
[OPLSS: Static Analysis]

Concepts in Static Analysis

Sukyoung Ryu

[Courtesy by Prof. Kihong Heo]

July 3, 2023

(1) Concepts in Static Analysis

(2) Operational / Denotational Semantics

(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

OPLSS: Static Analysis

OPLSS: Static Analysis

• Reference

• Xavier Rival and Kwangkeun Yi,

 Introduction to Static Analysis: an Abstract Interpretation Perspective,

 MIT Press, 2020

 https://mitpress.mit.edu/9780262043410/

https://mitpress.mit.edu/9780262043410/

Software Bugs: A Persistent Problem

• Back in the 90’s

Software Bugs: A Persistent Problem

• Back in the 90’s

• And now

Software Bugs: A Persistent Problem

• Back in the 90’s

• And now
- IBM Systems Sciences Institute, 2015

Why Software Still Fails?

Cost of Software Quality Assurance

What to Analyze?

Properties

Safety Property

Safety Property

Invariant

Invariant

Invariant

Example: Division-by-Zero

Example: Division-by-Zero

Example: Division-by-Zero

Example: Division-by-Zero

Example: Division-by-Zero

Liveness Property

Liveness Property

Variant

Variant

Variant

Variant

Trace Properties

Example

Information Flow Properties

Information Flow Properties

Example

Example

Example

Example

A Hard Limit: Undecidability

Toward Computability

Toward Computability

Soundness and Completeness

Soundness and Completeness

Assisted Proving

Testing

Introduction to Software Testing, P. Ammann and J. Offutt, 2016

Model Checking

Model Checking Overview

Model

Example: Double Locking

Example: Drop Root Privilege

Specification

Example: Model & Specification

Example: Model & Specification

Example: Model & Specification

Example: Reachability Check

Spurious Reachability

Abstraction Refinement

Iterative Abstraction Refinement

Summary of Model Checking

Static Analysis

Approximation

Principle of Static Analysis

Summary

(1) Concepts in Static Analysis

(2) Operational / Denotational Semantics

(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

OPLSS: Static Analysis

[OPLSS: Static Analysis]

Static Analysis for Android

Multilingual Applications

Sukyoung Ryu

with PLRG@KAIST and friends

July 3, 2023

Static Analysis for Android Multilingual Applications

• “Bittersweet ADB: Attacks and Defenses”
 ACM Symposium on Information, Computer and Communications Security, 2015 with Sungjae Hwang, Sungho Lee, and Yongdae Kim

• “All about Activity Injection: Threats, Semantics, and Detection”
 IEEE/ACM International Conference on Automated Software Engineering, 2017 with Sungho Lee and Sungjae Hwang

• “HybriDroid: Static Analysis Framework for Android Hybrid Applications”
 IEEE/ACM International Conference on Automated Software Engineering, 2016 with Sungho Lee and Julian Dolby

• “Towards Understanding and Reasoning about Android Interoperations”
 ACM/IEEE International Conference on Software Engineering, 2019 with Sora Bae and Sungho Lee

• “Adlib: Analyzer for Mobile Ad Platform Libraries”
 ACM SIGSOFT International Symposium on Software Testing and Analysis, 2019 with Sungho Lee

HybriDroid: Android Hybrid Apps

Mobile
App

Web
Browser

Android Java

JavaScript

Inter-language
Communication

HybriDroid: Inter-language Communication

Web
Browser

JavaScript
BridgeJava Bridge

Android Java JavaScript

HybriDroid: Inter-language Communication
Android Java JavaScript

Class JSApp {

 @JavascriptInterface

 public int alert(String m) {

 …

 }

 …

}

…

addJavascriptInterface(

 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

HybriDroid: Inter-language Communication
Android Java JavaScript

Class JSApp {

 @JavascriptInterface

 public int alert(String m) {

 …

 }

 …

}

…

addJavascriptInterface(

 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”, 3);

