined as an iterated sigma type. As a
consequence of the univalence axiom,

(C =Cat D) ≃ (C ≃ D).

Thus, the terms of Cat are categories and the equalities are equivalence of categories.

Corollary. Cat is a 2-groupoid (h-level 4).

This is a great achievement for the univalent foundations. Category theorists
call definitions that are not invariant under equivalence of categories evil. This
definition helps us avoid “evilness” when we talk about categories.

8.2. Rezk Completion. A precategory is a univalent category except that the
type of objects ob(C) is not necessarily a groupoid, and that internal univalence is
not assumed. There is a canonical way of turning a precategory into a univalent
one.

Definition 8.2. The Rezk completion of a precategory C takes ob(Rezk(C)) to
be the higher inductive type given by:

• an injection ι : ob(C) → ob(Rezk(C));
• a dependent function j :

∏
X,Y :ob(C) Iso(X,Y) → ι(X) = ι(Y);

• constructors for ∥ · ∥3

References

[CD13] Thierry Coquand and Nils Anders Danielsson. Isomorphism is equality. Indagationes

Mathematicae, 24(4):1105–1120, 2013. In memory of N.G. (Dick) de Bruijn (1918–2012).

[ML96] Per Martin-Löf. On the meanings of the logical constants and the justifications of the
logical laws. Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[Uni13] Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. http://homotopytypetheory.org/book/, first edition, 2013.

Appendix A. Transport and Fibrations

As mentioned earlier, the ability to transport along an equality corresponds to
the projection map π1 : Σb:BE(b) behaving like a fibration in a QMC. We will now
discuss one way to see this, taking the liberty to interpret equalities as a map from
the interval type into the target type, as is possible in a QMC (as well as in cubical
formulations of HoTT).

Consider Figure 12. If the outer diagram commutes, we have the data b : B,
e : E(b), and a path p : b = b′ for some (unstated) b′ : B.

This follows because, when interpreting p as a map from I to B, evaluating p at
0 : I must result in b by commutativity.

http://homotopytypetheory.org/book/

18 PAVEL KOVALEV, SEAN O’CONNOR, CASSIA TORCZON, FRANK TSAI

∗ Σb:BE(b)

I Bp

const(b,e)

const0 π1

h

Figure 12. Given that the outer diagram commutes, we have that
if π1 is a fibration, there exists a homotopy lifting map h making
everything commute.

Then, if π1 is a fibration, we get that there exists a homotopy lift h : (b, e) =
(b′, e′) for some (unstated) e′ : E(b′) that makes the diagram commute.

This is because, when interpreting h as a map from I to Σb:BE(b), evaluating p
at 0 : I must result in (b, e) by commutativity.

Furthermore, evaluating h at 1 : I and then applying π1 must result in the same
value as evaluating p at 1 : I, also by commutativity.

Thus, given such an h, we can define trp(e) to equal π2(h(1)) : E(b′). Thus, if
π1 is always a fibration, given a term p : b = b′, we can define trp : E(b) → E(b′).

In the reverse direction, given a term trp : E(b) → E(b′) along with the property

that trrb
·
= idE(b) (which holds when defining transport using path induction), given

that the outer diagram in Figure 12 commutes, we can define h : (b, e) = (b′, trp(e)).
To do this, we can use the elimination rule for identity types to reduce this

problem to the case where b′
·
= b and p

·
= rb. As such, we now want to define

h : (b, e) = (b′, trrb(e)).
But as (b′, trrb(e)) definitionally reduces to (b, idE(b)(e)) and then again to (b, e),

we get that h : (b, e) = (b, e).
As such, we can just let h be r(b,e) to finish the proof.
Thus, we have that if π1 is a fibration, we can construct transport along a path

p : b = b′ as trb : E(b) → E(b′), and if we have transport we can show that π1 is a
fibration.

As a bonus exercise, prove that this map taking in trp and output h is an
equivalence!

Appendix B. Digression: Pi-Types∏
-types are dependent function types. Note that they are not an inductive

type, but we include a sketch of the rules for them here.

INTRODUCTION TO HOTT NOTES 19

x : B ⊢ E(x) type

⊢
∏
x:B

E(x) type
Form

x : B ⊢ e : E(x)

⊢ λx : B. e :
∏
x:B

E(x)
Intros

⊢ f :
∏
x:B

E(x) ⊢ b : B

⊢ f b : E(b)
Elim

x : B ⊢ e : E(x) ⊢ b : B

⊢ (λx : B. e) b
·
= e[b/x] : E(b)

Comp

⊢ f :
∏
x:B

E(x)

⊢ f
·
= (λx : B. f x) :

∏
x:B

E(x)
Uniq

Appendix C. Links and FAQ

(1) How does univalence imply functional extensionality? Here is a
blog post detailing that: Another proof that univalence implies functional
extensionality by Dan Licata.

Perhaps the biggest takeaway from this article is that this proof that
univalence implies functional extensionality is very closely related to the
proof in cubical type theory of functional extensionality, which doesn’t use
univalence! There is something bigger at play here, demonstrating that
univalence in some way makes things in MLTT ”work better” than it used
to.

Other than that, I highly recommend checking out the article linked
above, as it is by far the clearest explanation of this proof that I’ve seen.

(2) Are h-levels different from universe levels? Yes! In a type hierarchy
such as the one used by Coq, each Typei has h-level ∞.

(3) How does the inductive definition of identity types allow for non-
canonical terms? The crucial difference for identity types is that we
are inductively defining a family of types in ??. The types build by these
definitions are indexed by the terms being equated, allowing us to have
non-canonical terms.

https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/
https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/

	1. Introduction
	2. Martin-Löf Type Theory
	2.1. Inductive Types
	2.2. The Booleans
	2.3. The Natural Numbers
	2.4. -Types
	2.5. Types as Logic, Sets, and Programs

	3. Identity Types
	4. The Space Interpretation
	4.1. Functional Extensionality, UIP, and Univalence

	5. Homotopy Levels
	5.1. h-level 0
	5.2. h-level 1
	5.3. h-level 2
	5.4. h-level 3

	6. Equivalences
	6.1. Univalence for Logic and Sets

	7. Higher Inductive Types
	7.1. Propositional Truncation
	7.2. Set Truncation
	7.3. Quotient Types

	8. Category Theory
	8.1. Univalent Categories
	8.2. Rezk Completion

	References
	Appendix A. Transport and Fibrations
	Appendix B. Digression: Pi-Types
	Appendix C. Links and FAQ

