[OPLSS: Static Analysis]

Concepts In Static Analysis

Sukyoung Ryu

[Courtesy by Prof. Kihong Heo]

July 3, 2023

OPLSS: Static Analysis

(1) Concepts in Static Analysis
(2) Operational / Denotational Semantics
(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

OPLSS: Static Analysis

* Reference
- Xavier Rival and Kwangkeun Yi,
Introduction to Static Analysis: an Abstract Interpretation Perspective,
MIT Press, 2020
https://mitpress.mit.edu/9780262043410/

https://mitpress.mit.edu/9780262043410/

Software Bugs: A Persistent Problem

- Back in the 90’s

The Patriot Missile (1991) The Ariane-5 Rocket (1996) NASA’s Mars Climate Orbiter (1999)
Floating-point roundoff Integer Overflow Meters-Inches Miscalculation
28 soldiers died $100M $125M

Software Bugs: A Persistent Problem

- Back in the 90’s

The Patriot Missile (1991)
Floating-point roundoff

28 soldiers died

 And now

The 'Heartbleed' security flaw that
affects most of the Internet
o e

i Top stories

‘ m o

R Cory Booke
‘ SONNSE Col
-1 B

This dangerous Android security bug could

The Ariane-5 Rocket (1996)
Integer Overflow
$100M

let anyone hack your phone camera
By Anthony Spa 2019

iafora November 23

Camera app vuinerabilities allow attackers 1o rern

Spy On users

record video and

0000

Olely Lake photos

What Boeing's 737 MAX Has to Do With Cars: Software

Ivertigators beteve faity woitware Contrnted 10 two fatal crashes A newly dncovered fauit wil bh sty will heep the 737 MAX grounded vt the fad

-—'-F"
.

"

»

NASA’s Mars Climate Orbiter (1999)
Meters-Inches Miscalculation
$125M

Homeland Security warns that certain heart
devices can be hacked

By Tribune news services . Contact Reporter

Software Bugs: A Persistent Problem

COST OF A SOFTWARE BUG

If found in Gathering
Requirements phase

If found in QA testing phase If found in Production

- IBM Systems Sciences Institute, 2015

Why Software Still Fails?

Size of Linux Kernel

28MLOC
10KLOC
k‘é-rn -e-lh Ve rS|on
Avg. Size of Android Apps 10M+ New DeveIPpe_rs
o 44M+ New Repositories
87M+ New Pull Requests

3 in 2019

X

=

2 1x

Jan, 2013 Jan, 2014 Jan, 2015 Jan, 2016 Jan, 2017

Cost of Software Quality Assurance

“We have as many testers as we have developers.

And testers spend all their time testing, and developers spend
half their time testing. We're more of a testing, a quality software
organization than we’re a software organization”

- Bill Gates

Q: What is the solution to improve software quality at low cost?

A: Program analysis

What to Analyze?

CWE Definitions

Sort Results By : CWE Number Vulnerability Count

Select Select&Copy

CWE Number
119

732
74

798
772
269
601
502
134
704
415

Name
Failure to Constrain Operations within the Bounds of a Memory Buffer
Failure to Preserve Web Page Structure ('Cross-site Scripting’)
Improper Input Validation
Information Exposure
Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection')
Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
Failure to Control Generation of Code ('Code Injection')
Out-of-bounds Read
Improper Authentication
Access Control (Authorization) Issues
Use After Free
Integer Overflow or Wraparound
NULL Pointer Dereference
Improper Sanitization of Special Elements used in an OS Command ('OS Command Injection’)
Out-of-bounds Write
Race Condition
Improper Link Resolution Before File Access ('Link Following')
Improper Sanitization of Special Elements used in a Command ("Command Injection')
Uncontrolled Resource Consumption ('‘Resource Exhaustion')
Information Leak Through XML External Entity File Disclosure
Unrestricted Upload of File with Dangerous Type
Incorrect Permission Assignment for Critical Resource
Fallure to Sanitize Data into a Different Plane ('Injection’)
Use of Hard-coded Credentials
Missing Release of Resource after Effective Lifetime
Improper Privilege Management
URL Redirection to Untrusted Site ("Open Redirect’)
Deserialization of Untrusted Data
Uncontrolled Format String
Incorrect Type Conversion or Cast

