[OPLSS: Static Analysis]

Abstract Interpretation

Sukyoung Ryu

[Courtesy by Prof. Kihong Heo]

July 4, 2023

OPLSS: Static Analysis

(1) Concepts in Static Analysis

(2) Operational / Denotational Semantics

(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

Abstract Interpretation

* A powerful framework for designing correct static analysis

 Framework: given some inputs, a static analysis comes out

 Powerful: all static analyses are understood in this framework
(e.g., type systems, data-flow analysis, etc)

e Correct: mathematically proven

e Estcabilished by Patrick and Radhia Cousot

* Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints, 1977

 Systematic Design of Program Analysis Frameworks, 1979

Abstract

* Concrete (execution, dynamic) vs Abstract (analysis, static)

 Without abstraction, it is undecidable to subsume all possible behavior of SW

e Recall the Rice’s theorem

Concrete Abstract

Example
X = 3;
while (x) {
X += 2;
s

X —= 1;
print(x);

Q: What are the possible output values?

- Concrete interpretation : 2, 4, ..., uncomputable (infinitely many possibilities)
- Abstract interpretation 1 : “integers” (good)

- Abstract interpretation 2 : “positive integers” (better)

- Abstract interpretation 3 : “positive even integers” (best)

How to analyze?

* Interpret the target program
e with abstract semantics (= analyzer’s concern)

* not concrete semantics (= interpreter’'s and compiler’s concern)

 Example Concrete Abstract1 Abstract2 Abstract3
X = 3: {3} Int Pos PosOdd
while (x) {
X += 2;
} {3,5,7,...} Int Pos PosOdd
X —= 1; {2,4,6,..} Int Pos PosEven

print(x);

Principles

~yy)
~yy

« How to guarantee soundness?

 How to guarantee termination?
« How to design more precise abstraction?

« How to compute abstract semantics?

Practices

~yy)
~yy

e Guidance for a lot of design choices in practice such as

e Soundness vs Scalability vs Precision vs Usability vs ...
 Characteristics of target programs and properties

e Optimizations of program analyzers

Abstract Interpretation Framework

* Abstract interpretation concerns

« Concrete semantics: [C] = IfpF €

» Abstract semantics: [C]* =| | F*(1) € D*
1 >0
 Requirements:

* Relationship between D and D*

* Relationship between F e D —+ D and F* e D* — D*
 (Guarantees:
« Correctness (soundness): [C] ~ [C]*

« Computability: [C]* is computable within finite time

Design of Static Analysis

 (Goal: conservative and terminating static analysis
* Design principles:

* Define concrete semantics

* Define abstract semantics (sound w.r.t the concrete semantics)
 Computation & implementation:

* Abstract semantics of a program: the least fixed point of the semantic function

e Static analyzer: compute the least fixed point within finite time

Step 0: Define Standard Semantics

 Formalization of a single program execution

* Recall Lecture 2 (denotation semantics)

 What to describe: different choices depending on the purpose
* E.g., denotational, operational, etc
e |n this lecture, we will use denotational semantics

* Recall the denotational semantics the simple imperative language

[C] - M — M

Step 0: Define Standard Semantics

yZz(t)

Possible
discrete
trajectories

*from Patrick Cousot’s slides

Standard Semantics

e Define a semantic domain D = M —- M (CPO)

« Define a semantic function F' : D — D (continuous)

« Semantics of a program: the least fixed point of F

IfpF = | | F*(1)

i>0

Standard Semantics of Commands

IC] : M— M
[skip] Am.m
[Co; C1]

lx:=FE]
[input(z)]

1Co

Am.[C1]([Co](m))
rm.m{x — [E](m)}
rm.m{x — n}

[if B then C else (3] = Am. {:'Cl" (m)

I(m)

[while B C] = lfpAX. ()\m. {

if [B]
if [B]

|B|(m) = true
|B[(m) = false

)

Step 1: Define Concrete Semantics

 Formalization of all possible program executions
* So-called collecting semantics
 Usually a simple extension of the standard semantics
 What to describe: different choices depending on the purposes (recall, property)
e Some are more expressive than others
 E.g., traces (sequence of states), reachable states (set of states), etc

