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Abstract

These are lecture notes for the Logical Relations course at OPLSS 2023. The notes cover an introduction to
logical relations, along with detailed examples, namely: normalization and type safety for simply-typed lambda
calculus (STLC), step-indexed logical relation for recursive types, and a brief look at binary logical relations for
parametric polymorphism.
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1 Introduction

Logical relations are a prolific and highly useful proof method that can be used to prove a wide range of properties
about programs and languages. For instance, logical relations can help to prove:

• termination of well-typed programs in a language such as the simply-typed lambda calculus (STLC);

• type soundness/safety for languages like the STLC;

• program equivalence, which can take many forms:

– Verifying that an optimized algorithm or implementation is equivalent to a simpler naive one;

– Demonstrating the correctness of compiler optimizations or transformations;

∗transcribed by Gabriela Araujo Britto, Bruno da Rocha Paiva, Bastien Rousseau, and Priya Srikumar
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– Showing representation independence [Mit86], that is, that the implementation underlying a given interface
does not influence the behavior of the client;

∗ For instance, a stack interface may be implemented using an array or a linked list, but this should
be indistinguishable to the users of the interface. To show representation independence for the stack
interface, we would show that a program that uses the array implementation is equivalent to a program
that uses the linked list implementation.

– Conceptualizing parametric polymorphism and corresponding free theorems [Wad89] as a relation loosely
described as “related inputs go to related outputs;”

– Proving noninterference for security-typed languages: showing that two runs of a given program are
equivalent on low-security outputs for any variation on high-security (e.g. confidentiality) program data

and much more!
In recent work, logical relations been used to prove the soundness of different logics. Cross-language logical

relations are used to reason about compilation, foreign function interfaces or multi-language semantics.
The terms logical predicate and unary logical relation are synonymous, as are the terms logical relation and binary

logical relation. Both terms are used in the literature and common parlance. Logical predicates Pτ (e), are sets, and
reason about a single program. Program termination and type safety and soundness are logical predicates. On the
other hand, logical relations Rτ (e1, e2) are binary relations, and can be used to capture program equivalences more
broadly.

2 Normalization of STLC

In this section, we show an example of a logical relation for proving normalization of STLC.

2.1 Formalization of STLC

We recall the syntax and operational semantic of STLC in Figure 1. We consider a slightly variant of STLC, with
the base type of booleans, and the if-then-else expression.

τ ::= bool | τ → τ

e ::= x | true | false | if e then e else e | λx : τ. e | e e

v ::= true | false | λx : τ. e

E ::= [] | if E then e else e | E e | v E

E-IfThenElseTrue

if true then e1 else e2 7→ e1

E-IfThenElseFalse

if false then e1 else e2 7→ e2

E-App

(λx : τ. e) v 7→ e[v/x]

E-Step
e 7→ e′

E[e] 7→ E[e′]

Figure 1: Call-by-value small step semantics of STLC with evaluation context. 7→ is the head reduction relation
(also called primitive reduction).

The operational semantic implements a call-by-value evaluation order, meaning that the argument of a function
needs to be evaluated into a value before applying the function. We note e[v/x] the substitution of the variable x by
the value v in the term e. We write e 7→ e′ to say that e reduces to e′ in one computation step. We write e 7→∗ e′

for the transitive and reflexive closure of the reduction relation.
Figure 2 shows the typing judgment rules. The relation Γ ⊢ e : τ means that x is typed by τ under the typing

context Γ. The typing Γ is a mapping from variable to their type. We do not go through the details of the typing
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rules, as they are fairly classic. In this paper, we work using implicit α-renaming, that is the free variables (in Γ) do
not overlap with bounded variables.

Γ ⊢ e : τ

T-True

Γ ⊢ true : bool

T-False

Γ ⊢ false : bool

T-Var
Γ(x) = τ

Γ ⊢ x : τ

T-IfThenElse
Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

T-Abs
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2

T-App
Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

Figure 2: Typing judgments of STLC.

Then, we formally define normalization (N) of STLC, meaning that any well-typed closed terms actually termi-
nates. We introduce the notation e ⇓ v to mean that the term e evaluates in to value v, that is e 7→∗ v, and the
notation e ⇓ to mean that e evaluates to some value , that is ∃v.e 7→∗ v.

Theorem (Normalization). For all terms e, if · ⊢ e : τ , then e ⇓.

2.2 First attempt: Proving STLC is normalizing by induction on typing derivations

To see why we might want to use logical relations, let’s first try to prove this normalization theorem2.1 naively, and
understand where we get stuck.

Proof. Suppose · ⊢ e : τ . Show e ⇓. We proceed by induction on the typing derivation:
- Case T-True

· ⊢ true : bool
: true is already a value, so it is terminated.

- Case T-False
· ⊢ false : bool

: false is already a value, so it is terminated.

- Case T-Var
Γ(x) = τ

Γ ⊢ x : τ
: by induction hypothesis, we get that ·(x) = τ , which means that this case is vacuously true

(because our context is empty).

- Case T-Abs
x : τ1 ⊢ e : τ2

· ⊢ λx : τ1. e : τ1 → τ2
: λx : τ1. e is already a value, so it is terminated.