Double Free

Number Of Related Vulnerabilities
12328

11807

7669

6316

5643

180
173

Heartbleed, 2019
OpenSSL
CVE-2014-0160

goto fail;
goto fail;

goto fail, 2014
MacOS /i0S
CVE-2014-1266

Shellshock, 2014
Bash
CVE-2014-6271

Properties

* Points of interest in programs

o for verification, bug detection, optimization, understanding, etc

* In this lecture
e safety properties
* liveness properties

e Information-flow properties

Safety Property

* A program never exhibits a behavior observable within finite time
e “Bad things will never occur”

* |f false, then there exists a finite counterexample

 Bad things: integer overflow, buffer overrun, deadlock, etc

* To prove: all executions never reach error states

Safety Property

e A program never exhibit a behavior observable within finite time

* “Bad things will never occur”

 |[f false, then there exists a finite counterexample
e Bad things: integer overflow, buffer overrun, deadlock, etc
e To prove: all executions never reach error states

states states states

invariant

> —>
time time

—>
time

(a) Correct executions (b) An incorrect execution (¢) Proof by invariance

Invariant

* Assertions supposed to be always true

e Starting from a state in the invariant: any computation step also leads to
another state in the invariant

 E.g.,, “X has an int value during the execution”, “y is larger than 1 at line 5”

* Loop invariant: assertion to be true at the beginning of every loop iteration

X = 0;
while (x < 10) {
X =X + 1;

}

Invariant

* Assertions supposed to be always true

e Starting from a state in the invariant: any computation step also leads to
another state in the invariant

 E.g.,, “X has an int value during the execution”, “y is larger than 1 at line 5”

* Loop invariant: assertion to be true at the beginning of every loop iteration

X=@; L . iant 4: Sy i - '
while (X < 10) { o0op Invariant 1. X IS an Iinteger

X =X + 1;

}

Invariant

* Assertions supposed to be always true

e Starting from a state in the invariant: any computation step also leads to
another state in the invariant

 E.g.,, “X has an int value during the execution”, “y is larger than 1 at line 5”

* Loop invariant: assertion to be true at the beginning of every loop iteration

X = 0; L . iant 4: Sy i - '
while (x < 10) { oop invariant 1: “x is an integer
X =X + 1;

}

Loop invariant 2: “0 <= x < 10”

Example: Division-by-Zero

return 10 / Xx;

1: int main(){

2: int x = input();
3: X =2 %k X — 1;
4: while (x > 0) {
5: X = X — 23

6: }

7: assert(x '= 0);
o

9

b

Example: Division-by-Zero

return 10 / X;

1: int main(){

2: int x = input(); // True
3: X =2 %k X — 1;

4: while (x > 0) {

5: X = X — 23

6: }

7: assert(x '= 0):

o

9

b

Example: Division-by-Zero

return 10 / X;

1: int main(){

2: int x = input(); // True

3: X =2 %x X - 1; // x is an odd number
4: while (x > 0) {

5: X = X — 23

6: }

]: assert(x !'= 0);

o

9

b

Example: Division-by-Zero

return 10 / Xx;

1: int main(){

2: int x = input(); // True

3: X =2 %x X — 1; // x is an odd number

4: while (x > 0) { // x is a positive odd number
5: X = X — 23

6: }

]: assert(x !'= 0);

o

9

b

Example: Division-by-Zero

return 10 / Xx;

1: int main(){

2: int x = input(); // True

3: X =2 %x X — 1; // x is an odd number

4: while (x > 0) { // x is a positive odd number
5: X = X — 23

6: } // x is an odd number

]: assert(x !'= 0);

o

9

b

Liveness Property

* A program will never exhibit a behavior observable only after infinite time
e “Good things will eventually occur”

e |f false then there exists an infinite counterexample

 Good things: termination, fairness, etc

* o prove: all executions eventually reach target states

Liveness Property

e A program will never exhibit a behavior observable only after infinite time
e “Good things will eventually occur”

e |[f false then there exists an infinite counterexample

* Good things: termination, fairness, etc

e To prove: all executions eventually reach target states

states Astates states

—> —> —>
time time time

(a) Correct executions (b) An incorrect execution (¢c) Proof by variance

Variant

* A quantity that evolves towards the set of target states
(so guarantee any execution eventually reach the set)

e Usually, a value that is strictly decreasing for some well-founded order relation

e Well-founded order: there exists a minimal element

 E.Q.) an expression of integer type that always takes a positive value and
strictly decreasing
X = pos_int();
while (x > 0) {
X =X - 1;

