[OPLSS: Static Analysis]

Operational / Denotational Semantics

[Courtesy by Prof. Kihong Heo]

Sukyoung Ryu

July 4, 2023

OPLSS: Static Analysis

- (1) Concepts in Static Analysis
- (2) Operational / Denotational Semantics
- (3) Abstract Interpretation
- (4) Automatic Derivation of Static Analysis

A Simple Imperative Language

 $\begin{array}{cccc} E & ::= & n \\ & \mid & n \\ & \mid & x \\ & \mid & E \odot E \end{array}$ B ::= $\begin{array}{ccc} & \mathsf{true} & | & \mathsf{false} \\ & E & \otimes E \end{array}$ while $B \ C$

arithmetic expressions integer constants variable binary operation boolean expression boolean constants comparison expressions commands command that does nothing sequence assignment command reading of a value if B then C else C conditional command loop command

Different Styles of Semantics

- Operational Semantics: "How to compute the execution result"
 - so-called transitional style
 - 3 * $(2 + 1) : 3 * (2 + 1) \rightarrow 3 * 3 \rightarrow 9$
- Denotational Semantics: "What the execution result is"
 - so-called compositional style
 - 3 * (2 + 1) : 9

Different approaches for different purposes and languages

Denotational Semantics

- Mathematical meaning of a program (i.e., no state or transition)
- Program semantics is a function from input states to output states
- The semantics of a program is determined by that of each subcomponents (i.e., compositional)
- Notation: $\llbracket P \rrbracket : \mathbb{M} \to \mathbb{M}$

Semantic Domains

- Sets of semantic objects
- Memory is a mapping $\mathbb{M} = \mathbb{X} \to \mathbb{V}$
 - X: the set of variables
 - \mathbb{V} : the set of integers (\mathbb{Z}) and booleans (\mathbb{B})
- Example: $[x:=7; y:=3] \{ \} = \{x \mapsto 7, y \mapsto 3 \}$

Semantics of Expressions

- $\llbracket E \rrbracket : \mathbb{M} \to \mathbb{Z}$
 - [n](m) = n
 - $\llbracket x \rrbracket(m) = m(x)$
- $\llbracket E_1 \odot E_2 \rrbracket(m) = \llbracket E_1 \rrbracket(m) \odot \llbracket E_2 \rrbracket(m)$
 - $\llbracket B \rrbracket : \mathbb{M} \to \mathbb{B}$
 - $\llbracket true \rrbracket(m) = true$
 - [false](m) = false
- $\llbracket E_1 \otimes E_2 \rrbracket(m) = \llbracket E_1 \rrbracket(m) \otimes \llbracket E_2 \rrbracket(m)$

Semantics of Commands (1)

- $\llbracket C \rrbracket : \mathbb{M} \to \mathbb{M}$
- [skip](m) = m

- $[\operatorname{input}(x)](m) = m\{x \mapsto n\}$

- $[C_0; C_1](m) = [C_1]([C_0](m))$
- $[x := E](m) = m\{x \mapsto [E](m)\}$
- $\llbracket \text{if } B \text{ then } C_1 \text{ else } C_2 \rrbracket(m) = \begin{cases} \llbracket C_1 \rrbracket(m) & \text{if } \llbracket B \rrbracket(m) = \texttt{true} \\ \llbracket C_2 \rrbracket(m) & \text{if } \llbracket B \rrbracket(m) = \texttt{false} \end{cases}$
 - **Compositional?** Yes!

Semantics of Commands (2)

Semantics of While loop

$$\llbracket \texttt{while } B \ C \rrbracket(m) = \begin{cases} \llbracket \texttt{while } I \\ m \end{cases}$$

Compositional? NO!

C.f) inductive vs compositional definition of the Fibonacci function

 $\begin{aligned} &\textit{fib}(n) = \textit{fib}(n-1) + \textit{fib}(n-2) \text{ where } n > 1 \\ &\textit{fib}(0) = \textit{fib}(1) = 1 \end{aligned} \quad \textbf{vs} \end{aligned}$

$B C]\!] ([\![C]\!] (m)) \quad \text{if } [\![B]\!] (m) = \texttt{true}$ if $\llbracket B \rrbracket(m) = \texttt{false}$

s
$$fib(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Semantics as Fixed Point (1)

Consider this inductive definition as an equation

$$[\texttt{while} \ B \ C]](m) = \begin{cases} \llbracket \texttt{while} \ M \end{bmatrix}$$

$$[\![\texttt{while} \ B \ C]\!] =$$

where
$$\mathcal{F}_{B,C}(X) = \lambda m. \begin{cases} I \\ r \end{cases}$$

 $B C]\!] ([\![C]\!] (m)) \quad \text{if } [\![B]\!] (m) = \texttt{true}$ if $\llbracket B \rrbracket(m) = \texttt{false}$

 $\mathcal{F}_{B,C}(\llbracket while \ B \ C
brace \rrbracket)$

 $X(\llbracket C \rrbracket(m))$ if $\llbracket B \rrbracket(m) = \texttt{true}$ if $\llbracket B \rrbracket(m) = \texttt{false}$ m

Semantics as Fixed Point (2)

What is the semantics of loops? A solution of this equation!

