
OPLSS 2023 - Program Analysis

Speaker: Sukyoung Ryu — KAIST

July 3rd - 5th 2023

Abstract

This document is the companion notes for the program analysis lecture
series at OPLSS 2023 by Professor Sukyoung Ryu. Program analysis is the
study of program behavior. This lecture series focuses on static analysis
in particular.

Part I

Lecture 1

1

1 Software Bugs
1. Bugs can get people killed or destroy millions of dollars in property.

2. Bugs are still very much still around today as in the 90s.

3. They’re even more expensive in production than in development. Better
to find (and fix) them early.

4. Many ways and ideas for how to do that (tradeoffs).

5. The focus for this lecture series is on static analysis (SA), which can be
used for many applications. Her focuses mostly on using it to find security
vulnerabilities.

6. Typically SA focuses on analyzing for bad behaviors rather than good.

2 Properties of interest
Program analysis can be used for various program interests like verification,
bug detection, optimization(e.g., compiler optimiztaion), Understanding (e.g
program slicing and reducing) etc.

2.1 Safety Properties
A safety property states that a program will never exhibit a behavior observable
with finite time.

1. "Well Typed program never go wrong" translates to well-typed program
never run to error states

2. For e.g program never runs into states such as integer overflow, buffer
overflow, deadlock, etc.

Invariant In order to prove that the program never runs into error states, we
insert a global assertion that is always true for a set of states. In any program
execution starting from a state with an invariant, the computation step taken
will lead to another state in the invariant.

Loop Invariant : Assertion is true at the beginning of every loop iteration.

Example1 : In this example, we have two loop invariants, where x is an integer
and other 0 ≤ x < 10

x=0; whi l e (x<10){x = x+1;}

Example2 : Division by Zero

2

i n t main (){
i n t x = input () ;
x= 2∗ x−1;
whi l e (x>0){ x=x−2;}
a s s e r t (x !=0) ;
r e turn 10/ x l ; }

2.2 Liveness Properties
The liveness property states that the program will exhibit a behavior observed
only after an infinite time. Good things such as termination, fairness(means
no starvation: the requester can always get the resource it requests), etc do
eventually occur. Upon failure, there exists an infinite counterexample.

Variant In order to prove that all states eventually reach the target states,
we have the variant, where the quantity evolves towards the set of target states.
The value for some well-founded order relations is strictly decreasing.
Example: An expression of integer type that always takes a positive value and
strictly decreases.

x = pos_int () ;
whi l e (x>0) { x= x+1; }

2.3 Trace Properties
Trace property is a semantic property P that can be defined as a set of execution
traces that satisfies P.
Safety and liveness properties are trace properties

2.4 Information flow (IF) properties
1. Not a trace property because it needs more than one trace.

2. Hyper-properties are properties across sets of traces. Information flow is
one such property.

3. The related hyper-property of Secure Information Flow (SIF) was dis-
cussed in the first logical relations lecture, specifically the definition of
noninterference from the Denning & Denning paper.

4. An informal example of a SIF property: all user input (public, or low
security) should not cause the password (private, or high security) to be
leaked. You want that to be true of all possible traces, so you can be sure
the password is never leaked.

3

2.5 A Hard Limit : Undecidability
Rice’s theorem states that any non-trivial semantic property of a program is
undecidable. An intuitive proof of the theorem can be found on https://en.
wikipedia.org/wiki/Rice%27s_theorem#Formal_statement.

What this means is that an analysis that is automatic, terminating and
has exact reasoning is impossible. We can choose any two (of the three) prop-
erties.

2.6 Soundness and Completeness
Take any semantic property P, and an analysis tool A:

A sound analysis means ∀P ∈ programs A(p) = T→ P
A complete analysis means ∀P ∈ programs A(p) = T← P satisfies P

3 Toward Computability

3.1 Testing
1. Testing is fundamentally dynamic (vs static) and has finite run-time.

2. Avoids the Undecidability trap by relaxing the termination requirement.

3. Testing as a strategy accepts nonteriminating code, often by incorporating
timeouts.

4. Pros: The positives are usually real, not false (spurious). If the test
fails there should be a true bug there and you often have the concrete
counterexample as well.