- Case T-IfThenElse
· ⊢ e : bool · ⊢ e1 : τ · ⊢ e2 : τ

· ⊢ if e then e1 else e2 : τ
: From the inductive hypothesis, we know that e ⇓ , e1 ⇓

and e2 ⇓ . Since e ⇓ v for some v, by inspecting our reduction semantics, we know that if e then e1 else e2 7→∗

if v then e1 else e2. Thanks to the canonical forms lemma, we know that the only values of type bool are true and false.
By case destruction over v, either if e then e1 else e2 7→∗ if true then e1 else e2 7→∗ e1 ⇓ , or if e then e1 else e2 7→∗

if false then e1 else e2 7→∗ e2 ⇓ .

- Case T-App
· ⊢ e1 : τ2 → τ · ⊢ e2 : τ2

· ⊢ e1 e2 : τ
: From the inductive hypothesis, we know that e1 ⇓ and e2 ⇓ v2. The values

of type τ2 → τ are lambda expressions, so since e1 ⇓, we know e1 ⇓ λx : τ2. e
′, so e1 e2 7→∗ (λx : τ2. e

′) e2 7→∗ e′[v2/x].
But we don’t know anything about whether e′ terminates, so we are stuck and cannot prove this case. ■

The main insight is, the induction hypothesis is too weak: the typing judgment does not tell us anything about the
value produced by the normalization. To solve this issue, we will define a logical relation that precisely strengthens
the induction hypothesis, allowing us to know more about the value produced by the evaluation.

2.3 Principles for defining a logical relation

The logical relation is a predicate Pτ (e) over an expression, indexed by a type. When defining a logical relation
Pτ (e), there are three principles we typically follows:

• The logical relation should contain well-typed terms, ie. · ⊢ e : τ
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• The property of our interest P should be baked in the logical relation (i.e., normalization)

• The property of our interest P should be preserved by the elimination forms1 for the corresponding type τ .
Intuitively, it means that we have a way to continue after consuming a value of type τ .

We will now see how to construct a logical relation more concretely to prove that STLC is normalizing.

2.4 Logical relation for normalization of STLC

We define the normalization logical predicate by induction on STLC types, following the three principles previously
defined:

Nbool(e) ≜ · ⊢ e : bool ∧ e ⇓
Nτ1→τ2(e) ≜ · ⊢ e : τ1 → τ2 ∧ e ⇓ ∧ ∀e′. Nτ1(e

′) =⇒ Nτ2(e e′)

Comparing with the aforementioned principles, we see that the left-most conjuncts in each case ensure the logical
relation contains only well-typed terms. Similarly, the next conjunct in both cases ensures the logical relation only
contains terms satisfying the desired property, ie. normalization. Finally, we need to ensure the property of interest
is preserved by elimination forms, which is handled by the third conjunct of the τ1 → τ2 case. Interestingly, we do
not need to say anything about the elimination form of bool, which is due to its positive polarity. As a rule of thumb,
types with positive polarity do not need any extra conjuncts, while types with negative polarity do.

From here, we can split the proof of normalization into two steps:

(A) For all terms e, if · ⊢ e : τ then Nτ (e)

(B) For all terms e, if Nτ (e) then e ⇓

Step (B) follows quickly from the definition of the logical predicate Nτ . By induction on τ , we have two cases to
consider, and in both cases e ⇓ follows directly from the definition of Nτ (e). One might remark that, it actually comes
from the second principle: the property of our interest (normalization) is in the definition of the logical relation.

Step (A) is not so straightforward however due to the case of lambda abstraction. Suppose that · ⊢ λx : τ1. e :
τ1 → τ2 so in particular we know x : τ1 ⊢ e : τ2. To prove (A), we now need to show that · ⊢ λx : τ1. e : τ1 → τ2
which holds by assumption. We must also show that λx : τ1. e ⇓, which holds as a lambda term is already a value.
The final step is to prove that for any term e′, if Nτ1(e

′) then Nτ2(λx : τ1. e e′). At this point we find ourselves
stuck, since e is not a closed term and thus we cannot proceed by induction on its typing derivation. This leads us
to generalising step (A) to allow for open terms:

(A’) For all contexts Γ, substitutions γ and terms e if Γ ⊢ e : τ and γ ⊨ Γ then Nτ (γ(e)))

(B) For all terms e if Nτ (e) then e ⇓

The substitution γ = {x1 7→ v1, . . . , xn 7→ vn} cannot be any arbitrary substitution. Intuitively, we say that
γ ⊨ Γ (read γ satisfies the typing environment Γ) if they have the same domain and if all the inputs respects the
property of our interest (in our case, normalization). This is required because a value in the context can be a lambda
abstraction, which ends up with the same issue that we had in the first place.

γ ⊨ Γ ≜ dom(γ) = dom(Γ) ∧ (∀x ∈ dom(Γ). NΓ(x)(γ(x)))

Then, we define some auxiliary lemmas. In proving step (A’) we will make use of two lemmas. The first is the
substitution lemma, which will let us go from well typed-open terms to well-typed closed terms. The interested
reader can check [Pie02, p. 9.3.8]

Lemma (Substitution Lemma). Substitution preserves types, that is if Γ ⊢ e : τ and γ ⊨ Γ then · ⊢ γ(e) : τ .