* |n this lecture, we will use reachable states for concrete semantics

collecting
O] : M - M q [C1, - (M) - p(M)

Traces vs Reachable States

Traces s TN
Reachable
States
Can Answer: Can’t Answer:
- Can variable p be NULL at line 10? - Does the red trace exist?
- Can buffer index 1 be larger than size s? -

*from Patrick Cousot’s slides

Transitions of Sets of States

()

_ D_____________

+
-
x
+
+
:

o oo
e-e
<eee

- @- '_ L

141 i

- - - - __‘_ Iv_ _. _.______________

*from Patrick Cousot’s slides

Concrete Semantics

* Define a concrete domain D (CPO)

 Define a semantic function F : D — D (continuous)

 Then the concrete semantics is defined as the least fixed point of the
semantic function F':

IfpF = | | F*(L)

1 >0

Example

* Define a concrete semantics of the simple language using denotational semantics

o Concrete domain D = g(M) — g(M)

« Define a semantic function F : D - D

o Concrete semantics ipF € D

e Q: How to define F?

Concrete Semantics of Expressions

[E]ly : p(M) — p(Z)
np = AM.{n}
[z], = AM.{m(z) | m € M}
[E1© Ez], = AMA[E1](m) © [E2](m) | m € M}

[Ble : (M) — p(M)

[true], = AM.M
[false], = AM.0
[E1 @ B3], = AMAm e M | [E1](m) @ [E2](m) = true}

Concrete Semantics of Commands

[Cle : p(M) = p(M)

[skip], = AM.M
[Co;Ch]p = AM.[Ci]g o [Co]p(M)
lz:=E], = AM.Am{z — [E](m)} | m € M}
|[input(z)], = AM.{m{x — n}|m e M,n € Z}
[if B then C; else Cs], = AM.[C1i], o [B]o(M)U[Cs], o [-B] (M)
[while B C], = AM.[-B],(fpA\X.M U[C], o [B],(X))

Design of Static Analysis

 (Goal: conservative and terminating static analysis
* Design principles:

* Define concrete semantics

* Define abstract semantics (sound w.r.t the concrete semantics)
 Computation & implementation:

* Abstract semantics of a program: the least fixed point of the semantic function

o Static analyzer: compute the least fixed point within finite time

Step 2: Design Abstract Semantics

 Formalization of abstract program executions

e Soundly subsume concrete executions

 How to subsume: different choices depending on the purposes
(some are more expressive than others)

 Example: abstraction of {1, 3, 5, 7}

* |nteger, Positive, Odd, [1, 7], etc

Transitions of Abstract States

m(t)

Interval transition

*from Patrick Cousot’s slides

Abstract Semantics

 Define an abstract domain D*(CPO)

« Define an abstract semantic function F* -

D

¥ (monotone or extensive)

(Monotone) ‘v’af;ﬁ,yﬂ c b T yr — Fu(ivﬂ) L Fﬂ(yﬂ)

(Extensive) vzt € D. z* C F¥(z¥)

e Static analysis is to compute an upper bound of the chain:

| | FP (L)

12>0

. How to ensur that the abstract semantics
soundly subsume the concrete semantics?

Requirement 1: Galois Connection

) and

e Abstraction function: o €

D%Dﬁ

) — DF

» Concretization function: v € D¥ —

Vx €

D,azﬁ =

). ax)

) must me related with a Galois connection where

t = z C ()

Requirement 1: Galois Connection

* Intuition: order preservation between two semantic domains

Example: Sign Abstraction

W(Z) A - > {J_,—,O,-I-,T}

84

7,

e

| ay

{1,10, 100} c\

é

Example: Sign Abstraction

p(Z) A - > {J_,—,O,—F,T}

87

1L Z=90
+ VzeZ z2>0
a(Z)=¢0 Z=1{0}
-
0
{

VzeZ. 2<0

otherwise
y(L) =
v(+)={z€Z|z>0}
7(0) = {0}
v(—)={2€Z]|z<0}
V(T) =%

Example: Interval Abstraction

o(Z) —= {L} U{la,b] | a € ZU{~00},b € ZU {+00}}
4 |— 00, +00]
o ,7 o
{1,2,- - ,100}.‘/
1, 100]
|
{1,10,100}
\ _