 $\llbracket \texttt{while } B \ C \rrbracket = \mathcal{F}_{B,C}(\llbracket \texttt{while } B \ C \rrbracket)$

- Solution: a fixed point of $\mathcal{F}_{B,C}$
- Especially, we define the semantics as the least fixed point
 - [while B

where
$$\mathcal{F}_{B,C}(X)(m) = \begin{cases} X \\ m \end{cases}$$

Compositional? Yes!

$$X = \mathcal{F}_{B,C}(X)$$
 where $X = \llbracket while \ B \ C \rrbracket$

$$C]\!] = \mathbf{lfp}\mathcal{F}_{B,C}$$

 $C(\llbracket C \rrbracket(m))$ if $\llbracket B \rrbracket(m) = \texttt{true}$ if $\llbracket B \rrbracket(m) = \texttt{false}$

*https://en.wikipedia.org/wiki/Least_fixed_point

• $\mathbb{N} = \{0\} \cup \{n+1 \mid n \in \mathbb{N}\}$

\mathbb{N} is the least fixed point of F where $F(X) = \{0\} \cup \{n+1 \mid n \in X\}$ $\therefore \mathbb{N} = \mathbf{lfp}(\lambda X.\{0\} \cup \{n+1 \mid n \in X\})$

• $\mathbb{L} = \{ \mathsf{nil} \} \cup \{ \mathsf{0} :: l \mid l \in \mathbb{L} \}$

 \mathbb{L} is the least fixed point of F where $F(X) = {nil} \cup {0 :: l \mid l \in X}$

 $\therefore \mathbb{L} = \mathbf{lfp}(\lambda X.\{\mathsf{nil}\} \cup \{\mathsf{0} :: l \mid l \in X\})$

- $reach(N) = N \cup reach(next(N))$
 - $reach = \lambda N.N \cup reach(next(N))$
 - reach is the least fixed point of F where $F(X) = \lambda N.N \cup X(next(N))$
 - \therefore reach = lfp($\lambda X.(\lambda N.N \cup X(next(N)))$

• fact(N) = if N = 0 ? 1 : N * fact(N - 1)

 $fact = \lambda N.if N = 0 ? 1 : N * fact(N-1)$ fact is the least fixed point of F where $F(X) = \lambda N$.if N = 0 ? 1 : N * X(N - 1) $\therefore \texttt{fact} = \texttt{lfp}(\lambda X.(\lambda N.\texttt{if } N = 0 ? 1 : N * X(N-1)))$

Questions

- Why does the semantic equation have a solution?
- Does the equation have a unique solution?
- How to compute the solution?

Domain Theory

- Semantics of a program is an element of a domain called CPO (complete partial order set)
 - Example: $[C] \in \mathbb{M} \to \mathbb{M}$
- Semantics of a program is the least fixed point of a continuous function
 - Example: $\mathcal{F}_{B,C}: (\mathbb{M} \to \mathbb{M}) \to (\mathbb{M} \to \mathbb{M})$
- Established by Dana Scott
 - Outline of a Mathematical Theory of Computation, 1970
 - Mathematical Concepts in Programming Language Semantics, 1972

Partial Order

Definition (Partial Order). A binary if it has:

- **1. reflexivity:** $a \sqsubseteq a$ for all $a \in D$
- 2. Antisymmetry: $a \sqsubseteq b$ and $b \sqsubseteq a$ implies a = b
- 3. Transitivity: $a \sqsubseteq b$ and $b \sqsubseteq c$ implies $a \sqsubseteq c$

A set *D* with a partial order \sqsubseteq is call simply **poset**.

Definition (Partial Order). A binary relation \sqsubseteq is a **partial order** on a set D

A set D with a partial order \sqsubseteq is called a partially ordered set (D, \sqsubseteq) , or

Partial Order

• Example 1: $(\wp(\{x, y, z\}), \subseteq)$

• Example 3: (\mathbb{N}, \leq)

• Example 4: $(\mathbb{N} + \{+\infty\}, \leq)$

Least Upper Bound

subset $X \subset D$, $d \in D$ is an upper bound of X iff

y of *X*, $d \sqsubseteq y$. The least upper bound of *X* is denoted by

- **Definition (Least Upper Bound).** For a partial ordered set (D, \subseteq) and
 - $\forall x \in X. \ x \sqsubset d.$
- An upper bound d is the least upper bound of X iff for all upper bounds

Least Upper Bound

• Example 1: $(\wp(\{x, y, z\}), \subseteq)$

• Example 3: (\mathbb{N}, \leq)

• Example 4: $(\mathbb{N} + \{+\infty\}, \leq)$

Definition (Chain). Let (D, \sqsubseteq) be a called **chain** if *X* is totally ordered: $\forall x_1, x_2 \in X. x$