The second lemma is the reduction lemma, which will be important for the lambda case when we will need to
reduce terms.

Lemma (Reduction Lemma). The normalization logical predicate respects reduction, that is if · ⊢ e : τ and e 7→ e′

then Nτ (e) ⇐⇒ Nτ (e
′).

With these lemmas, we are ready to prove (A’).

Lemma (Generalized normalization). ∀ Γ, γ, e, τ. Γ ⊢ e : τ ∧ γ ⊨ Γ ⇒ Nτ (γ(e))

1The introduction forms creates a value of type τ , while the elimination form consumes a value of type τ
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Proof. Suppose Γ ⊢ e : τ and γ ⊨ Γ. Show ⇒ Nτ (γ(e)). We proceed by induction on the typing derivation:
- Case T-True

Γ ⊢ true : bool
: We need to show Nbool(γ(true)). By definition of the substitution, it is equivalent

to show Nbool(true). By unfolding the definition of Nbool, we need to show · ⊢ true : bool and true ⇓. Both goals
are trivial.
- Case T-False

Γ ⊢ false : bool
: similarly to the T-True case.

- Case T-Var
Γ(x) = τ

Γ ⊢ x : τ
: We need to show Nτ (x). Because γ ∈ Γ, we know that x ∈ Γ and NΓ(x)(x), which is

equivalent to Nτ (x).

- Case T-IfThenElse
Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ
: Proof is left as an exercise for the reader. Another

exercise for the reader is to type up the proof and send it to us.

- Case T-App
Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1
: We need to show Nτ (γ(e1 e2)), which is equivalent to showing

Nτ (γ(e1) γ(eZ)). Because τ is arbitrary here, we should read the induction hypothesis. By induction hypothe-
sis, we know that Nτ2→τ (e1). By definition, it means that ∀e′, Nτ1(e

′) ⇒ Nτ2(γ(e1 e′)). We can instantiate e′

and τ1 with γ(e2) and τ . Thanks to the other induction hypothesis, we know that Nτ1(γ(e2)). It thus gives us
Nτ (γ(e1) γ(e2)), which is what we are trying to prove.

- Case T-Abs
x : τ1,Γ ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2
: We suppose Γ ⊢ λx : τ1. e : τ1 → τ2 and γ ⊨ Γ. We want to show that

Nτ1→τ2(γ(λx : τ1. e)). By unfolding the definition of N , there are three properties to prove:
(1) · ⊢ λx : τ1. e : τ1 → τ2
(2) λx : τ1. e ⇓
(3) ∀e′. Nτ1(e

′) ⇒ Nτ2(γ(λx : τ1. e) e
′)

(1) follows directly from the substitution lemma 2.4. (2) is trivial, because λx : τ1. e is already a value. Let us
prove (3).

Suppose e′ such that Nτ1(e
′). We need to show that Nτ2(γ(λx : τ1. e) e

′). We can push the substitution γ inside
the lambda, which is then equivalent to show Nτ2((λx : τ1. γ(e)) e

′).
From Nτ1(e

′), we also know that it exists a value v′ such that e′ 7→∗ v′. Using the backward reduction
lemma 2.4, it then actually suffices to prove Nτ2((λx : τ1. γ(e)) v) . Taking another step, we eventually need
to prove Nτ2(γ(e)[v

′/x]).
We did not use the induction hypothesis yet, let’s take a look at it. The induction hypothesis is: ∀γ′. Γ, x : τ ⊢

e : τ2 ∧ γ′ ⊨ Γ, x : τ ⇒ Nτ2(γ
′(e)). We notice the typing environment Γ, x : τ . It is important to understand what

is happening when applying the induction principle, because this is a common case of error. Here, the induction
hypothesis says that, giving a substitution γ′ that satisfies the environment Γ, x : τ , we get Nτ2(γ

′(e)). In particular,
we get to pick the γ′. More specifically, we need to pick a value v? such that γ′ = γ[x 7→ v?] and Nτ (v?). We do have
a candidate: v′.

We already know that Nτ1(e
′) and e′ 7→∗ v′, and using the forward propagation 2.4, we know that Nτ2(v

′). As
such, we pick γ′ ≜ γ[x 7→ v′]. We can thus instantiate the induction hypothesis, giving us Nτ1(γ

′(e′)), which is
equivalent to Nτ2(γ[x 7→ v′](e)). By definition of the substitution, it finally give us Nτ2(γ(e[v

′/x])), which is precisely
what we wanted to prove.

One might notice that, while the naive proof is easy for the abstraction case and gets stuck for the application
case, this is the other way for this proof: the application case is easy, while the abstraction case is hard. This is
usually the case with logical relations.

3 Type safety of STLC

Type safety is informally defined by the slogan “well-typed programs do not go wrong”, often attributed to Robin
Milner. Alternatively, one can informally describe type safety as “well-typed programs do not get stuck.” What this
means is that, when a well-typed program runs, there won’t be a nonsensical operation, such as trying to apply a
string to a number (e.g. ”foo” 5).