5. Cons: Doesn’t prove or guarantee anything when bugs are not found.

6. "Absence of evidence is not evidence of absence", Dr Carl Sagan

7. symbolic or concolic execution is placed under testing in this lecture, a
controversial opinion in certain circles.

3.2 (Human) Assisted Proving
1. Avoids the Undecidability trap by relaxing the automation requirement.

2. Require nontrivial human labor and skill

3. Up to the limits of the prover, can get both soundness and completeness

4. Powerful features users want, like generics, can vastly complicate the proof
and the effort needed.

5. Not always possible, but great when you can get it!

4

https://en.wikipedia.org/wiki/Rice%27s_theorem#Formal_statement
https://en.wikipedia.org/wiki/Rice%27s_theorem#Formal_statement

3.3 Model Checking
Automatic, sound and complete (with respect to the model).

1. Model: finite automata generated from the target program.

2. Specification: written by human, usually in logical formula.

3. Verification: exhaustive search of the state space (graph .reachability)

Example: SLAM (MS Windows device driver verifier)

3.3.1 Model

A model is a finite state machine, manually or automatically constructed from
program. Either unsound or incomplete, with respect to the target program.
The very first construction of model can be low efficient, so refinement is
required. But refinement may not terminating, so stopping mechanisms are
required!

3.3.2 Specification

Written in modal logic Modal Logic = propositional logic + necessarily, possibly
E.g. truth values of assertions vary with time (temporal logic). like Linear
Temporal Logic, Computational Tree Logic. "x is always positive" "x remains
positive until y is negative"...

3.3.3 Reachability Check

Sometimes you search some certain error states in your model (FSM). but you
are sure they are unreachable, aka spurious reachability. in this case, you need
to refine your model to rule them out.

3.3.4 Abstract Refinement

Automatically refine the model when a spurious counterexample is found in-
put: old model (with spurious states) output: new model, concluding that the
spurious error states are infeasible keeps running until a "real" (not spurious)
counterexample is found or one proof is completed which means, it may not ter-
minate example: CEGAR: CoutnerExample-Guided Abstraction Refinement

4 Static Analysis

5 Summary
The Dafny tool would come in the Assisted Proving row. Note that what is
a Model vs. Program can be fuzzy. For example, when Model Checking at
program level one can argue that we are checking the Model and not the actual
Program that runs on hardware.

5

Automatic Sound Complete Object When
Testing Yes No Yes Program Dynamic
Assisted Proving No Yes Yes/No Model Static
Model Checking of finite-state model Yes Yes Yes Finite Model Static
Model Checking at program level Yes Yes No Program Static
Conservative Static Analysis Yes Yes No Program Static
Bug Finding Yes No No Program Static

6 Resources Mentioned in Slack or Class
1. Soundiness Manifesto

2. Astree, static analysis on a very restricted version of C (no general recur-
sion) with a trophy case https://www.absint.com/astree/index.
htm

3. "SmallCheck and Lazy SmallCheck automatic exhaustive testing for small
values" (in Haskell) https://www.cs.york.ac.uk/fp/smallcheck/
smallcheck.pdf

4. Principles of Abstract Interpretation https://mitpress.mit.edu/
9780262044905/principles-of-abstract-interpretation/

5. "A few Billion Lines of code Later using static Analysis to find Bugs
in the Real World" https://web.stanford.edu/~engler/BLOC-
coverity.pdf

6. "The Relevance of Classic Fuzz Testing: Have We Solved This One?"
https://dl.acm.org/doi/abs/10.1109/TSE.2020.3047766

6

https://www.absint.com/astree/index.htm
https://www.absint.com/astree/index.htm
https://www.cs.york.ac.uk/fp/smallcheck/smallcheck.pdf
https://www.cs.york.ac.uk/fp/smallcheck/smallcheck.pdf
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://mitpress.mit.edu/9780262044905/principles-of-abstract-interpretation/
https://web.stanford.edu/~engler/BLOC-coverity.pdf
https://web.stanford.edu/~engler/BLOC-coverity.pdf
https://dl.acm.org/doi/abs/10.1109/TSE.2020.3047766

Part II

Lecture 2

7

7 A sample Imperative language Synatx

8 Different Styles of Semantics

There are many flavors of semantics that are suited to different styles/
preferences. The original plan for the lecture intended to cover both oper-
ational and denotational semantics. However, to allow for more time and
other topics, it will only focus on denotational semantics.