}

Variant

* A quantity that evolves towards the set of target states
(so guarantee any execution eventually reach the set)

e Usually, a value that is strictly decreasing for some well-founded order relation

e Well-founded order: there exists a minimal element

 E.Q.) an expression of integer type that always takes a positive value and
strictly decreasing
X = pos_int();
while (x > 0) {
X =X - 1;

}

X is always a positive integer

Variant

* A quantity that evolves towards the set of target states
(so guarantee any execution eventually reach the set)

e Usually, a value that is strictly decreasing for some well-founded order relation

e Well-founded order: there exists a minimal element

 E.Q.) an expression of integer type that always takes a positive value and
strictly decreasing
X = pos_int();
while (x > 0) {
X =X - 1;

}

x is always a positive integer /\ Xxis strictly decreasing

Variant

* A quantity that evolves towards the set of target states
(so guarantee any execution eventually reach the set)

e Usually, a value that is strictly decreasing for some well-founded order relation

e Well-founded order: there exists a minimal element

 E.Q.) an expression of integer type that always takes a positive value and
strictly decreasing
X = pos_int();
while (x > 0) {
X =X - 1;

}

x is always a positive integer /\ Xxis strictly decreasing = The program terminates

Trace Properties

* A semantic property &2 that can be defined by a set of execution traces
that satisfies &7

o Safety and liveness properties are trace properties
I[P]] g Tok

o State properties: defined by a set of states (so, obviously trace properties)

e E.g., division-by-zero, integer overflow

* Any trace property: the conjunction of a safety and a liveness property

Example

 Correctness of a sorting algorithm as trace property

Safety or Liveness?

Should not

fail with a run-time error Safety

Should terminate Liveness -

Should return a sorted array Safety O

Should return an array with
the same elements and multiplicity

Safety X

Information Flow Properties

* Properties stating the absence of dependence between pairs of executions

 Beyond trace properties: so called hyperproperties

 Mostly used for security purposes:

e e.g.) multiple executions with public data should not derive private data

Information Flow Properties

* Properties stating the absence of dependence between pairs of executions

 Beyond trace properties: so called hyperproperties

* Mostly used for security purposes:

e e.g.) multiple executions with public data should not derive private data

secret secret
input s input s
A secret

) output s
< A
/ }Asecret

public
input p

public

input
public PP public

output p output p
A pair of executions with insecure information flow A pair of executions without insecure information flow

Example

 Assume that variables s (secret) and p (public) take only 0 and 1

// Program 0 // Program 1 // Program 2
p_out := p_in p_out := s x p_in p_out := |rand(p_in) - s|

Example

 Assume that variables s (secret) and p (public) take only 0 and 1

// Program 0 // Program 1 // Program 2
p_out := p_in p_out := s x p_in p_out := |rand(p_in) - s|

Example

 Assume that variables s (secret) and p (public) take only 0 and 1

// Program 0 // Program 1 // Program 2
p_out := p_in p_out := s x p_in p_out := |rand(p_in) - s|

Example

 Assume that variables s (secret) and p (public) take only 0 and 1

// Program 0
p_out := p_in

// Program 1
p_out := s x p_1in

// Program 2
p_out := |rand(p_in) - s|

P
0 0 Oorf
0

1 Oor1
1 0 Oor1
1 1 Oorf

A Hard Limit: Undecidability

Theorem (Rice’s theorem). Any non-trivial semantic properties are undecidable.

Undecidable
= Automatic, terminating, and exact reasoning is impossible

Toward Computability

Undecidable
= Automatic, terminating, and exact reasoning is impossible

= If we give up one of them, it is computable!