Formally, we say that a term e is safe if:

safe(e) ≜ ∀e′. e 7→∗ e′ ⇒ val(e′) ∨ (∃e′′. e′ 7→ e′′)
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.
We define type safety as follows:

Theorem (Type safety). If · ⊢ e : τ , then safe(e).

Typically, type safety is proven using the progress and preservation lemmas:

Lemma (Progress). If · ⊢ e : τ then either val(e) or ∃e′ such that e 7→ e′.

Lemma (Preservation). If · ⊢ e : τ and e 7→ e′ then · ⊢ e′ : τ .

The progress and preservation lemmas refer to a single reduction step. To prove type safety, we use induction on
the number of reduction steps and then apply the two lemmas.

3.1 Logical relation for type safety of STLC

To prove type safety of STLC using logical relations, we will define a logical relation on values (VJτK) and expressions
(EJτK) separately by induction on the structure of types:

VJboolK ≜ {true, false}
VJτ1 → τ2K ≜ {λx : τ1. e | ∀v ∈ VJτ1K. e[v/x] ∈ EJτ2K}

EJτK ≜ {e | ∀e′. e 7→∗ e′ ∧ irred(e′) ⇒ e′ ∈ VJτK}
where

irred(e) ≜ ∄e′. e 7→ e′

We do a distinction between the value and the expression relation for clarity: this way, the reduction relation is only
used in the expression relation, and the value relation only talks about the values.

We can check that VJτK (“values that behave like the type τ”) and EJτK (“expressions that behave like the type
τ”) are well-founded relations on the structure of types. VJτ1 → τ2K refers to itself in its definition, which may seem
problematic. However, it refers to VJτ1K, which is VJ−K for a smaller type (τ1) than τ1 → τ2. It also refers to EJτ2K,
which again is EJ−K for a smaller type (τ2) than τ1 → τ2. Similarly, the definition of EJ−K refers to VJ−K for the
same type. So those two relations are well-founded2.

Now that we have defined our logical relations, we can use them to prove type safety for STLC. Similar to
normalization, the proof of type safety for STLC can be split into two steps:

(A) For all terms e if · ⊢ e : τ then · ⊨ e : τ

(B) For all terms e if · ⊨ e : τ then safe(e)

Note that · ⊨ e : τ has not been defined yet. We need to do a bit more work to define it, but it is essentially
equivalent to e ∈ EJτK .

To prove (B), we assume that · ⊨ e : τ , so for all terms e′ if e 7→∗ e′ and e′ is irreducible, then e′ ∈ VJτK. To
prove safe(e), we fix some e′ and suppose e 7→ e′, so we must show that either e′ is a value or ∃e′′.e′ 7→ e′′. Now,
either there exists some e′′ such that e′ 7→ e′′ in which case safe(e) or there exists no such e′′. In the latter case, e′

is irreducible and as e ∈ EJτK we know that e′ ∈ VJτK and hence must be a value, so safe(e) holds in this case too.
Similar to the proof for normalization of STLC, we prove (A) as a corollary to the fundamental property of the

type safety logical relation, which is a generalization of the statement for open terms. Before we can state this
theorem, we must introduce the notion of semantic well-typedness. First, we give a definition of substitutions into a
context that respect type safety, which is done by induction on the structure of contexts:

GJ·K ≜ {∅}
GJΓ, x : τK ≜ {γ[x 7→ v] | γ ∈ GJΓK ∧ v ∈ VJτK}

Then, the definition of semantic well-typedness is that for any substitution γ that satisfies the typing context Γ, the
substituted term γ(e) is in the expression relation for the type τ . Formally,

Γ ⊨ e : τ ≜ ∀γ ∈ GJΓK, γ(e) ∈ EJτK

.
2This is not always the case. For instance, we will see later that if our language has recursive types, we cannot define the relations by

induction on type anymore.
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Theorem (Fundamental Property/Basic Lemma of the Logical Relation EJ−K). If a term is syntactically well-typed
then it is semantically well-typed, that is, if Γ ⊢ e : τ then Γ ⊨ e : τ .

Proof. Suppose Γ ⊢ e : τ . We have to show Γ ⊨ e : τ . We proceed by induction on the typing judgment.

- Case T-True
Γ ⊢ true : bool

: given a substitution γ ∈ GJΓK, we must show that γ(true) = true ∈ EJboolK.

Since true is already irreducible, it is enough to show that true ∈ VJboolK, which is just the definition.
- Case T-False

Γ ⊢ false : bool
: similarly to the above case, we have to show that γ(false) ∈ EJboolK. To show this

it suffices to prove false ∈ VJboolK and this holds by definition.