é I

Example: Interval Abstraction

0(Z) &= {1 U {[a,b] | a € ZU {—oc0},b € Z U {+00}}

8

a(f) = L

a(X) = [minX, maxX]|
)
)

0
{xeZ|a<x<b}

Properties of Galois Connection

Vr €

), x¥ €

. a(z) C 2t <= o

Properties of Galois Connection

Ve € D, z* € D*. a(z) C 2 <= 2 C v(z)

v(a(z)) (by Galois connection)

Properties of Galois Connection

Ve € D, z* € D*. a(z) C 2 <= 2 C v(z)

e 1dC vyo« e xoy L ud
a(r) E ofz) y(z¥) T y(af)
— r C ~v(a(zx)) (by Galois connection) < a(y(z*) C oF

(by Galois connection)

Properties of Galois Connection

Ve € D, z* € D*. a(z) C 2 <= 2 C v(z)

e 1dC vyo« e xoy L ud
a(r) E ofz) y(z¥) T y(af)
— r C ~v(a(zx)) (by Galois connection) < a(y(z*) C oF

e O/ IS monotone

(id E v o a)
a(y) (by Galois connection)

8
(nRimhin
=
=
&

(by Galois connection)

Properties of Galois Connection

Ve € D, z* € D*. a(z) C 2 <= 2 C v(z)

e 1dC vyo« e oy L 2d
a(z) C az) y(zf) T y(zh)
= r C ~(a(x)) (by Galois connection) = a(y(z%) C of
e ¢ IS monotone e 7Y IS monotone
x C wy b Ty
— r E v(a(y) (idEvyoa) = a(y(z") C o
<~ «alr) C ay) (by Galois connection) = v(z*) C y(y*)

(by Galois connection)

(a0 C id)
(by Galois connection)

Deriving Galois Connections

e Pointwise lifting:

Y

Given a Galois connection D ¢ —)¥ and a set S

/

S — D < L)S—)))ﬁ

/
(87

where o (f) = Az € S. a(f(z)) and ¥/ (f*) = Az € S. v(f*(z))

e Composition:

: : : 71 Y2
Given two galois connections ID; ¢ — Dy &—— D3
1 2
y Y1072
1 > 13

2001

Example

 Concrete domain: D = p(M) — (M) where M =X — Z

 Abstract domain: D! = M¥ - M! where M! =X — 7!

. . Y
« Galois connection: D = D*

84

* Memory abstraction: (M) ¢ Zﬁ s M* via (X — Z) ¢ - : X — ZF

2 MF — (M)
wi = Amf {m | Ve.m(z) € yz(mP(z))}

YZ

az

e Value abstraction: ©(Z) &—— Z*

Requirement 2: F and F*

« F'is a sound abstraction of F' (option 1)

Fo’y;fyoFjj

« F'is a sound abstraction of F' (option 2)
r Evy(z*) = F(z) Cv(F(a*))

 Intuition: the result of ne-tp abstract execution (F?) '
' subsumes that of one-step concrete execution (F') |

Sound Abstract Semantics (1)
o Et

" Intuition: the result of one-step abstract execution (F't)
subsumes that of one-step concrete execution (F) __|

Sound Abstract Semantics (2)
z Ey(z*) = F(z) E(F*(a*))

| Intuition: the result of one-step abstract execution (F) |
| ____subsumes that of one-step concrete execution (') |

Soundness

o Static analysis result | |F*(1) soundly subsumes all possible executions

1>0

IfpF C (| | F¥(1))

i>0

 How to guarantee the soundness?

 How to compute the sound result within finite time?