Toward Computability

Undecidable
= Automatic, terminating, and exact reasoning is impossible

= If we give up one of them, it is computable!

 Manual rather than automatic: assisted proving

e require expertise and manual effort

* Possibly nonterminating rather than terminating: testing, model checking

e require stopping mechanisms such as timeout

 Approximate rather than exact: static analysis

* report spurious results

Soundness and Completeness

* Given a semantic property &2, and an analysis tool A

* |f A were perfectly accurate,

For all program p, A(p) = true < p satisfies &

which consists of

For all program p, A(p) = true = p satisfies &2 (soundness)

For all program p, A(p) = true < p satisfies & (completeness)

Soundness and Completeness

programs programs
satisfying & not satisfying &

(a) Programs

i programs b programs
o satisfying &2 il not satisfying &2

(¢) Unsound, complete analysis

i programs i programs
= satisfying &2 :: not satisfying &

(b) Sound, incomplete analysis

programs that satisfy &7

programs that do not satisfy &7

programs for which the analysis returns true

programs for which the analysis returns false

(d) Legend

Assisted Proving

 Machine-assisted proof techniques
* Relying on user-provide invariants

* Using proof assistants (e.g., Coq, Isabelle/HOL)

 Sound and complete (up to the ability of the proof aSS|stant)

require manual effort / expertise

eft.
eeeeeeeeeeee
rrrrr
iiiiii
sssssss
right; discriminate.
r n

reflexivity.
right.

tttttt
eeeeeeee

m} + Sm=Sm

(((((

22222

 Example: CompCert (verified C compiler), selL4 (verified microkernel)

Testing

e Check a set of finite executions

* e.g., random testing, concolic (concrete + symbolic) testing

* In general, unsound yet complete
 Unsound: cannot prove the absence of errors

 Complete: produce counterexamples (i.e., erroneous inputs)

* Further reading:
Introduction to Software Testing, P. Ammann and J. Offutt, 2016

Model Checking

e Automatic technique to verify if a model satisfies a specification
 Model of the target program (finite automata)
o Specification written in logical formula

* \erification via exhaustive search of the state space (graph reachability)

« Sound and complete with respect to the model

 May incur infinite model refinement steps

 Example: SLAM (MS Windows device driver verifier)

Model Checking Overview

Program
Yes

Checker —>No

Timeout

Specification

Model

* Finite state machines constructed manually or by some automatic tools

 Gap between models (finite systems) and programs (infinite systems)
e elther unsound or incomplete with respect to the target program
 Techniques to automatically refine the model on demand

 may continue indefinitely so stopping mechanisms are required

Program Model

Example: Double Locking

lock

. unlock

unlock

ock

Calls to lock and unlock must alternate

Example: Drop Root Privilege

R=1,E=1,S=0 setuid(1) R=0,E=1,S=1 setuid(1)

setuid(0) setuid(0)

R=1,E=0,S=0 R=0,E=1 ,s= setuid(1) @ R=0,E=0,S=1

setuid(0) \ setuid(0)

R=0,E=0,S=0)

setuid(0)

setuid(1) setuid(1)

setuid(1)

@» setuid(0)) setuid(1)

“User applications must not run with root privilege”

When exec is called, must have suid # 0

*Hao Chen, David Wagner, and Drew Dean. Setuid Demystified, USENIX Security Symposium, 2002

Specification

* Written in a formal language: modal logic
 Modal logic = propositional logic + {necessarily, possibly}
* Esp., truth values of assertions vary with time (temporal logic)

 E.g., LTL (linear temporal logic), CTL (computational tree logic)

* Describe assertions on program properties

* “X s always positive”, “x can be positive”,

“X remains positive until y is negative”, “x is positive after state s”, ...