JavaScript
Bridge

MethodNotFound exception

HybriDroid: Bug Detection
Table 3: Bug detection results

Rank Hybrid App Bug Type (#) #FP#TP Bug Cause (#) Time

1 – 100

com.gameloft.android.ANMP.GloftDMHM MethodNotFound (1) 0 1 Obfuscation (1) 2404 sec.

com.creativemobile.DragRacing MethodNotFound (1) 1 0 3192 sec.

com.gau.go.launcherex MethodNotFound (2) 2 0 5432 sec.

com.tripadvisor.tripadvisor MethodNotFound (1) 0 1 Obfuscation (1) 4028 sec.

com.dianxinos.dxbs MethodNotFound (1) 0 1 Obfuscation (1) 1924 sec.

10,000 – 10,100 com.magmamobile.game.LostWords MethodNotFound (1) 1 0 475 sec.

20,000 – 20,100 com.daishin MethodNotFound (1) 0 1 Undeclared Method (1) 6572 sec.

100,000 – 100,100

com.carezone.caredroid.careapp MethodNotFound (5) 0 5 Missing Annotation (5) 2357 sec.

com.pateam.kanomthai MethodNotFound (2) 0 2 Missing Annotation (2) 4209 sec.

com.acc5.l6 MethodNotFound (6) 0 6 Missing Annotation (6) 367 sec.

jp.cleanup.android MethodNotFound (1) 1 0 253 sec.

ligamexicana.futbol MethodNotFound (2) 2 0 253 sec.

200,000 – 200,100
com.sysapk.weighter MethodNotFound (1) 0 1 Missing Annotation (1) 106 sec.

com.youmustescape3guide.free MethodNotFound (6) 0 6 Missing Annotation (6) 445 sec.

Total MethodNotFound (31) 7 24

Missing Annotation (20)

Obfuscation (3) 2287 sec.

Undeclared Method (1)

WebView Callback Supports.
As we discussed in Section 2, because bridge communica-

tion supports interaction between Java and JavaScript more
directly than callback communication, we consider only the
bridge communication mechanism in this paper. We may
want to further support callback communication.

Android Java and JavaScript Analysis.
Even though HybriDroid focuses on inter-language commu-

nication analysis, the analysis quality depends on the under-
lying analysis of Java and JavaScript. Because WALA sup-
ports only flow-insensitive analyses and because it does not
support extensive DOM modeling, HybriDroid can further be
improved by using advanced baseline analyzers.

6. EVALUATION
In this section, we show the usefulness of HybriDroid by

presenting previously uncovered issues detected by Bug De-
tector (Section 6.1) and Taint Analyzer (Section 6.2).

6.1 Real-World Bug Detection
To evaluate the quality of Android hybrid apps in terms of

the bugs defined in Section 5.2, we collected real-world An-
droid apps using PlayDrone, a Google Play Store crawler [50].
We downloaded 100 apps each from rankings 1, 10000, 20000,
100000, and 200000, and chose hybrid apps that use bridge
communication among them. We collected all 48 hybrid apps
from the ranks 1 to 100, and 10 hybrid apps each for the
other ranks, which amounts to 88 hybrid apps in total.

We analyzed these target hybrid apps with Bug Detector
and manually verified the reported bugs as summarized in
Table 3. The first column presents the ranking groups, the
second column presents the apps that have reported bugs,
and the remaining columns present the bug types, the num-
bers of unique bugs, the numbers of false positives and true
positives, the causes of the bugs, and the time in seconds.