8.1 Operational Semantics

(a) Widely used style of semantics briefly mentioned on slide 4 of Lecture
2. Not used in the rest of the series.

(b) Brass tacks semantics. Focus on the how or computation of the
result.

(c) Key component of this style is state, which will be ignored in this
lecture series.

(d) Transitions are stateful.

8.2 Denotational Semantics

(a) Discussion begins on slide 5 of the Lecture 2 slides.

(b) ’Mathy’ semantics. Focuses on the result

(c) No state, analogous to pure functional semantics.

(d) Transitions are pure (w.r.t state) like pure functional programming,
made up of composing smaller parts into bigger ones.

(e) Many things don’t change memory; they merely compute.

(f) Key components of this style are domains and functions. Will need
domains and functions with the right properties to have nice correct
analyzers.

(g) Intuitive, familiar recursion is a problem, that most of this lecture
will focus on how we solve it by getting to fixed point forms.

8

9 Semantic Domains

Semantic domains include a set of semantic objects. Where the memory
state boils down to a function M from the (fixed) finite set of variables X
into a set of values V. Thus the set of memory states M is defined by

M = X 7→ V

9.1 Semantics of Expressions

The semantics of scalar expression produces a scalar value. In the case of
constant n, the result is simply n. In the case of variable x, the result is
obtained by reading the content of variable x in the current memory state.
The result of the evaluation of an expression composed of an operator ap-
plied to two sub-expressions is obtained by evaluating the sub-expressions
and applying to their results the mathematical functions described by the
operator. Last, the case of boolean expressions is very similar to the se-
mantics of scalar expressions, with the only difference being that it returns
a boolean value. Refer to slide semantics of expression from lecture 2 for
the complete formalization of this semantics.

9.2 Semantics of Commands

The semantics of command C is a function noted [[C]] that maps a set of in-
put states to a set of output states. Refer to slide Semantics of commands
form lecture2 for formal semantics. The semantics of the skip command is
the identity function. The semantics of the sequence of commands is the
composition of the semantics of each command. The evaluation of expres-
sion x := E updates the value of x in the memory states with the result
produced by the evaluation of E. The evaluation of input(x) replaces
the value of variable x with any possible scalar value. The evaluation of
conditional command is determined by the result of the condition.

9.3 Semantics of Fixed Point

The case of loops is more complex and interesting due to unbounded exe-
cutions. The validity of the semantics of a while statement is done math-
ematically. We need to solve the recursive equation, this leads us to find
the least fixed point of the equation using Kleene’s fixpoint theorem, and
application of the theorem requires verifying the continuity of F . We want
that the solution to be continuous. This will ensure our ability to prove
the correctness of composed programs using structural induction.

9

10 Domain Theory

To define the meaning of programs in a given language, we must first,
define the building blocks—the primitive data values and operations—
from which computations in the language are constructed. Domain theory
is a comprehensive mathematical framework for defining the data values
and primitive operations of a programming language. A a critical feature
of domain theory is the fact that program operations are also data values;
in domain theory both operations and data values that the operations
operate on are elements of computational domains. To support the idea of
describing data values by generating “better and better” approximations,
we need to specify an ordering relation among the finite approximations
to data values.

10.1 Partial Order

A relation ⊑ is a partial order if it is a reflexive, transitive, and anti-
symmetric relation.

• reflexive ∀x ∈ D x ⊑ D

• antisymmetric ∀xy ∈ D x ⊑ y and y ⊑ x implies x = y

• transitive ∀x, y, z ∈ D x ⊑ y and y ⊑ z implies x ⊑ z

Poset: A set equipped with a partial order is called poset

10.2 Least Upper Bound

Let X be a subset of a partial order D and the element d ∈ D is an upper
bound of X iff ∀x ∈ X and s ⊑ d. An upper bound d of X is the least
upper bound of X iff for all upper bounds y of X d ⊑ y. The least upper
bound of X is denoted by

⊔
X

10.3 Chain

Let (D,⊑) be a partial ordered set. A subset X ⊆ D is called chain if X
is totally ordered.

∀x1, x2 ∈ X. x1 ⊑ x2 orx2 ⊑ x1

An upper bound in a chain is an element which is ”bigger” than all of the
other elements in the chain and for any upper bounded chain, there exists
a unique least upper bound.