Example: Model & Specification

Target Program

int main(){

1: int x = input();
2: X =2 %xXx - 1;
3: while (x > 0) {
4: X =X = 2;

5: }

6: assert(x !=0);
7

return 10 / x;

}

Example: Model & Specification

o State = Label x {Even, Odd, Zero, Error} : finite
o Specification: “The error state is unreachable from the initial states”

e |nitial states: {<1, Even>, <1, Odd>}

Target Program

int main(){

1: int x = input();
2: X =2 %xXx - 1;
3: while (x > 0) {
4: X =X = 2;

5: }

6: assert(x !'=0);
]:

return 10 / x;

}

Example: Model & Specification

o State = Label x {Even, Odd, Zero, Error} : finite
o Specification: “The error state is unreachable from the initial states”

e |nitial states: {<1, Even>, <1, Odd>}

Target Program Example transitions

int main(){ e\

+ int x = input();

: X =2 %xx - 1;

while (x > 0) { 0
X =X — 2;

s

: assert(x !'= 0);

: return 10 / Xx: ._‘

} 5, Zero 6, Error

NOUTESE WN -

Example: Reachability Check

* Check the reachability of the error state from the initial states
* Unreachable: verified

 Reachable and counter example: real bug or spurious warning (why?)

reachable states
Target Program

initial states 2 a”
int main(){
: int x = input();
: X =2 x X - 1;

1

2

3: while (x > 0) {

4: X =X — 23

5: }

6: assert(x != G);\/, - ble stat

7: return 10 / X; unreacnapie siates
! A

Spurious Reachability

 (Finite) Model is an abstraction of the (infinite) target program

Program Model Spurious Reachability
el NS —
AT 1T @ Taedumrastus
1 e o
/ 71 I_:>] BB UL
—a 4/ /3 — /s
L jasjiiet eEnE

Abstraction Refinement

 Automatically refine the model when a spurious counterexample is found
* New model: to conclude the spurious error is infeasible

e Until a real counterexample is found or a proof is completed

 May not terminate

lterative Abstraction Refinement

» CEGAR: CounterExample-Guided Abstraction Refinement

Counterexample

Reachability Abstraction

Check Refinement

New model

20

Possibly
infinite steps

Summary of Model Checking

 Model (FSM) + Specification (Modal logic) + Verification (Reachability check)
 Theoretical characteristics:

* |f a model checker says “Yes”, the property is guaranteed to hold (Sound)
e |f a model checker says “No”,
* the counterexample is either a real bug or a spurious warning

e (refinement; verification)* until “Yes”, a real bug found, or timeout

e Further reading:
Model Checking, E. M. Clarke, O. Grumberg, D. Kroening, D. Peled and H. Veith, 2018

Static Analysis

Over-approximate (not exact) the set of all program behavior

In general, sound and automatic, but incomplete

 May have spurious results

Based on a foundational theory : Abstract interpretation
Variants:

e under-approximating static analysis: automatic, complete, unsound

* bug finder: automatic, unsound, incomplete, and heuristics

Example: type systems, ASTREE, Facebook Infer, Sparrow, etc

Industrial Applications of Astrée

The main applications of Astrée appeared two years after starting the project. Since then, Astrée has
achieved the following unprecedented results on the static analysis of synchronous, time-triggered, real-time,
safety critical, embedded software written or automatically generated in the C programming language:

e In Nov. 2003, Astrée was able to prove completely automatically
the absence of any RTE in the primary flight control software of
the Airbus A340 fly-by-wire system, a program of 132,000 lines of

C analyzed in 1M20 on a 2.8 GHz 32-bit PC using 300 Mb of
memory (and 50mn on a 64-bit AMD Athlon™ 64 using 580 Mb of
memory).

e From Jan. 2004 on, Astrée was extended to analyze the electric
flight control codes then in development and test for the A380
series. The operational application by Airbus France at the end of
2004 was just in time before the A380 maiden flight on
Wednesday, 27 April, 2005.

e In April 2008, Astrée was able to prove completely automatically
the absence of any RTE in a C version of the automatic docking
software of the Jules Vernes Automated Transfer Vehicle (ATV)
enabling ESA to transport payloads to the International Space
Station [32].

Approximation

 Compute approximated (inaccurate) semantics instead of exact semantics

e |naccurate # Incorrect

e E.g., reality: {2,4,6,8, ...}
answer 1: “even” (exact)
answer 2: “positive” (conservative)
answer 3: “multiple of 4” (omissive)
answer 4: “odd” (wrong)

* Given a program and property, the analysis may answer “Yes”, “No”, or
“Don’t know” because of approximation

* Key point: choosing a right approximation to prove a given target property

Principle of Static Analysis

« How to design a sound approximation of real executions?