Definition (Chain). Let (D, \sqsubseteq) be a partial ordered set. A subset $X \subseteq D$ is called **chain** if X is totally ordered:

 $\forall x_1, x_2 \in X. \ x_1 \sqsubseteq x_2 \text{ or } x_2 \sqsubseteq x_1.$

Chain

• Example 1: $(\wp(\{x, y, z\}), \subseteq)$

• Example 3: (\mathbb{N}, \leq)

• Example 4: $(\mathbb{N} + \{+\infty\}, \leq)$

Definition (CPO). A poset (D, \sqsubseteq) is a **CPO** (complete partial order) if every chain X of D has $\bigsqcup X \in D$.

CPO

• Example 1: $(\wp(\{x, y, z\}), \subseteq)$

• Example 3: (\mathbb{N}, \leq)

• Example 4: $(\mathbb{N} + \{+\infty\}, \leq)$

Continuous Function

chains:

 $\forall chain \ X \subseteq D_1.$

Definition (Continuous Function). Given two partially ordered sets D_1 and D_2 , a function $f: D_1 \to D_2$ is continuous if it preserves least upper bounds of

$$\bigsqcup_{x \in X} f(x) = f(\bigsqcup X).$$

Continuous Function

a chain $X \subseteq D_1$

Non-Continuous Function (1)

a chain $X \subseteq D_1$

 $f: D_1 \to D_2$

Non-Continuous Function (2)

a chain $\mathbb{N} \subseteq \mathbb{N} \cup \{+\infty\}$

Continuous Function

Lemma. If a function f is continuous, f is monotone. This is a contradiction. Therefore, $f(a) \sqsubseteq f(b)$.

- *Proof.* Suppose that f is not monotone, i.e., for some $a \sqsubseteq b, f(a) \sqsupset f(b)$. Then,
 - $f(a) \sqsubseteq f(a) \sqcup f(b)$ (by definition of \sqcup) $= f(a \sqcup b) \qquad (by continuity of f)$ = f(b) (because $a \sqsubseteq b$)

Fixed Point

Definition (Fixed Point). Let (D, \subseteq) be a partial ordered set. A fixed point of a function $f: D \to D$ is an element x such that f(x) = x. We write lfpf for the **least fixed point** of f such that

 $f(\mathbf{lfp}f) = \mathbf{lfp}f$ and $\forall d$

CPO D. Then f has the least fixed point lfpf and **lfp***f*

$$l \in D. f(d) = d \implies \mathbf{lfp} f \sqsubseteq d$$

Theorem (Kleene Fixed Point). Let $f: D \to D$ be a continuous function on a

$$= \bigsqcup_{i \ge 0} f^i(\bot)$$

lf

- Plans: It is enough to show the following two things:
 - (1) There exists the chain $\perp \sqsubseteq$ its least upper bound $\prod f^i(\bot)$ $i \ge 0$
 - (2) The least upper bound $\prod f^i(\bot)$ is the least fixed point of f

$$\mathbf{p}f = \bigsqcup_{i \ge 0} f^i(\bot)$$

$$f(\perp) \sqsubseteq f^2(\perp) \sqsubseteq \cdots$$
 and
in D

Proof of (1)

(1) There exists the chain $\perp \sqsubseteq f(\perp) \sqsubseteq f^2(\perp) \sqsubseteq \cdots$ and its least upper bound $||f^i(\perp)|$ in D

Proof. We show by induction that

•
$$\perp \sqsubseteq f(\perp)$$

• $f^n(\perp) \sqsubseteq f^{n+1}(\perp) \implies f^{n+1}(\perp) \sqsubseteq$

Therefore, the least upper bound $\bigcup f^i(\bot)$ of the above chain is in D.

By definition of CPO, least upper bounds of all chains are also in the CPO. $i \ge 0$

$$\forall n \in \mathbb{N}. f^n(\bot) \sqsubseteq f^{n+1}(\bot):$$

 $(\perp \text{ is the least element of the CPO})$ $f^{n+2}(\perp)$ (by monotonicity of f)

Proof of (2)

(2) The least upper bound $\prod f^i(\perp)$ is the least fixed point of f $i \ge 0$ The proof consists of two parts: (2-1) $\bigsqcup_{i\geq 0} f^i(\perp)$ is a fixed point of f(2-2) $\prod f^i(\perp)$ is smaller than all the other fixed points $i \ge 0$

Proof of (2-1) (2-1) $\bigsqcup_{i\geq 0}^{f^i(\perp)}$ is a fixed point of f

Proof.

$$f(\bigsqcup_{n\geq 0} f^n(\bot)) = \bigsqcup_{n\geq 0} f(f^n)$$
 $= \bigsqcup_{n\geq 0} f^{n+1}$
 $= \bigsqcup_{n\geq 0} f^n(\bot)$

Proof of (2-2)