- Case T-Var
Γ(x) = τ

Γ ⊢ x : τ
: as the set GJΓK was defined inductively, we now proceed by induction on the structure of

Γ. The case of the empty context cannot come up as the context contains at least the variable x, so we are left with
two cases. If Γ ≜ Γ′, x : τ , then since γ ∈ GJΓ′, x : τK we also know that γ(x) ∈ VJτK. As values are irreducible this
means that γ(x) ∈ EJτK. The second case has Γ ≜ Γ′, y : τ ′ with y a distinct variable from x and γ ≜ γ′[y 7→ v]. In
this case we know that we have Γ′ ⊢ x : τ and γ′ ∈ GJΓ′K since γ ∈ GJΓK, but by the inductive hypothesis we get
that Γ′ ⊨ x : τ so γ(x) = γ′(x) ∈ VJτK and hence in EJτK.

- Case T-IfThenElse
Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ
: to prove this case, we must inspect the reduction

trace to decide which inductive hypothesis to use. This is a very important skill to have and as such we leave this
case as a useful exercise to the reader.

- Case T-App
Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1
: the case for application follows similarly to the proof of normalisation

and is left as a fun exercise for the reader.

- Case T-Abs
x : τ1,Γ ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2
:

We need to show Γ ⊨ λx : τ1. e : τ1 → τ2. By unfolding the definition of semantic typing, we suppose γ ∈ GJΓK,
and we need to show γ(λx : τ1. e) ∈ EJτ1 → τ2K. We push the substitution γ under the lambda. It thus remains to
show that λx : τ1. γ(e) ∈ EJτ1 → τ2K.

By unfolding the definition of EJτ1 → τ2K, suppose that we have an e′ such that (λx : τ1. γ(e)) 7→∗ e′ and irred(e′),
and we then need to show e′ ∈ VJτ1 → τ2K. One might notice that the operational semantic actually takes no step,
which means that e′ = λx : τ1. γ(e). As such, we need to show that λx : τ1. γ(e) ∈ VJτ1 → τ2K.

Let us take a look at the definition of VJτ1 → τ2K. Suppose v ∈ VJτ1K, and show that γ(e)[v/x] ∈ EJτ2K.
By induction hypothesis, we have Γ, x : τ1 ⊨ e : τ2. By unfolding the definition of semantic typing, we can provide

a certain γ′ such that γ′ ⊨ Γ, x : τ1. We can instantiate γ′ with γ[x 7→ v], because (by definition of satisfaction of the
environment) γ ⊨ Γ and v ∈ VJτ1K. Finally, the induction hypothesis gives us γ′(e) ∈ EJτ2K, which is equivalent to
γ[x 7→ v](e) ∈ EJτ2K. By definition of substitution, it is then equivalent to γ(e[v/x]) ∈ EJτ2K, which is exactly what
we wanted to prove.

4 A logical relation for type safety with recursive types in STLC

4.1 The purpose of recursive types

Recursive types can be used to capture potentially infinite data structures such as lists, streams, and trees, among
others. The addition of recursive types to a language permit non-terminating programs to be type checked.

To demonstrate the utility of recursive types, let us examine the Ω combinator from the untyped lambda calculus,
which loops infinitely:

Ω = (λx.xx)(λx.xx)

If we try to apply the first term to the second, we step to the Ω combinator again. Now, let’s suppose we tried
to type this term in the simply-typed lambda calculus:

(λx :?.xx)(λx :?.xx)
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In one appearance of x in the term (λx.xx), it is being applied to itself, so we would expect its type to be
something like τ1 → τ2. However, the x supplied as argument to the function x would not be of the correct input
type. We will soon see how recursive types can be helpful in typing the Ω combinator.

Consider the recursive type describing a tree (here written using OCaml syntax):

type tree = Leaf | Node of int * tree * tree

We can rewrite this definition using the unit type 1 to represent tree leaves:

type tree = 1 + (int× tree× tree)

tree appears in its own definition, which prevents us from inspecting it further. For the sake of clarity, we will
use the type variable α to describes the type tree.

Note that we can unfold the definition of a tree to describe a tree with a larger depth by substituting the definition
of a tree within the definition.

1 + (int× α× α) = 1 + (int× (1 + (int× α× α))× (1 + (int× α× α)))

A fixpoint is a function f such that x = f(x) for all x ∈ dom(f). Given the following recursive function, we will
define a fixpoint for it, namely some F such that tree = F (tree):

F = λα :: type. 1 + (int× α× α)

We will write the fixpoint of F as follows, and refer to it as the fixed point type constructor for α:

µα.F (α) = F (µα.F (α))

We will substitute τ for F (α); note that α is free to appear in τ :

µα.τ = F (µα.τ)

Note that we can rewrite the right-hand side straightforwardly, since F (α) = τ :

µα.τ = τ [µα.τ/α]

Intuitively, the left-hand side of this equation represents the fixpoint for τ , which in the case of trees, represents
our initial definition of the tree type. The right-hand side represents the unfolded definition of trees that we saw
afterwards. Indeed, going from the left-hand side of the above equation to the right-hand side represents unfolding
a recursive type, while going the opposite way represents folding a recursive type.

4.2 Formalization of STLC with recursive types

We extend the STLC grammar with recursive types.