 How to guarantee the termination of static analysis?

A: Abstract Interpretation

Summary

* Different techniques for program reasoning due to the computability barrier

 Each program reasoning technique has its own pros and cons

Automatic Complete

Testing Yes No Yes Program Dynamic

Assisted Proving No Yes Yes/No Model Static
Model Checking of Finite .
finite-state model ves ves ves Model Static
olge Sl E i Yes Yes No Program Static

program level
LT Yes Yes No Program Static

Static Analysis

Bug Finding Yes No No Program Static

OPLSS: Static Analysis

(1) Concepts in Static Analysis
(2) Operational / Denotational Semantics
(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

[OPLSS: Static Analysis]

Static Analysis for Android
Multilingual Applications

Sukyoung Ryu
with PLRG@KAIST and friends

July 3, 2023

Static Analysis for Android Multilingual Applications

» “Bittersweet ADB: Attacks and Defenses”

ACM Symposium on Information, Computer and Communications Security, 2015 with Sungjae Hwang, Sungho Lee, and Yongdae Kim

- “All about Activity Injection: Threats, Semantics, and Detection”

IEEE/ACM International Conference on Automated Software Engineering, 2017 with Sungho Lee and Sungjae Hwang

- “HybriDroid: Static Analysis Framework for Android Hybrid Applications’

IEEE/ACM International Conference on Automated Software Engineering, 2016 with Sungho Lee and Julian Dolby

» “Towards Understanding and Reasoning about Android Interoperations”

ACM/IEEE International Conference on Software Engineering, 2019 with Sora Bae and Sungho Lee

- “Adlib: Analyzer for Mobile Ad Platform Libraries”

ACM SIGSOFT International Symposium on Software Testing and Analysis, 2019 with Sungho Lee

HybriDroid: Android Hybrid Apps

Mobile
App

Web
Browser

Android Java

[

Inter-language
Communication

/

JavaScript

HybriDroid: Inter-language Communication

Android Java

JavaScript

JavaScript
Java Bridge Brid g e

O
O é O
Br‘clavv?II:er x O
O

N
~ . '¢'

O <> O

HybriDroid: Inter-language Communication

Android Java

JavaScript

Class JSApp 1
@JavascriptInterface
public int alert(String m) {

}

} app.alert(“hello hybrid”);

(

JavaScript

addJavascriptInterface(Bridge

new JSApp(), “app”);

/

Java Bridge

HybriDroid: Inter-language Communication

Android Java

JavaScript

Class JSApp {
@JavascriptInterface)
public int alert(String m) <

}

MethodNotFound exception

; app.alert(“hello hybrid”, 3);

(

JavaScript

addJavascriptInterface(Bridge

new JSApp(), “app”);

/

Java Bridge

HybriDroid: Bug Detection

Rank Hybrid App Bug Type (#) [[#FP#TP Bug Cause (#) Time
com.gameloft.android.ANMP.GloftDMHM | MethodNotFound (1) | O 1 Obfuscation 1 2404 sec.
com.creativemobile.DragRacing MethodNotFound (1) | 1 0 £ 3192 sec.

1 - 100 com.gau.go.launcherex MethodNotFound (2) | 2 0 ' 5432 sec.
com.tripadvisor.tripadvisor MethodNotFound (1) | O 1 Obfuscation 1 41028 sec.
com.dianxinos.dxbs MethodNotFound (1) | O 1 Obfuscation £ 1924 sec.