10

10.4 Complete Partial Order (CPO)

Definition (CPO). A poset (D,⊑) is a Complete Partial Order if every
chain X of D has

⊔
X ∈ D.

In other words, for any given sequence in the set, you can always find an
element which is greater than or equal to everything in that sequence but
is also the smallest such element.

10.5 Continuous Function

Definition (Continuous Function). Given two partially ordered sets D1

and D2, a function f : D1 → D2 is continuous if it preserves least upper
bounds of chains:

∀chainX ⊆ D1.
⊔
x∈X

f(x) = f(
⊔

X).

This means that if you have a chain of elements (a sequence of elements
where each is less than or equal to the next), and you apply the function
to each element in the chain, the resulting sequence also forms a chain. If
you take the least upper bound (lub) of the original chain and apply the
function to it, you get the same result as if you took the lub of the chain
resulting from applying the function to each element. The two examples
on slides are (1): not monotone and (2): not preserving LUB.

11 Fixed Point

Finally we can have a formal definition of fixed point. Definition (Fixed
Point). Let (D,⊑) be a partially ordered set. A fixed point of a function
f : D → D is an element x such that f(x) = x. We write lfpf for the
least fixed point of f such that

f(lfpf) = lfpf

and
∀d ∈ D.f(d) = d⇒ lfpf ⊑ d

So, why do we need a fixed point? The simple answer is that a fixed
point of a function is an element that is left unchanged by the function.
This directly corresponds to the nature of a while loop: when a while loop
finishes executing, the state of the program is in a "fixed" state where
executing the while loop again wouldn’t change the state. This is exactly
what we need to capture the semantics of a while loop. (considering a
while loop when it has been "finished": the condition has been turned to
false so run it again won’t execute anything, well, except some side effects,
this corresponds to a "fixed point" in math, so we use it to represent the
while block.)

11

12 Resources Mentioned in Slack or Class

(a) A different lecture that used the same notations and definitions.
Well reviewed by some participants https://www.cs.cornell.
edu/courses/cs6110/2014sp/Lectures/lec21.pdf

(b) article mentioned on how to construct a fix point https://medium.
com/@dkeout/why-you-must-actually-understand-the-
%CF%89-and-y-combinators-c9204241da7a

12

https://www.cs.cornell.edu/courses/cs6110/2014sp/Lectures/lec21.pdf
https://www.cs.cornell.edu/courses/cs6110/2014sp/Lectures/lec21.pdf
https://medium.com/@dkeout/why-you-must-actually-understand-the-%CF%89-and-y-combinators-c9204241da7a
https://medium.com/@dkeout/why-you-must-actually-understand-the-%CF%89-and-y-combinators-c9204241da7a
https://medium.com/@dkeout/why-you-must-actually-understand-the-%CF%89-and-y-combinators-c9204241da7a

Part III

Lecture 3

13

13 Abstract Interpretation

First coined by Patrick and Radhia Cousot, Abstraction in general can be
done by retaining only rather coarse information about program states,
and considering how the program runs, we can still infer interesting in-
formation about the set of all program executions. Such information is
captured by a set of logical properties that the analysis may manipulate.
Abstract interpretation hence provides a strong mathematical foundation
for reasoning about static program analysis.

-Is my analysis sound?-(Does it safely approximate the actual program
behavior?) -Is it as precise as possible for the currently used analysis?
-If not, where can precision losses arise? Which precision losses can be
avoided (without sacrificing soundness)? Answering such questions re-
quires a precise definition of the semantics of the programming language,
and precise definitions of the analysis abstractions in terms of the seman-
tics. Many forms of semantics have been proposed, and some are more
expressive than others. For instance, trace semantics describes program
executions as sequences of program states, whereas denotational semantics
describes only input-output relations, and ignores the intermediate steps.
Some other forms of semantics only describe the sets of reachable states.
In this lecture series, denotational semantics was used.

In this context, we can use concrete qualifier to denote actual program
behaviors, whereas the “abstract” qualifier applies to the properties used
in the (automatic) proofs. As an example, concrete semantics is the actual
semantics of programs. By contrast, abstract semantics shall define a
computable over-approximation of the concrete semantics expressed in
terms of abstract states. Hence, the goal of static analysis is precisely to
compute such sound abstract semantics.