(2-2) $\prod_{i=1}^{j} f^{i}(\perp)$ is smaller than all the other fixed points

Proof. Suppose d is a fixed point, i.e., d = f(d). We show that any element $f^i(\perp)$ is smaller than d by induction:

upper bound $\prod f^{i}(\bot)$ is also smaller than d. Therefore

 $i \ge 0$

 $\forall n \in \mathbb{N}. f^n(\bot) \sqsubseteq d.$

• $\perp \sqsubseteq d$ • $f^n(\perp) \sqsubseteq d \implies f^{n+1}(\perp) \sqsubseteq f(d) = d$ (by monotonicity of f) $(\perp \text{ is the least element of the CPO})$

Because all the elements $f^i(\perp)$ are smaller than d , their least

 $f^{i}(\perp) = \mathbf{lfp}f$

Constructions on CPOs

- If S is a set, and D_1 and D_2 are CPOs, then the followings are CPOs
 - Lifted set : $D = S_{\perp}$
 - Cartesian product : $D = D_1 \times D_2$
 - Separated sum : $D = D_1 + D_2$
 - Function : $D = D_1 \rightarrow D_2$

Lifted Set

• $D=S_{\perp}$

For any set S, let $D = S + \{\bot\}$ where \bot is an element not in S. Then (D, \sqsubseteq) is a CPO where $d \sqsubseteq d' \iff (d)$

• Why CPO?

$$(d = d') \lor (d = \bot)$$

Cartesian Product

• $D = D_1 \times D_2$

• Why CPO? **Exercise!**

Given two CPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) , (D, \sqsubseteq) is a CPO where $D = D_1 \times D_2 = \{ (d_1, d_2) \mid d_1 \in D_1 \land d_2 \in D_2 \}$ $(d_1, d_2) \sqsubseteq (d'_1, d'_2) \iff (d_1 \sqsubseteq_1 d'_1) \land (d_2 \sqsubseteq_2 d'_2)$

Separated Sum

• $D = D_1 + D_2$

Given two CPOs (D_1, \sqsubseteq_1) and $D = D_1 + D_2 = \{(d_1, 1) \mid d_1 \in (d_1, 1) \sqsubseteq (d_1', 1) \in (d_1', 1) \in (d_2', 2)$

• Why CPO? **Exercise!**

$$(D_2, \sqsubseteq_2), (D, \sqsubseteq) \text{ is a CPO where}$$

$$\in D_1 \} \cup \{(d_2, 2) \mid d_2 \in D_2\} \cup \{\bot\}$$

$$1) \iff d_1 \sqsubseteq_1 d'_1$$

$$2) \iff d_2 \sqsubseteq_2 d'_2$$

Function

• $D = D_1 \rightarrow D_2$

• Why CPO? **Exercise**!

Given two CPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) , (D, \sqsubseteq) is a CPO where $D = D_1 \rightarrow D_2 = \{f \mid f : D_1 \rightarrow D_2 \text{ is a continuous function}\}$ $f \sqsubseteq f' \iff \forall d_1 \in D_1. \ f(d_1) \sqsubseteq_2 f'(d_1)$

Semantic Domains (Revisited)

- Domains of memories, variables, and values: CPOs
- Domain of commands: function CPO $\llbracket C \rrbracket \in \mathbb{M} \to \mathbb{M}$
- Domain of expressions: function CPO
 - $\llbracket E \rrbracket \in \mathbb{M} \to \mathbb{Z}_{\perp}$

- $\mathbb{M} = \mathbb{X} \to \mathbb{V}$
- $\mathbb{X} = Var_{\perp}$
- $\mathbb{V} = \mathbb{Z}_{\perp} + \mathbb{B}_{\perp}$

$\llbracket B \rrbracket \in \mathbb{M} \to \mathbb{B}_{\perp}$

Semantics of while (Revisited)

- Semantics of while is defined as the least fixed point as follows: (i.e., the lfp exists)
 - All the sets are CPOs
 - All the functions are continuous
 - [while B C] = lfp $\mathcal{F}_{B,C}$

where
$$\mathcal{F}_{B,C}(X)(m) = \begin{cases} \mathcal{I}_{r} \\ \mathcal{I}_{r} \end{cases}$$

 $X(\llbracket C \rrbracket(m))$ if $\llbracket B \rrbracket(m) = \texttt{true}$ mif $\llbracket B \rrbracket(m) = \texttt{false}$

Example • while (x < 10) x := x + 1</pre>

 $\llbracket \texttt{while} \ (\texttt{x} < \texttt{10}) \ \texttt{x} := \texttt{x} + \texttt{1} \rrbracket = \lambda m. \begin{cases} \llbracket \texttt{while} \ (\texttt{x} < \texttt{10}) \\ m \end{cases}$