τ ::= 1 | bool | τ → τ | α
e ::= x | ⟨⟩ | true | false | λx. e | e e | fold e | unfold e

v ::= ⟨⟩ | true | false | λx : τ. e | fold v
E ::= [] | if E then e1 else e2| E e | v E| fold E | unfold E

E-IfThenElseTrue

if true then e1 else e2 7→ e1

E-IfThenElseFalse

if false then e1 else e2 7→ e2

E-App

(λx : τ. e) v 7→ e[v/x]

E-Step
e 7→ e′

E[e] 7→ E[e′]

E-Fold

unfold(fold v) 7→ v

Figure 3: Call-by-value small step semantics of STLC + recursive types with evaluation context.
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Γ ⊢ e : τ

T-Unit

Γ ⊢ ⟨⟩ : 1

T-True

Γ ⊢ true : bool

T-False

Γ ⊢ false : bool

T-Var
Γ(x) = τ

Γ ⊢ x : τ

T-IfThenElse
Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

T-Abs
x : τ1,Γ ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2

T-App
Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

T-Fold
Γ ⊢ e : τ [µα.τ/α]

Γ ⊢ fold e : µα.τ

T-Unfold
Γ ⊢ e : µα.τ

Γ ⊢ unfold e : τ [µα.τ/α]

Figure 4: Typing judgments of STLC + recursive types.

Let us see how the recursive type allows to type the term Ω. We first define the term SA ≜ λx : ?. xx. As such,
Ω = SA SA. We proceed in three steps: type x, then type SA and finally type Ω.

We fix a temporary type τ , and say that x : µα. α → τ . By unfolding this type once, we get (µα. α → τ) → τ ,
which would take an argument that has the type of x. As such, we can encode3 the self-application with the function
λx : µα. α → τ. (unfold x) x. The self-application function then takes an argument of type µα. α → τ and returns
a value of type τ , i.e. · ⊢ SA : (µα. α → τ) → τ . Finally, if we encode Ω ≜ SA (fold SA), it is then the application
of an argument of type (µα. α → τ) to a function of type (µα. α → τ) → τ , i.e. · ⊢ Ω : τ . It means in particular
that Ω can be typed with any type τ . Intuitively, we can think of it as an expression that never terminate behaves
similarly to any type, because we will never be able to tell the difference between one type or another.

4.3 Step-indexed logical relations for type safety of STLC with recursive types

To prove type safety for the STLC extended with recursive types, we might be tempted to try to extend the VJ−K
logical relation for the recursive type case:

VJµα.τK ≜ {fold v | unfold (fold v) ∈ EJτ [µα.τ/α]K}

but notice that unfold (fold v) 7→ v, so simplifying this definition, and noticing that v is a value, we get:

VJµα.τK ≜ {fold v | v ∈ VJτ [µα.τ/α]K}

But now VJτK is no longer well-founded, because the definition of VJµα.τK refers to VJτ [µα.τ/α]K, which is indexed
by a larger type. To address this problem, we will index our logical relations with a step index k, in addition to a
type. The idea is that we will define new relations, VkJτK and EkJτK, that contain values and expressions that behave
like type τ up to k reduction steps.

VkJboolK ≜ {true, false}
VkJτ1 → τ2K ≜ {λx : τ1. e | ∀j < k. ∀v ∈ VjJτ1K. e[v/x] ∈ EjJτ2K}

VkJµα.τK ≜ {fold v | ∀j < k. v ∈ VjJτ [µα.τ/α]K}
EkJτK ≜ {e | ∀j < k. ∀e′. e 7→j e

′ ∧ irred(e′) ⇒ e′ ∈ Vk−jJτK}
GkJ·K ≜ ∅

GkJΓ, x : τK ≜ {γ[x 7→ v] | γ ∈ GkJΓK ∧ v ∈ VkJτK}

We remark that we do not define the logical relation for the type α. The reason is quite subtle: the type α exists
only under the µα.τ , which is immediately replaced. More precisely, it is because the α only appears under the µ.

To understand the definition of VkJτ1 → τ2K, consider the following timeline:

3It is not an issue to slightly modify the function this way, because it behaves exactly the same as SA in the untyped lambda-calculus.
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k

(λx : τ1. e) e
′

j + 1

(λx : τ1. e) v 7→

j

e[v/x]

0

At the beginning, we have k reduction steps left to take. At some point in the future, after the program runs for
some number of steps, say when we have j+1 steps left (where j < k by definition), the lambda expression λx : τ1. e
receives a value as an argument, and we take one reduction step to reduce the application (λx : τ1. e)v to e[v/x], so
we are left with j reduction steps to take, during which it has to behaves like a value of type τ2.

The definition of EkJτK uses a different timeline:

k

e 7→ 7→ . . . 7→ 7→

k − j

e′

0

At the beginning, we have k reduction steps left to reduce e. We take j (for some j < k) reduction steps and end
up reducing e to e′, and at that point, we have k − j reduction steps left.

The fundamental property has the same form than the previous example, namely Γ ⊢ e : τ ⇒ Γ ⊨ e : τ . However,
the definition of semantic type safety has changed:

Γ ⊨ e : τ ≜ ∀k ≥ 0.∀γ ∈ GkJΓK.γ(e) ∈ EkJτK

Before looking more closely to the proof of the fundamental theorem, we introduce a helpful small lemma

Lemma (Monotonicity). If v ∈ VkJτK and j ≤ k then v ∈ VjJτK.