Concrete Semantics Concrete semantics are usually a simple exten-
sion of standard semantics, formalizing all possible program executions.
It can be referred to as collecting semantics. We use the same standard
semantics for commands, expressions, and fixed points from the previ-
ous lecture, except we take a power set of memory states. We could use
traces(sequence of states) or reachable states(set of states) for concrete
semantics.

Abstract Semantics Collecting the exact set of all the states that can
occur during program executions (transition sequences) is in general either
too costly or impossible in finite time. Indeed, due to loops, program
executions may be arbitrarily long. It is important to note that inaccurate
does not mean wrong. Indeed, if the kind of inaccuracy is known, the
user may still draw (possibly partly) conclusive results from the analysis

14

output. For example, suppose we are interested in program termination.
Given an input program to verify, the program analysis may answer yes
or no only when it is fully sure about the answer. When the analysis is
not sure, it will just return an undetermined result: don’t know. Such an
analysis would be still useful if the cases where it answers “don’t know”
are not too frequent. Note, without abstract semantics, it is undecidable
to subsume all possible behaviors of the software.
To be able to make approximations sound(or correct), we should formalize
these approximations. We formalize the meaning of the program (seman-
tics) and then the approximations.

Idea : Concrete Semantics ∼= Abstract Semantics

13.1 Abstract Domain

The point of abstract interpretation is computing for a "sound approxima-
tion" of the semantics of programs. How do we define the approximation
of the programs in an exact form? The answer is abstract domain: a CPO
representing a range of possible concrete states.

(a) Define an abstract domain D♯ (CPO)

(b) Define an abstract semantic function F♯ : D♯ → D♯ (this function
must be monotone or extensive): the intuition of these two prop-
erties are that, the abstract semantic function is a "description"
or "interpretation" of the source program, but this “description" is
lossy: some information about the source program is lost during this
mapping. That’s the motivation of the usage of poset: a poset can
be used to represent the lost of information during the mapping.
Similarly, we must control the lost in a certain degree (otherwise we
can’t perform analysis!), so we require that this abstract semantic
function must be monotone or extensive.
Monotone: ∀x♯, y♯ ∈ D♯.x♯ ⊑ y♯ ⇒ F ♯(x♯) ⊑ F ♯(y♯)

Extensive: ∀x♯ ∈ D.x♯ ⊑ F ♯(x♯)

(c) Then we can conclude that, static analysis is to compute an upper
bound of the chain: ⊔

i≥0

F ♯i(⊥♯)

14 galois connections

Now let’s elaborate the concept of abstract semantic function. It can
be represented by a more generalized concept: galois connection. The

15

Galois Connection is a pair of adjoint functions (α, γ): an abstraction
function, which maps from the concrete to the abstract domain, and a
concretization function, which maps in the opposite direction. These two
functions must satisfy certain properties. For all elements c in the concrete
domain and a in the abstract domain, it should be the case that: if you
abstract c and then concretize, you get something less than or equal to c
(concretize(abstract(c)) <= c), and if you concretize a and then abstract,
you get something greater than or equal to a (abstract(concretize(a)) >=
a). The abstraction function should over-approximate the concrete values,
and the concretization function should under-approximate the abstract
values. Formally, a galois connection consists of these two functions:

(a) Abstract function: α ∈ D→ D♯

(b) Concretization function: γ ∈ D♯ → D

D is concrete domain, and D♯ is abstract domain.

15 Properties of galois connection

The galois connection must satisfy these properties:

id ⊑ γ ◦ α

α ◦ γ ⊑ id

monotone:
α(x) ⊑ α(y)

γ(x♯) ⊑ γ(y♯)

And two deriving properties: pointwise lifting and composition. Their
definitions are on page 37 of lecture 3 slides. The slides contain more
examples of analysis represented by galois connection, such as memory
abstraction and operational semantics abstraction.

16 Fixed point transfer theorems

(a) Recall the two options for soundness between F and F ♯, and we’re
trying to get a fixpoint function instead of the intuitive recursive
one.

(b) slide 43 has the formal definitions, one for each on slide 39.