[while (x < 10) x := x + 1] = lfp \mathcal{F} where $\mathcal{F}(\mathcal{F})$

 $\mathbf{lfp}\mathcal{F} = \bot \sqcup \mathcal{F}(\bot) \sqcup \mathcal{F}^2(\bot) \sqcup \cdots$

$$\begin{array}{ll} \texttt{0)} \ \texttt{x} := \texttt{x} + \texttt{1}]\!] ([\![x := x + \texttt{1}]\!] (m)) & \text{ if } [\![\texttt{x} < \texttt{10}]\!] (m) = \texttt{true} \\ & \text{ if } [\![\texttt{x} < \texttt{10}]\!] (m) = \texttt{fals} \end{array}$$

$$\begin{split} X) &= \lambda m. \begin{cases} X(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket \mathbf{x} < \mathbf{10} \rrbracket(m) = \mathtt{true} \\ m & \text{if } \llbracket \mathbf{x} < \mathbf{10} \rrbracket(m) = \mathtt{fall} \end{cases} \end{split}$$

.e .se .se

Example

$$\mathcal{F}(X) = \lambda m. \begin{cases} X(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ m & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases}$$

Example

$$\mathcal{F}(X) = \lambda m. \begin{cases} X(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ m & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases}$$

Example

$$\begin{aligned}
\mathcal{F}(X) &= \lambda m. \begin{cases} X(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases}
\end{aligned}$$

$$\downarrow$$

$$\begin{array}{c}
\texttt{Oiter} \\
\texttt{x} >= 10
\end{aligned}$$

$$Example \\ \mathcal{F}(X) = \lambda m. \begin{cases} X(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \text{true} \\ \text{if } \llbracket x < 10 \rrbracket(m) = \text{false} \end{cases} \\ \downarrow \\ \mathcal{F}(X) = \lambda m. \begin{cases} \bot(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \text{true} \\ \text{if } \llbracket x < 10 \rrbracket(m) = \text{false} \end{cases} \\ \mathbf{x} >= 10 \\ \mathbf{0}, 1 \text{ iter} - \mathcal{F}^{2}(\bot) = \lambda m. \begin{cases} \mathcal{F}(\bot)(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \text{true} \\ \text{if } \llbracket x < 10 \rrbracket(m) = \text{false} \end{cases} \\ \mathbf{x} >= 9 \\ \int \int [\bot(\llbracket x := x + 1 \rrbracket^{2}(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \text{true} \\ \text{if } \llbracket x < 10 \rrbracket(m) = \text{false} \end{cases}$$

 $\text{if } [\![\mathtt{x} < \texttt{10}]\!](m) = \texttt{true}$ $= \lambda m. \left\{ \begin{array}{ll} \left[\left[\mathbf{x} := \mathbf{x} + \mathbf{1} \right] \right](m) & \text{if } \left[\mathbf{x} < \mathbf{10} \right] \left(\left[\mathbf{x} := \mathbf{x} + \mathbf{1} \right] \right](m) \right) = \texttt{false} \\ m \end{array} \right.$ $\text{if} \, [\![\mathtt{x} < \texttt{10}]\!](m) = \texttt{false}$

Example

$$\begin{aligned}
\mathcal{F}(X) &= \lambda m. \begin{cases} X(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases} \end{aligned}$$

$$\downarrow \\
\mathcal{F}(X) &= \lambda m. \begin{cases} \bot(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases}$$

$$\downarrow \\
\mathcal{O}(\texttt{iter} - \mathcal{F}(\bot) &= \lambda m. \begin{cases} \bot(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases}$$

$$\downarrow \\
\mathcal{O}(\texttt{1} \texttt{iter} - \mathcal{F}^2(\bot) &= \lambda m. \begin{cases} \mathcal{F}(\bot)(\llbracket x := x + 1 \rrbracket(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases}$$

$$= \lambda m. \begin{cases} \begin{cases} \bot(\llbracket x := x + 1 \rrbracket^2(m)) & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{true} \\ & \text{if } \llbracket x < 10 \rrbracket(m) = \texttt{false} \end{cases}$$

$$= \lambda m. \begin{cases} \begin{cases} \bot(\llbracket x := x + 1 \rrbracket^2(m)) & \text{if } \llbracket x < 10 \rrbracket(\llbracket x := x + 1 \rrbracket(m)) = \texttt{true} \\ & \text{if } \llbracket x < 10 \rrbracket(\llbracket x := x + 1 \rrbracket(m)) = \texttt{false} \end{cases}$$

$$= \lambda m. \begin{cases} \begin{cases} \bot(\llbracket x := x + 1 \rrbracket^2(m)) & \text{if } \llbracket x < 10 \rrbracket(\llbracket x := x + 1 \rrbracket(m)) = \texttt{false} \\ & m \end{cases}$$

 $\text{if } [\![\mathtt{x} < \texttt{10}]\!](m) = \texttt{true}$ $\text{if } \llbracket \mathtt{x} < \texttt{10} \rrbracket(m) = \texttt{false}$

Semantic of Commands (Revisited)