Proof. Induction on the structure of type τ . The reader is encouraged to try proving the lemma for the τ1 → τ2
case. It may also be illustrative to try proving the lemma with j = k − 1 and observe where the proof fails.

Roughly, the monotonicity lemma4.3 states that if an expression behaves like a certain type for k steps, then it
also behaves like this same type for any less steps.

Let look closer to the fundamental property proof for the step-indexed logical relation.

Theorem (Fundamental property). If Γ ⊢ e : τ , then Γ ⊨ e : τ

Proof. We proceed by induction on the typing judgment. We will focus only on the case T-Fold.

- Case T-Fold
∆;Γ ⊢ e : τ [µα.τ/α]

∆; Γ ⊢ fold e : µα.τ
: We want to show that Γ ⊨ fold e : τ .

Suppose k ≥ 0 and γ ∈ GkJΓK. We want to show that

γ(fold e) ∈ EkJµα.τK

Note that we can push the substitution into the fold, so this is equivalent to fold(γ(e)) ∈ EkJµα.τK.
Suppose j < k and fold(γ(e)) 7→j e′ ∧ irred(e′). We want to show that

e′ ∈ Vk−jJµα.τK

Because the only way to reduce a (fold e) expression (according to the operational semantic) is to reduce the
expression e inside the fold, we know that it exists a certain amount of steps j1 such that fold(γ(e)) 7→j1 fold(e1),
where j1 ≤ j and irred(e1). We instantiate the inductive hypothesis, Γ ⊨ e : τ [µα.τ/α] with γ and k (note that
γ ∈ GkJΓK), which gives us

γ(e) ∈ EkJτ [µα.τ/α]K

by the definition of ⊨. We instantiate EkJτ [µα.τ/α]K with j1 and e1, noting that irred(e1) and since j1 ≤ j < k, we
also have j1 < k.

Therefore, by unfolding the definition of EkJ−K we know that

e1 ∈ Vk−jJτ [µα.τ/α]K

However, because e1 is irreducible in the value relation, then we know that it is a value e1 = v1. Moreover, fold(v1)
is also a value. If we sum up our hypotheses at this point, we know that fold(e) 7→j e′ and fold(e) 7→j1 fold(v1),
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where both e′ and fold(v1) are irreducible. Therefore, fold(v1) = e′ and j1 = j. Looking back to the last goal, it then
suffices to show that

fold(v1) ∈ Vk−j1Jµα.τK

Suppose j′ < k − j. We must show that

v1 ∈ Vj′Jτ [µα.τ/α]K

This follows from the monotonicity lemma.

4.4 Generalising step-indexing to cover mutable state

The technique of step-indexing turns out to be very useful for dealing with dependencies resulting in non-wellfounded
definitions. For recursive types, it side steps the issue of ever-growing types that rise out of unfolding. It can also
help with other kinds of dependencies, for example the cyclic dependencies that can arise in a language with mutable
state.

In order to extend step-index to allow for mutable state, we need to not only keep track of the best-before date
of terms, as well as the current state of the heap in the indexing. In the same way that the preceding logical relation
refers to lower natural numbers, we would also need to talk about the possible future heap states reachable from the
current heap state. This idea of reachability is encapsulated by Kripke frames which consist of a set of worlds W and
a reachability relation w ⊑ w′ between worlds. The set of worlds is then used to index the logical relation, leading
to the concept of Kripke logical relations.

Phrasing the previous logical relation in these terms, the set of worlds is N and the reachability relation is <. In
the case of mutable state, the worlds would include the state of the heap and the reachable worlds would be given by
heaps which you could reach by new allocations or modifying the heap. For more information, we refer the reader
to Amal Ahmed’s dissertation [Ahm04, Chapters 2-3]

5 Polymorphism

In this last section, we give a flavor about defining a logical relation for parametric polymorphism.

5.1 Formalization of System F

τ ::= bool | τ → τ | α| ∀α.τ
e ::= x | true | false | λx. e | Λα. e | e[τ ] | e e

v ::= true | false | λx : τ. e | Λα.v
E ::= [] | if E then e1 else e2| E e | v E| E[τ ]

E-IfThenElseTrue

if true then e1 else e2 7→ e1

E-IfThenElseFalse

if false then e1 else e2 7→ e2

E-App

(λx : τ. e) v 7→ e[v/x]

E-Step
e 7→ e′

E[e] 7→ E[e′]

E-TApp

(Λα.e)[τ ] 7→ e[τ/α]

Figure 5: Call-by-value small step semantics of System F with evaluation context. (Λα.e)[τ ] 7→ e[τ/α].
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∆;Γ ⊢ e : τ

T-True

∆;Γ ⊢ true : bool

T-False

∆;Γ ⊢ false : bool

T-Var
Γ(x) = τ

∆;Γ ⊢ x : τ

T-IfThenElse
∆;Γ ⊢ e : bool ∆; Γ ⊢ e1 : τ ∆;Γ ⊢ e2 : τ

∆;Γ ⊢ if e then e1 else e2 : τ

T-Abs
x : τ1,∆;Γ ⊢ e : τ2

∆;Γ ⊢ λx : τ1. e : τ1 → τ2

T-App
∆;Γ ⊢ e1 : τ2 → τ1 ∆;Γ ⊢ e2 : τ2

∆;Γ ⊢ e1 e2 : τ1

T-TAbs
∆, α; Γ ⊢ e : τ

∆;Γ ⊢ Λα.e : ∀α.τ

T-Tapp
∆;Γ ⊢ e : ∀α.τ ∆ ⊢ τ ′

∆;Γ ⊢ e[τ ′] : τ [τ ′/α]

Figure 6: Typing judgments of System F. ∆ is a type environment consisting of type variables α.