(c) We roll up all the galois connections and chains into this

(d) If we meet its conditions, we get our soundness result for F and F ♯

16

(e) Since in this model a program is one big fat function, if we can get
the least fix point of it, we get our abstract semantics

(f) We still need to compute it in finite time (we need a termination
guarantee) and out pops the static analyzer

17 Widening Narrowing

(a) recall that we need an over-approximation of the original program
to avoid running afoul of Rice’s theorem.

(b) widening forces the convergence of fixed point iterations, which loses
precision

(c) widening is what gets up the termination guarantee widening pushes
us away from the ideal result.

(d) lost precsions results in increase the over-approximation

(e) but we don’t want to have too much or it won’t really be sound and
useful anymore

(f) narrowing brings us back a little bit towards the ideal result but not
enough to undo it. It refines but doesn’t fix.

(g) both operators are safe and finite.

17

Part IV

Lecture 4

18

18 Lecture 4 Introduction

An exploration of the team’s work, and how they got involved with JS and
the winding path that led to automatic generation of JS static analyzers.
There is also some advice for researchers at the end of the lecture 4 deck.
Nota Bene:

(a) Unfortunately the links are not clickable in the pdf.

(b) Notations across papers in the field are not consistent.

18.1 Papers Explored

(a) "SAFE: Formal Specification and Implementation of a Scalable Anal-
ysis Framework for ECMAScript" (no public pdf, but might have it
through your university library)

(b) Static Analysis of JavaScript Web Applications in the Wild via Prac-
tical DOM Modeling https://ieeexplore.ieee.org/document/
7372043

(c) Practically tunable static analysis framework for large-scale JavaScript
applications https://dl.acm.org/doi/10.1109/ASE.2015.
28

(d) SAFEWAPI: web API misuse detector for web applications https:
//dl.acm.org/doi/10.1145/2635868.2635916

(e) Automatic Modeling of Opaque Code for JavaScript Static Anal-
ysis https://link.springer.com/chapter/10.1007/978-
3-030-16722-6_3

(f) JISET: JavaScript IR-based semantics extraction toolchain https:
//dl.acm.org/doi/10.1145/3324884.3416632

(g) JEST: N+1-version Differential Testing of Both JavaScript Engines
and Specification https://dl.acm.org/doi/abs/10.1109/ICSE43902.
2021.00015

(h) JSTAR: JavaScript Specification Type Analyzer using Refinement
https://dl.acm.org/doi/abs/10.1109/ASE51524.2021.9678781

(i) Automatically Deriving JavaScript Static Analyzers from Language
Specifications https://dl.acm.org/doi/abs/10.1145/3540250.
3549097 (JSAVER paper)

(j) Feature-Sensitive Coverage for Conformance Testing of Program-
ming Language Implementations https://dl.acm.org/doi/abs/
10.1145/3591240 (JESTFS)

19

https://ieeexplore.ieee.org/document/7372043
https://ieeexplore.ieee.org/document/7372043
https://dl.acm.org/doi/10.1109/ASE.2015.28
https://dl.acm.org/doi/10.1109/ASE.2015.28
https://dl.acm.org/doi/10.1145/2635868.2635916
https://dl.acm.org/doi/10.1145/2635868.2635916
https://link.springer.com/chapter/10.1007/978-3-030-16722-6_3
https://link.springer.com/chapter/10.1007/978-3-030-16722-6_3
https://dl.acm.org/doi/10.1145/3324884.3416632
https://dl.acm.org/doi/10.1145/3324884.3416632
https://dl.acm.org/doi/abs/10.1109/ICSE43902.2021.00015
https://dl.acm.org/doi/abs/10.1109/ICSE43902.2021.00015
https://dl.acm.org/doi/abs/10.1109/ASE51524.2021.9678781
https://dl.acm.org/doi/abs/10.1145/3540250.3549097
https://dl.acm.org/doi/abs/10.1145/3540250.3549097
https://dl.acm.org/doi/abs/10.1145/3591240
https://dl.acm.org/doi/abs/10.1145/3591240

19 Intro Related Work

(a) Exception Analyzers, slide 4

(b) Debugging Everywhere slide 5

(c) 3 Big JS analyzer teams (including hers)

(d) Experimental High Performance Language: Fortress. Discontinued

20 How did this start, or why JS?

(a) JS (and its sibling TypeScript) were up and coming languages

(b) more importantly, a new student was very excited about JS

(c) JS (like PHP) has complex and unexpected semantics. See slide
9/10 for a pop quiz.