Fixpoint Transfer Theorems

e With option 1

 With option 2

Theorem (Fixpoint Transfer 1). Let D and D* be related by Galois connection
D % D Let F : D — D be a continuous function and F* : D — D! be a

monotone or extensive function such that F oy C vo F*. Then,

IfpF C (| | F*(L")).

i>0

Theorem (Fixpoint Transfer 2). Let D and D* be related by Galois connection
D % D Let F: D — D be a continuous function and F* : D} — D¥ be a

monotone or extensive function such that x C y(z*) = F(x) C v(F*(z")).
Then,

IfpF C (| | F¥(L%).

i>0

Design of Static Analysis

 Goal: conservative and terminating static analysis
* Design principles:

* Define concrete semantics

* Define abstract semantics (sound w.r.t the concrete semantics)
 Computation & implementation:

* Abstract semantics of a program: the least fixed point of the semantic function

o Static analyzer: compute the least fixed point within finite time

Computing Abstract Semantics

» [If the abstract domain D* has finite height (i.e., all chains are finite)

|| PR

i>0

» If the abstract domain D has infinite height, we compute a finite chain
viCcylCcyvlC...Ccv}

— — T lim

such that

| | F¥ (L% C vy

lim
. i>0
where F*is monotone

Fixed Points

postfp(F*) = {z! € D* | F*(z*) C 2%}

fp(F*) = {a* € D* | F¥(a) = 2"}

p
The ideal resultl

. o

prefp(Fﬁ) — {:1:ti c DF | zh T Fﬁ(a:ﬁ)}

J

Widening

v : D! x DF — DF

Widening: enforcing the convergence of
fix point iterations

Narrowing

A D! x Df — DF

Narrowing: refining the analysis results
with widening

o
4 —

Final analysis result

N\ j

Overshooting by Widening

|| P C v,
1 >0

e Define finite chain {Yzﬂ}z by an widening operator V €

Y} = 1t
y ! _ Yiﬂ it Fﬁ(Y;'ﬁ) —
v Y} v FYY}) otherwise

Finite Increasing Chain with Widening

YJET+1 — Y]E,

|
Y]gf — Yii\ir—1 \ Fﬂ(Y]E,_])

F Idj(lm) vi— vty Py}
FE(LF) vi =¥} v)
Original Chain New Chain with Widening

. ditia eied t nure i
| | FE(Y v,
>0

Safety of Widening Operator

e Conditions on widening operator:

e Va,beD! (aCaVb) AN (bCaVb)

o Vincreasing chain {z;};, the following increasing chain {y;}; is finite:
Yo = o
Yi+t1 = Yi V Tit1
e Then,
e Chain {Y}*}, is finite

|| PR Y,
1 >0

Refinement by Narrowing

I—I Fﬁi(J_ﬁ) — 7#

— “lim
1 >0

e Define finite chain {Zf}Z by an narrowing operator A €
Z; = Y

Ziy, = Z; N FYZ)

Finite Decreasing Chain with Narrowing

Original Chain

| | PP (L)

i>0

Zt =Y}

lim
|

7' =78 N FYZY)

|
Zy = Z; & FH(Z))

Z?v — Zi]jv—l A Fﬁ(Zyvq)
|

N A
Zny1 = 4N

New Chain with Narrowing

Safety of Narrowing Operator

e Conditions on narrowing operator:

e Va,beD!. a b — a Jd(a ADb)

b

 For all decreasing chain {z;}:, the following decreasing chain {v.}: is finite
Yo = Lo

Yit1 = Yi & Ty
e Then,
. Decreasing chain {Z'}: is finite

. I_I FﬁZ(J—ﬁ) ; Zlim
1 >0

Summary

Abstract interpretation: a framework for designing correct static analysis
Galois connection, sound abstract semantic function: soundness guarantee

* Fixpoint transfer theorem
Widening: termination guarantee

Narrowing: refinement of widening results

Abstract Interpretation Frameworks

Patrick Cousot Radhia Cousot
LIENS, Fcole Normale Supérieure LIX, Ecole Polytechnique
45, rue d’Ulm 91128 Palaiseau cedex (France)
75230 Paris cedex 05 (France)

cousot@dmi.ens.fr radhia@polytechnique.fr

Abstract

We introduce abstract interpretation frameworks which are variations on the archetypal framework
using Galois connections between concrete and abstract semantics, widenings and narrowings and
are obtained by relaxation of the original hypotheses. We consider various ways of establishing the
correctness of an abstract interpretation depending on how the relation between the concrete and
abstract semantics is defined. We insist upon those correspondences allowing for the inducing of
the approximate abstract semantics from the concrete one. Furthermore we study various notions
of widening and narrowing as a means of obtaining convergence in the iterations used in abstract

interpretation.