10,000 — 10,100 | com.magmamobile.game.LostWords MethodNotFound (1) | 1 0 475 sec.
20,000 — 20,100 | com.daishin MethodNotFound (1) | O 1 | Undeclared Method (1) 6572 sec.
com.carezone.caredroid.careapp MethodNotFound (5)| O 5 | Missing Annotation (5)|2357 sec.
com.pateam.kanomthai MethodNotFound (2)| O 2 | Missing Annotation (2) | 4209 sec.
100,000 — 100,100 | com.acc5.16 MethodNotFound (6)| O 6 | Missing Annotation (6)| 367 sec.
jp-cleanup.android MethodNotFound (1) | 1 0 253 sec.
ligamexicana.futbol MethodNotFound (2) | 2 0 253 sec.
900.000 — 200.100 | COm-Sysapk.weighter MethodNotFound (1) | O 1 | Missing Annotation (1)| 106 sec.
’ ’ com.youmustescape3guide.free MethodNotFound (6) | O 6 | Missing Annotation (6)| 445 sec.
Missing Annotation (20)
Total MethodNotFound (31)| 7 | 24 Obfuscation (3) | 2287 sec.
Undeclared Method (1)

class JSApp+
@JavascriptIntertface
String receive(){

.
}

bridge.receive();

Opiucae

class JSApp+
@JavascriptIntertace
String abc(){

} (@)

bridge.receive();

Static Analysis for Android Multilingual Applications

» “Bittersweet ADB: Attacks and Defenses”

ACM Symposium on Information, Computer and Communications Security, 2015 with Sungjae Hwang, Sungho Lee, and Yongdae Kim

- “All about Activity Injection: Threats, Semantics, and Detection”

IEEE/ACM International Conference on Automated Software Engineering, 2017 with Sungho Lee and Sungjae Hwang

- “HybriDroid: Static Analysis Framework for Android Hybrid Applications’

IEEE/ACM International Conference on Automated Software Engineering, 2016 with Sungho Lee and Julian Dolby

» “Towards Understanding and Reasoning about Android Interoperations”

ACM/IEEE International Conference on Software Engineering, 2019 with Sora Bae and Sungho Lee

- “Adlib: Analyzer for Mobile Ad Platform Libraries”

ACM SIGSOFT International Symposium on Software Testing and Analysis, 2019 with Sungho Lee

Inter-language Operation: Types and Values

Android Java

JavaScript

Class JSApp 1 A
@JavascriptIntepface
public int alert(String m) {

}

} app.alert(“hello hybrid”);

(

JavaScript

addJavascriptInterface(Bridge

new JSApp(), “app”);

/

Java Bridge

Inter-language Operation: Types and Values

Android Java

Chapter 4. Types, Values, and Variables
The Java programming language is a statically fyped language, which means that every vanable and every expression has a type that is known at compile time,
The Java programming language is also a strongly typed language, because types mit the values that a variable (§4.12) can hold or that an expresson can produce,

The types of the Java programming language are divided inlo two categones: primitive types and reference types. The primitive types (§4.2) are the boolean type an
special null type. An object (§4.3.1) is a dynamically created instance of a class type or a dynamically created array. The values of a reference type are references o ¢

JavaScript

6 ECMAScript Data Types and Values

Algorithms within this spedfication manipulate values each of which has an associated type. The possible value types are exactly those defined in this cdlause. Types are further subclassified into ECN

Within this specification, the notation “Type(:)” is used as shorthand for “the type of ™ where “type” refers to the ECMASornipt language and specification types defined in this clause, When the term
equivalent to saying “no value of any type”

Inter-language Operation: Overloading

Android Java

8.4.9. Overloading

If two methods of a class (whether both declared in the same class, or both inherited by a class, or one declared and one inherited) have the same name

This fact causes no difficulty and never of itself results in a compile-time error. There is no required relationship between the return types or between the

When a method is invoked (§15.12), the number of actual arguments (and any explicit type arguments) and the compile-time types of the arguments are

JavaScript

Formalization of Android Interoperation

SAFE
II Front-end II

N\ A
Modified Type »
JSIR
E HybriDroid s E Checker II
Hybrid app II Bug Report

Bridge Info.

e ldentify the under-documented Android interoperation behaviors

e Discovered previously-unknown, unintuitive, and surprising behaviors
e Present the first formal semantics of Android interoperation
e Develop a light-weight type system detecting interoperation bugs

e More true bugs more efficiently than HybriDroid

OPLSS: Static Analysis

(1) Concepts in Static Analysis
(2) Operational / Denotational Semantics
(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