(d) "What could go wrong?"

21 Cracking the SAFE: Keeping up with a
Changing Spec

(a) Group did several handwritten analyzers, and published

(b) the prose specification of ECMAScript (of which JS is an implemen-
tation) is well written and fairly consistent.

(c) But JS changes every year and analyzing it and implementing those
changes are labor intensive

(d) Prose is not a thing a typechecker or machine understands

(e) So now they have a specification that machines understand based
on the one humans understand.

(f) slide 15 is a conventional flow of an analyzer, so even if this one
doesn’t interest you, the diagram is still helpful.

(g) code at https://github.com/sukyoung/safe

(h) paper "SAFE: Formal Specification and Implementation of a Scal-
able Analysis Framework for ECMAScript"

20

https://github.com/sukyoung/safe

22 DOMs Gone Wild

(a) DOM stands for Document Object Model

(b) They had to include post processing to handle strange DOM behav-
ior, so how common is that out in the wild? Answer: Common

(c) "Practical" really means "Bad" from a PL standpoint, but that’s
what’s out in the wild.

(d) Static Analysis of JavaScript Web Applications in the Wild via Prac-
tical DOM Modeling https://ieeexplore.ieee.org/document/
7372043

23 Tuning In, Turning up Bugs

(a) slide 17, diagram is important. Only interested in what goes on in
the states in the red

(b) Since the other states are ignored, the analysis is unsound overall

(c) But sound within the red section

(d) since static analysis is an overapproximtion, conditional branches
are a great place to lost some precision

(e) Practically tunable static analysis framework for large-scale JavaScript
applications https://dl.acm.org/doi/10.1109/ASE.2015.
28

24 The call is coming from inside the house:
APIs Phone Home

(a) Work with a phone vendor and industry software engineers

(b) Engineers hate, hate, hate false positives (spurious reports)

(c) Engineers also don’t have the same definition of ’bug’ as PL people
do! So that had to be negotiated. See slide 18.

(d) analysis becomes even more unsound, but still did the job

(e) SAFEWAPI: web API misuse detector for web applications https:
//dl.acm.org/doi/10.1145/2635868.2635916

21

https://ieeexplore.ieee.org/document/7372043
https://ieeexplore.ieee.org/document/7372043
https://dl.acm.org/doi/10.1109/ASE.2015.28
https://dl.acm.org/doi/10.1109/ASE.2015.28
https://dl.acm.org/doi/10.1145/2635868.2635916
https://dl.acm.org/doi/10.1145/2635868.2635916

25 Seeing inside the black (binary) box

(a) If you don’t have the source, static analysis gets harder

(b) Dynamic analysis to build the model and statically analyze that

(c) if it doesnt work, more dynamic runs and build a bigger model

(d) so wouldnt work for things you can’t run

(e) Automatic Modeling of Opaque Code for JavaScript Static Anal-
ysis https://link.springer.com/chapter/10.1007/978-
3-030-16722-6_3

26 Get the machine to do your homework for
you

(a) JS changes every year, but does have a consistent prose style.

(b) SAFE showed there was formal spec

(c) JISET automates the formal specification for you, so you don’t have
to read the new prose, just run the tool each year.

(d) uses an IR meta language for the human prose (made easier by the
HTML of the spec document)

(e) then feed that into the tool chain to build the static analyzer

(f) JISET: JavaScript IR-based semantics extraction toolchain https:
//dl.acm.org/doi/10.1145/3324884.3416632

(g) code https://github.com/kaist-plrg/jiset

27 Surely you JEST!

(a) Differential testing is when you run different implementations of
nominally the same thing against each other and see if they dis-
agree. No oracle usually.

(b) However in this version they are testing for conformance to the spec-
ification using JISET as a defactor oracle.

(c) and also find bugs in the specification.

(d) GraalVM management is considering adding JEST to testing.