5.2 Motivation and free theorems

The most well-known example of a free theorem concerns terms · ⊢ e : Λα.α → α. In a language supporting
parametric polymorphism such as System F, we know that e must behave like the polymorphic identity function.
By this, we mean that for any closed type τ and and term · ⊢ e′ : τ , if e [τ ] e′ terminates then we know that it will
reduce to e′. Intuitively, in a language with parametric polymorphism we are unable to inspect the type of terms, so
we must produce something of type α in a uniform way. In a similar vein, parametric polymorphism also tells us that
any term · ⊢ e : Λα.α → τ will behave like a constant function or that any term · ⊢ e : Λα.α must not terminate.

5.3 Logical relation for parametricity of System F

In this section, we define step-by-step the logical relation for polymorphism and explain what misses in a naive
approach, and how to solve the problem.

We define a binary logical relation, (v1, v2) ∈ VJτK, saying that the values v1 and v2 are related under the type τ .
We first start by lifting the unary logical relation of type safety of STLC to a binary logical relation, which states

how to values of the same type behaves similarly. For instance, two booleans behave similarly if they are equals; and
two functions are related if given related inputs, returns related outputs. Formally,

VJboolK ≜ {(true, true), (false, false)}
VJτ1 → τ2K ≜ {(λx : τ1. e1, λx : τ1. e2) | ∀(v1, v2) ∈ VJτ1K. (e1[v1/x], e2[v2/x]) ∈ EJτ2K}

Then, let us try to extend the definition with the polymorphic case. Intuitively, what is expected is that, two
values of type ∀α. τ needs to be of the form Λα.e, and they are related if giving them a type τ to instantiate α, they
should be related in the expression relation.

VJ∀α. τK ≜ {(Λα.e1, Λα.e2) | ∀(τ1, τ2). (e1[τ1/α], e2[τ2/α])) ∈ EJτ [?/α]K}

However, both values might receive a different type, and then it is not clear with which type we are supposed to
substitute α in the expression relation. Actually, there is no good answer: it cannot be either τ1 or τ2. The solution
is to keep τ unchanged, and keep track of the type substitutions done all over the execution, recorded into a structure
ρ = {α 7→ (τ1, τ2), . . .}. We parameterize the logical relation by the type substitution ρ.

VJboolKρ ≜ {(true, true), (false, false)}
VJτ1 → τ2Kρ ≜ {(λx : τ1. e1, λx : τ1. e2) | ∀(v1, v2) ∈ VJτ1Kρ. (e1[v1/x], e2[v2/x]) ∈ EJτ2Kρ}
VJ∀α. τKρ ≜ {(Λα.e1, Λα.e2) | ∀(τ1, τ2). (e1[τ1/α], e2[τ2/α])) ∈ EJτ [τ/α]Kρ[α7→(τ1,τ2)]}

It now remains to define the α case. Let us give it a shot.

VJαKρ ≜ {(v1, v2) | ρ(α) = (τ1, τ2) ∧ . . .}
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And at this point, we do not know how to relate the values. This is actually where the polymorphism shines and
reveal it’s full power. The relation between the values of two type can actually be chosen by the user: the true power
of parametric polymorphism is the choice of this relation.

For each type variable, we get to choose a relation R ∈ R[τ1, τ2] that relates values v1 of type τ1 with values v2
of type τ2. This relation is also recorded in the substitution ρ = {α 7→ (τ1, τ2, R), . . .}. It finally gives us a way to
relates the values of type α.

The final definition of the binary logical relation is the following:

VJboolKρ ≜ {(true, true), (false, false)}
VJτ1 → τ2Kρ ≜ {(λx : τ1. e1, λx : τ1. e2) | ∀(v1, v2) ∈ VJτ1Kρ. (e1[v1/x], e2[v2/x]) ∈ EJτ2Kρ}
VJ∀α. τKρ ≜ {(Λα.e1, Λα.e2) | ∀(τ1, τ2). R ∈ R[τ1, τ2]. (e1[τ1/α], e2[τ2/α])) ∈ EJτ [τ/α]Kρ[α 7→(τ1,τ2,R)]}

VJαKρ ≜ {(v1, v2) | ρ(α) = (τ1, τ2, R) ∧ (v1, v2) ∈ R}

We didn’t define the expression relation, nor the fundamental theorem during the lecture. We refer the interested
reader to the Logical Relation course from OPLSS 2015, Lectures 3, 4, and 5. The videos of the lectures are available
online [Ahm15].
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