5 e Patrick Cousot & Radhia Cousot. Abstract interpretation frameworks. Journal of Logic and Computation, 2(4):511—547, August 1992.

Abstract Interpretation Frameworks

Concepts
concrete abstract
concretization abstraction
more precise less precise
is approximated by approximates
widening narrowing
minimal maximal
monotonic monotonic
increasing decreasing
least fixpoint greatest fixpoint
reductive extensive

(Galois connections

(S; C) = (9; '

)

(8" =

Sets

P Ph
C A
Set elements
C a
Iy A1
1k Tt
Th IR

: 4

lfpfn F" gfpfn F*

Functions
o Y
F" F!
Hh Hﬂ

539

V| Al
AR

s i

s i
Relations
p | pt
o g1
8 Y
Y 87
<b |
b | <t
~0 | &t
—h |
a0 |

Figure 1: Dual abstract interpretations

9 In conclusion, which framework to use?”

Starting from the definition of the concrete semantics (P?; 18 Hh) of programs,

1. an abstract semantic domain P* which is an approximate version of the concrete
semantic domain P?; and

2. a method for defining an abstract semantics (_Lﬁ, F* Hﬁ) of programs; and

3. the specification of the soundness correspondence between the concrete and
abstract properties; and

4. a convergence criterion of the abstract iteration sequence, ensuring the best
possible precision; and

5. a convergence acceleration method ensuring rapid termination of the abstract
Interpreter.

We have discussed several abstract interpretation frameworks, obtained by weakening
the hypotheses made in [6, 7, 10, 12, 19]. Each one has many variants, most of them
have not been explicitly formulated for short (such as for example the use of an
abstraction function together with a concrete approximation relation). To simplify,
the principal alternatives are:

1.
2.

using a soundness relation o; or

using an abstraction relation a € p(P? x P*) and an abstract approximation
relation <¥ so that the soundness relation is {c, a) € o < Ja’ € P*: (¢, a') €
A a <% a;or

. using a concretization relation v € p(P* x P) and a concrete approximation

relation <% so that the soundness relation is (¢, a) € 0 © 3¢’ € Ph:¢c <t ¢ A
(a, c’') € ; or

. using an abstraction function o € P — P¥ and an abstract approximation

relation <* so that the soundness relation is (¢, a) € 0 < a(c) =¥ a; or

. using a concretization function v € P* — P! and a concrete approximation

relation <% so that the soundness relation is (¢, a) € ¢ < ¢ <% 4(a); or

. using an Galois connection (P%; <7 = (P%; <*) so that the soundness

relation is {c, a) €0 < alc) <P a & c <" y(a).

For a given application, the more powerful applicable framework should be chosen so
as to benefit from the best possible guidelines for designing that application. This
choice should be guided by the following principles:

1. Preference should be given to the inducing of the abstract interpretation from
the starting semantics over empirical designs followed by a postertor: soundness
verifications; and

2. Efliciency of the implementation should be taken into account during the design
of the abstract interpretation (that is in the choice of P* but, in addition, in

that of F#, v* and AP,

Numerous abstract 1nterpretat10n frameworks ex1st and many more are to come in
crder [take into account the ecuharltles of each - ractlcal 31tuat10n ‘We give our
preference t0 language ‘and semantics 1ndependent formulations and hope that this
will lead to a cross-fertilization of the various domains of application of abstract
interpretation.