- $\llbracket C \rrbracket : \mathbb{M} \to \mathbb{M}$
- $[skip] = \lambda m.m$
- $[\![C_0; C_1]\!] = \lambda m. [\![C_1]\!]$
- $\llbracket x := E \rrbracket = \lambda m.m \{$
- $\llbracket \texttt{input}(x) \rrbracket = \lambda m.m \lbrace$
- $\llbracket \texttt{if } B \texttt{ then } C_1 \texttt{ else } C_2 \rrbracket = \lambda m. \begin{cases} \llbracket \\ \end{bmatrix}$
 - while $B C = \mathbf{lfp} \lambda X$

Generality of Fixed Point

- Consider the following function H that has two components F and G
 - and $G(y) = G(y-1) \times y$
 - H(x, y) = (F(x), G(y))where F(x) = 1
- The least fixed point of H:

 - $\mathbf{lfp}H = (1, \mathbf{lfp}G)$ $= (\mathbf{lfp}F, \mathbf{lfp}G)$

Semantics of Programs

- Generally, semantics of a program is defined as the least fixed point
- A program P consists of subcomponents C_1, \ldots, C_n $P = (C_1, \ldots, C_i, \ldots, C_n)$ • The semantics of P consists of that of C_1, \ldots, C_n $., [\![C_i]\!], \ldots [\![C_n]\!])$ $\cdots \llbracket C_i \rrbracket \cdots , \ldots A_n)$ $\ldots, [\![C_i]\!], \ldots [\![C_n]\!])$

$$[P]] = (\llbracket C_1 \rrbracket, \dots$$
$$= (A_1, \dots,$$
$$= \mathcal{F}(\llbracket C_1 \rrbracket, \dots)$$

= Ifp \mathcal{F}

Summary

- Denotational semantics describes mathematical meaning of programs
 - semantics of a program is an element of a CPO: $[P] \in D$
 - semantics is the least fixed point of a continuous function: $\mathcal{F} \in D \to D$
 - compositionally defined by the semantics of subcomponents
 - the least fixed point is the least upper bound of the following chain:

 - $\llbracket P \rrbracket = \mathcal{F}(\llbracket P \rrbracket)$
 - $= \mathbf{lfp}\mathcal{F}$

$$\bigsqcup_{i\geq 0} \mathcal{F}^i(\perp)$$

[OPLSS: Static Analysis]

Static Analysis for JavaScript Specification

> Sukyoung Ryu with PLRG@KAIST and friends

> > July 4, 2023

A Simple Imperative Language

 $\begin{array}{cccc} E & ::= & n \\ & \mid & n \\ & \mid & x \\ & \mid & E \odot E \end{array}$ B ::= $\begin{array}{ccc} & \mathsf{true} & | & \mathsf{false} \\ & E & \otimes E \end{array}$ C ::= $egin{array}{ccc} ..- & {
m skip} \ & C; C \ & x:= E \end{array}$ $\mathtt{input}(x)$ while $B \ C$

arithmetic expressions integer constants variable binary operation boolean expression boolean constants comparison expressions commands command that does nothing sequence assignment command reading of a value if B then C else C conditional command loop command

Intermediate Representation for ECMAScript

Functions $\mathbb{F} \ni f ::= \det x(x^*, [x^*]) l$ Instructions $\mathbb{I} \ni i ::= \text{let } x = e \mid x = (e e^*) \mid \text{assert } e$ $| if e \ell \ell | return e | r = e$ $r ::= \mathbf{x} \mid r [e]$ References Expressions $e := t \{ [x : e]^* \} | [e^*] | e : \tau | r?$ $| e \oplus e | \ominus e | r | c | p$ $\mathbb{P} \ni p ::= undefined | null | b | n | j | s | Qs$ Primitives $\mathbb{T} \ni \tau ::= t \mid [] \mid [\tau] \mid js \mid prim$ Types undefined | null | bool | numeric | num | bigint | str | symbol

Semantic Domains (Revisited)

- Domains of memories, variables, and values: CPOs
- Domain of commands: function CPO $\llbracket C \rrbracket \in \mathbb{M} \to \mathbb{M}$
- Domain of expressions: function CPO
 - $\llbracket E \rrbracket \in \mathbb{M} \to \mathbb{Z}_{\perp}$

- $\mathbb{M} = \mathbb{X} \to \mathbb{V}$
- $\mathbb{X} = Var_{\perp}$
- $\mathbb{V} = \mathbb{Z}_{\perp} + \mathbb{B}_{\perp}$

$\llbracket B \rrbracket \in \mathbb{M} \to \mathbb{B}_{\perp}$

Semantic Domains

States	d	\in	\mathbb{S}
Contexts	κ	\in	\mathbb{C}
Heaps	h	\in	\mathbb{H}
Addresses	a	\in	A
Objects	0	\in	\mathbb{O}
Nominal Types	t	\in	\mathbb{T}_t
Environments	σ	\in	$\mathbb E$
Values	v	\in	\mathbb{V}
Constants	С	\in	\mathbb{V}_{c}
Strings	s	\in	\mathbb{V}_{s}