Among 88 target hybrid apps, the tool reports that 14
apps may contain 31 bugs. We observed that 9 apps con-
tain 24 true alarms and the other 5 apps contain 7 false
alarms. Surprisingly, all 24 true alarms are MethodNotFound.
We found that hybrid app developers use bridge commu-
nication carefully without manipulating bridge objects and

bridge methods; they simply call bridge methods. Moreover,
most arguments to bridge methods are JavaScript strings.
Out of 24 true bugs, 20 bugs are caused by the missing

JavascriptInterface annotation, 1 bug is because of calling
an undefined method, and 3 bugs are due to wrong obfusca-
tion. To protect Android apps from repackaging attacks [51],
developers often obfuscate their apps before deployment; be-
cause obfuscation changes names of classes, methods, and
fields to meaningless names, it may make reversing of the
apps di�cult. Google o�cially supports apk obfuscation by
ProGuard since April 2016 [23, 26]. However, because only
Java code is obfuscated, JavaScript code still accesses bridge
methods using their original names even after obfuscation in
Java. In order to avoid these bugs, developers should not ob-
fuscate the accessible Java methods from JavaScript.
We observed that all 7 false positives are due to the im-

precise string analysis. When the string analysis fails to find
concrete values for the arguments of loadUrl, the tool re-
gards that all local web pages can be loaded, which may be
too conservative. We believe that a better string analysis
would improve the analysis precision of HybriDroid.

6.2 Private Data Leakage Detection
To investigate security issues in ad platforms, we manually

inspected all 48 hybrid apps in top 100 Android apps in the
Google Play Store. We found 19 ad platforms used by them,
identified 5 among them using bridge communication, and
observed that 3 ad platforms (InMobi [1], Supersonic [3], and
Millennial Media [34]) require rather aggressive permissions
like external storage accesses and audio recording.
Among them, we closely examined InMobi, which exposes

powerful Java methods including makeCall, sendMail, take-
CameraPicture, and getGalleryImage [11]. When a hybrid app
that integrates InMobi runs, InMobi fetches ads to the app.
To analyze the InMobi ad source code, we extract the HTML
and JavaScript code of the fetched ad using the Chrome re-
mote debugging tool [20]. The extracted JavaScript mraid.js
contains various functions that call Java methods as follows:

a.getGalleryImage = function() {
return sdkController.getGalleryImage("window.imraidview")

}

To evaluate whether Taint Analyzer detects possible privacy
leaks, we created a sample hybrid app that simply loads a

class JSApp{

 @JavascriptInterface

String receive(){

…

}

}

bridge.receive();

class JSApp{

 @JavascriptInterface

String abc(){

…

}

}

bridge.receive();

Obfuscate

Static Analysis for Android Multilingual Applications

• “Bittersweet ADB: Attacks and Defenses”
 ACM Symposium on Information, Computer and Communications Security, 2015 with Sungjae Hwang, Sungho Lee, and Yongdae Kim

• “All about Activity Injection: Threats, Semantics, and Detection”
 IEEE/ACM International Conference on Automated Software Engineering, 2017 with Sungho Lee and Sungjae Hwang

• “HybriDroid: Static Analysis Framework for Android Hybrid Applications”
 IEEE/ACM International Conference on Automated Software Engineering, 2016 with Sungho Lee and Julian Dolby

• “Towards Understanding and Reasoning about Android Interoperations”
 ACM/IEEE International Conference on Software Engineering, 2019 with Sora Bae and Sungho Lee

• “Adlib: Analyzer for Mobile Ad Platform Libraries”
 ACM SIGSOFT International Symposium on Software Testing and Analysis, 2019 with Sungho Lee

Inter-language Operation: Types and Values
Android Java JavaScript

Class JSApp {

 @JavascriptInterface

 public int alert(String m) {

 …

 }

 …

}

…

addJavascriptInterface(

 new JSApp(), “app”);

Java Bridge

app.alert(“hello hybrid”);

JavaScript
Bridge

Inter-language Operation: Types and Values

Android Java

JavaScript

Inter-language Operation: Overloading

JavaScript

Android Java

Formalization of Android Interoperation

• Identify the under-documented Android interoperation behaviors

• Discovered previously-unknown, unintuitive, and surprising behaviors

• Present the first formal semantics of Android interoperation

• Develop a light-weight type system detecting interoperation bugs

• More true bugs more efficiently than HybriDroid

(1) Concepts in Static Analysis

(2) Operational / Denotational Semantics

(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

OPLSS: Static Analysis