22

https://link.springer.com/chapter/10.1007/978-3-030-16722-6_3
https://link.springer.com/chapter/10.1007/978-3-030-16722-6_3
https://dl.acm.org/doi/10.1145/3324884.3416632
https://dl.acm.org/doi/10.1145/3324884.3416632
https://github.com/kaist-plrg/jiset

(e) JEST: N+1-version Differential Testing of Both JavaScript Engines
and Specification https://dl.acm.org/doi/abs/10.1109/ICSE43902.
2021.00015

(f) code https://github.com/kaist-plrg/jest

28 Wish upon a shooting JSTAR

(a) Improve sensitibity and type awareness

(b) analyzer refinement for conditions

(c) find things like type mismatches in teh specification itself

(d) slide 53 starts the domains, semantics, details.

(e) JSTAR: JavaScript Specification Type Analyzer using Refinement
https://dl.acm.org/doi/abs/10.1109/ASE51524.2021.9678781

(f) code https://github.com/kaist-plrg/jstar

29 Save more with JSAVER

(a) using the previous work, build the static analyzer

(b) chained into the rest of the system„ you can start with the prose
spec and get eventually get out a tuned static analyzer

(c) Devs express curiosity, but not commitment

(d) Editors of spec glad someone beyond their W3C colleagues finally
noticed the consistent prose. Express interest in integration.

(e) Automatically Deriving JavaScript Static Analyzers from Language
Specifications https://dl.acm.org/doi/abs/10.1145/3540250.
3549097

(f) code for meta language used in https://github.com/es-meta/
esmeta

30 Surely you JEST again

(a) Coverage-guided mutation has done great things for fuzzing, so let’s
try it here.

(b) Feature-Sensitive Coverage for Conformance Testing of Program-
ming Language Implementations https://dl.acm.org/doi/abs/
10.1145/3591240 (JESTFS)

23

https://dl.acm.org/doi/abs/10.1109/ICSE43902.2021.00015
https://dl.acm.org/doi/abs/10.1109/ICSE43902.2021.00015
https://dl.acm.org/doi/abs/10.1109/ASE51524.2021.9678781
https://github.com/kaist-plrg/jstar
https://dl.acm.org/doi/abs/10.1145/3540250.3549097
https://dl.acm.org/doi/abs/10.1145/3540250.3549097
https://github.com/es-meta/esmeta
https://github.com/es-meta/esmeta
https://dl.acm.org/doi/abs/10.1145/3591240
https://dl.acm.org/doi/abs/10.1145/3591240

31 Whats next?

(a) Rust? Complex, gnarly target. Wise grad student knew trouble
when he saw it.

(b) Verse? Not enough semantics yet to target

(c) WASM? Beautiful spec, collaboration. Latex is not as friendly as
HTML so they gave up?!

(d) P4? Data plane of network, used on a lot of hardware. But the
semantics of it are in someone’s head, its hard to automate that

32 Advice

Advice from Guy L Steele Jr. Just g read the slide. Popular advice for a
reason, but light on implementation details.

24

	I Lecture 1
	Software Bugs
	Properties of interest
	Safety Properties
	Liveness Properties
	Trace Properties
	Information flow (IF) properties
	A Hard Limit : Undecidability
	Soundness and Completeness

	Toward Computability
	Testing
	(Human) Assisted Proving
	Model Checking
	Model
	Specification
	Reachability Check
	Abstract Refinement

	Static Analysis
	Summary
	Resources Mentioned in Slack or Class

	II Lecture 2
	A sample Imperative language Synatx
	Different Styles of Semantics
	Operational Semantics
	Denotational Semantics

	Semantic Domains
	Semantics of Expressions
	Semantics of Commands
	Semantics of Fixed Point

	Domain Theory
	Partial Order
	Least Upper Bound
	Chain
	Complete Partial Order (CPO)
	Continuous Function

	Fixed Point
	Resources Mentioned in Slack or Class

	III Lecture 3
	Abstract Interpretation
	Abstract Domain

	galois connections
	Properties of galois connection
	Fixed point transfer theorems
	Widening Narrowing

	IV Lecture 4
	Lecture 4 Introduction
	Papers Explored

	Intro Related Work
	How did this start, or why JS?
	Cracking the SAFE: Keeping up with a Changing Spec
	DOMs Gone Wild
	Tuning In, Turning up Bugs
	The call is coming from inside the house: APIs Phone Home
	Seeing inside the black (binary) box
	Get the machine to do your homework for you
	Surely you JEST!
	Wish upon a shooting JSTAR
	Save more with JSAVER
	Surely you JEST again
	Whats next?
	Advice