- $\mathbb{S} = \mathbb{L} \times \mathbb{C}^* \times \mathbb{H} \times \mathbb{E}$ $\mathbb{C} = \mathbb{L} \times \mathbb{E} \times \mathbb{X}$ $\mathbb{I} = \mathbb{A} \to \mathbb{O}$
- $\mathbb{D} = (\mathbb{T}_t \times (\mathbb{V}_s \to \mathbb{V})) \uplus \mathbb{V}^*$
- t $\mathbb{E} = \mathbb{X} \times \mathbb{V}$
- $\mathbb{V} = \mathbb{F} \uplus \mathbb{A} \uplus \mathbb{V}_c \uplus \mathbb{P}$
- \boldsymbol{c}
- \boldsymbol{s}

Semantic of Commands (Revisited)

- $\llbracket C \rrbracket : \mathbb{M} \to \mathbb{M}$
- $[skip] = \lambda m.m$
- $[\![C_0; C_1]\!] = \lambda m. [\![C_1]\!]$
- $\llbracket x := E \rrbracket = \lambda m.m \{$
- $\llbracket \texttt{input}(x) \rrbracket = \lambda m.m \lbrace$
- $\llbracket \texttt{if } B \texttt{ then } C_1 \texttt{ else } C_2 \rrbracket = \lambda m. \begin{cases} \llbracket \\ \end{bmatrix}$
 - while $B C = \mathbf{lfp} \lambda X$

$$\begin{split} & f_1]\!] ([\![C_0]\!](m)) \\ & \{x \mapsto [\![E]\!](m)\} \\ & \{x \mapsto n\} \\ & [\![C_1]\!](m) \quad \text{if } [\![B]\!](m) = \texttt{true} \\ & [\![C_2]\!](m) \quad \text{if } [\![B]\!](m) = \texttt{false} \\ & \dots \begin{pmatrix} \lambda m. \begin{cases} X([\![C]\!](m)) & \text{if } [\![B]\!](m) = \texttt{true} \\ m & \text{if } [\![B]\!](m) = \texttt{false} \end{cases} \end{pmatrix} \end{split}$$

Semantics of Instructions

B. Instructions: $\llbracket i \rrbracket_i : \mathbb{S} \to \mathbb{S}$

• Variable Declarations:

 $[\![\texttt{let}\; \mathbf{x} = e]\!]_i(d) = (\texttt{next}(\ell), \overline{\kappa}, h, \sigma[\mathbf{x} \mapsto v])$

where

$$[\![e]\!]_e(d) = ((\ell, \overline{\kappa}, h, \sigma), v)$$

• Function Calls:

$$\llbracket \mathbf{x} = (e_0 \ e_1 \cdots e_n) \rrbracket_i(d) = (\ell_f, \kappa :: \overline{\kappa}, h, \sigma')$$

where

$$\begin{split} \llbracket e_0 \rrbracket_e(d) &= (d_0, \text{def f}(p_1, \cdots, p_m) \, \ell_{\text{f}} \land \\ \llbracket e_1 \rrbracket_e(d_0) &= (d_1, v_1) \land \cdots \land \llbracket e_n \rrbracket_e(d_{n-1}) = (d_n \\ d_n &= (\ell, \overline{\kappa}, h, \sigma) \land k = \min(n, m) \land \\ \sigma' &= [p_1 \mapsto v_1, \cdots, p_k \mapsto v_k] \land \kappa = (\text{next}(\ell), \sigma) \end{split}$$

• Assertions:

$$[\![\texttt{assert}\ e]\!]_i(d) = d' \quad \text{if}\ [\![e]\!]_e(d) = (d', \texttt{\#t})$$

• <u>Branches</u>:

$$\llbracket \text{if } e \ \ell_{\text{t}} \ \ell_{\text{f}} \rrbracket_{i}(d) = \begin{cases} (\ell_{\text{t}}, \overline{\kappa}, h, \sigma) & \text{if } v = \text{\#t} \\ (\ell_{\text{f}}, \overline{\kappa}, h, \sigma) & \text{if } v = \text{\#f} \end{cases}$$

where

$$[\![e]\!]_e(d) = ((\ell_{\!\!\!\! t}, \overline{\kappa}, h, \sigma), v)$$

• <u>Returns</u>:

$$[\![\texttt{return}\; e]\!]_i(d) = (\ell, \overline{\kappa}, h, \sigma[\mathtt{x} \mapsto v])$$

where

$$\llbracket e \rrbracket_e(d) = ((_, (\ell, \sigma, \mathbf{x}) :: \overline{\kappa}, h, _), v)$$

• Variable Updates:

$$[\![\mathbf{x} = e]\!]_i(d) = (\mathsf{next}(\ell), \overline{\kappa}, h, \sigma[\mathbf{x} \mapsto v])$$

where

$$\llbracket e \rrbracket_e(d) = ((\ell, \overline{\kappa}, h, \sigma), v)$$

• Field Updates:

$$\llbracket r [e_0] = e_1 \rrbracket_i(d) = (\operatorname{next}(\ell), \overline{\kappa}, h[a \mapsto o'], \sigma)$$

where

$$\begin{split} \llbracket r \rrbracket_{e}(d) &= (d', a) \land \llbracket e_{0} \rrbracket_{e}(d') = (d_{0}, v_{0}) \land \\ \llbracket e_{1} \rrbracket_{e}(d_{0}) &= ((\ell, \overline{\kappa}, h, \sigma), v_{1}) \land o = h(a) \land \\ o' &= \begin{cases} o_{r} & \text{if } o = (t, \text{fs}) \land v_{0} = s \\ o_{l} & \text{if } o = [v'_{1}, \cdots, v'_{m}] \land v_{0} = n \\ o_{r} &= (t, \text{fs}[s \mapsto v_{1}]) \land o_{l} = [\cdots, v'_{n-1}, v_{1}, v'_{n+1}, \cdots] \end{cases}$$

 $(v_n, v_n) \wedge$

 $\sigma, {
m x})$

Semantics of Expressions

- D. Expressions: $\llbracket e \rrbracket_e : \mathbb{S} \to \mathbb{S} \times \mathbb{V}$
 - <u>Records</u>:

$$\llbracket t \{ \mathbf{x}_1 : e_1, \cdots, \mathbf{x}_n : e_n \} \rrbracket_e(d) = (d', a)$$

where

$$\begin{split} \llbracket e_1 \rrbracket_e(d) &= (d_1, v_1) \land \dots \land \llbracket e_n \rrbracket_e(d_{n-1}) = (d_n, v_n) \land \\ d_n &= (\ell, \overline{\kappa}, h, \sigma) \land fs = [\mathsf{x}_1 \mapsto v_1, \dots, \mathsf{x}_n \mapsto v_n] \\ a \not\in \mathrm{Domain}(h) \land d' &= (\ell, \overline{\kappa}, h[a \mapsto (t, fs)], \sigma) \end{split}$$

• <u>Lists</u>:

$$\llbracket [e_1, \cdots, e_n] \rrbracket_e(d) = (d', a)$$

where

$$\begin{split} \llbracket e_1 \rrbracket_e(d) &= (d_1, v_1) \wedge \dots \wedge \llbracket e_n \rrbracket_e(d_{n-1}) = (d_n, v_n) \wedge \\ d_n &= (\ell, \overline{\kappa}, h, \sigma) \wedge a \not\in \operatorname{Domain}(h) \wedge \\ d' &= (\ell, \overline{\kappa}, h[a \mapsto [v_1, \dots, v_n]], \sigma) \end{split}$$

• Type Checks:

$$\llbracket e:\tau \rrbracket_e(d) = (d',b)$$

where

$$\llbracket e \rrbracket_e(d) = (d', v) \land b = \begin{cases} \#t & \text{if } v \text{ is a value of } \tau \\ \#f & \text{otherwise} \end{cases}$$

• Variable Existence Checks:

$$[\![\mathbf{x}?]\!]_e(d) = (d,b)$$

where

$$d = (_,_,_,\sigma) \land b = \begin{cases} \#t & \text{if } x \in \text{Domain}(\sigma) \\ \#f & \text{otherwise} \end{cases}$$

• Field Existence Checks:

$$[\![r\,[\,e\,]\,?]\!]_e(d) = (d'',b)$$

where

$$\begin{split} \llbracket r \rrbracket_e(d) &= (d', a) \land \llbracket e \rrbracket_e(d') = (d'', v) \land \\ d'' &= (\ell, \overline{\kappa}, h, \sigma) \land o = h(a) \land \\ \# t \quad \text{if } o &= (t, \texttt{fs}) \land v = s \land s \in \texttt{Domain}(\texttt{fs}) \\ \# t \quad \text{if } o &= [v'_1, \cdots, v'_m] \land v = n \land 1 \leq n \leq m \\ \# f \quad \text{otherwise} \end{split}$$

• Binary Operations:

$$\llbracket e\oplus e \rrbracket_e(d) = (d'', v_0 \oplus v_1)$$

where

$$\llbracket e_0 \rrbracket_e(d) = (d', v_0) \land \llbracket e_1 \rrbracket_e(d') = (d'', v_1)$$

• Unary Operations:

$$\llbracket \ominus e \rrbracket_e(d) = (d', \ominus v)$$

where

$$\llbracket e \rrbracket_e(d) = (d', v)$$

• <u>References</u>:

$$[\![r]\!]_e(d) = [\![r]\!]_r(d)$$

• <u>Constants</u>:

$$\llbracket c \rrbracket_e(d) = (d, c)$$

• <u>Primitives</u>:

 $[\![p]\!]_e(d)=(d,p)$