[OPLSS: Static Analysis]

Static Analysis for
JavaScript Specification

Sukyoung Ryu
with PLRG@KAIST and friends

July 4, 2023

Intermediate Representation for ECMAScript

def x (x™, [x7]) /[

Functions [F > f

Instructions I3 7 ::= let x=e|x= (ee*) | asserte
| ifel [| returne|r=ce

References ro=x|rle]

Expressions e=1t{|x:el*y|[e*]|e:T|T?
le@e|Ce|r|c]p

Primitives P 3 p ::= undefined | null |b|n|j|s|@s

Types TBT:::H [] ‘ [T] ‘js|prim

undefined ‘ null | bool | numeric

num ‘ bigint | str | symbol

Semantic Domains

States de S =
Contexts ke C =
Heaps he H =
Addresses a € A
Objects oc O =
Nominal Types t € T
Environments o € E =
Values v E V =
Constants c € V,
Strings s € Vg

Semantics of Instructions

e Branches:

[if e & [e]i(d) = { E?;Z:

B. Instructions: (i]; :S — S ho) ifv=#t
e Variable Declarations: h,o) ifv=#f

where

[[let X = e]]i(d) = (next([), K, h, U[x —> ’U]) le]e(d) = (&, %, h,0),)
h o Returns:
winere
return el;(d) = ([, K, h,o|x — v
lel.(d) = ((£,7, h,o),v) [return e];(d) = ([x = v])
where
e Function Calls: le]e(d) = ((, (£,0,%) = &, h,_),)
[[x — (egeq1--- 6n)]]i(d) _ ([f,) E, h, O'/) e Variable Updates:
[x = e];(d) = (next((), R, h,o[x — v])
where where
leo]e(d) = (do,def £ (p1, -+ ,om) EA lee(d) = (£, %, 0),v)
161:6((10) — (d1, 'Ul) A A Hen]]e(dn—l) — (dn, Un)/\ o Field Updates:
d, = ([,R,h,0) N k =min(n,m)A [rieo] = e1]i(d) = (next([),R,hla — o], 0)
o = [pl = V1, - ,pkl—)vk]/\liz(next([),U,X) where

[r]e(d) = (d';a) A [eo]le(d’) = (do, vo)A
lei]e(do) = ((£,K,h,0),v1) Ao = h(a)A
o ifo=(t,fs)ANvg=s

[assert €];(d) =d" if [e].(d) = (d', #t) o' = o ifo=[v), - v]Avp=n "

O = (t, fS[S —> ’Ul]) A\ 0] = [* e ,'U;;,_la’vla'vf:z-l-l)')]

e Assertions:

Semantics of Expressions

D. Expressions: [e]o:S - S xV

e Records:

[t {x1:€e1, " ,x, :€n}]e(d) = (d,a)

[e1]e(d) = (d1,v1) A=+ Alen]e(dn—1) = (dn, vn)A

d, = ([,E,h,a)/\fs = [Xl = V1, ,Xn r—)vn]
a ¢ Domain(h) Ad' = ([, &, hla — (t, £s)], 0)

o Lists:

[[[617 T aen]]]e(d) — (dlaa')

where

lei]e(d) = (d1,v1) A~ Aen]le(dn—1) = (dn, vr)A

d, = ([,R,h,0) A a & Domain(h)A
d = ([,k,hla— [v1, - ,v,]],0)

o Type Checks:

[e : T]e(d) = (d',b)
where
[e]e(d) = (d',v) ANb= {

o Variable Existence Checks:

[x2]e(d) = (d, D)

#t 1f v is a value of 7
#f otherwise

where

d:(_,_,_,a)/\bz{

#t if x € Domain(o)
#f otherwise

o Field Existence Checks:

[rie12]e(d) = (d”,b)
where
[r]e(d) = (d',a) A [e]e(d’) = (d”,v)A
d" = ({,k,h,0) No= h(a)A
#t ifo= (t,fs) Av=sAs &€ Domain(fs)
b=< #t ifo=[], -, v]Av=nAl1<n<m
{ #f otherwise

Binary Operations:
[e ® e]e(d) = (d”,vo & v1)

where

[eo]e(d) = (d',v0) A [er]e(d) = (a7, v1)
Unary Operations:
[© e]e(d) = (d', o v)

where
[e]e(d) = (d',v)
References:
[]e(d) = [r]-(d)
Constants:
[c]e(d) = (d, c)
Primitives:

[ple(d) = (d, p)

Abstract Semantic Domains

Abstract States d* € S =M xR
Result Maps m e M =L x T* — EF
Return Point Maps re R=FxT*— Pl xT* x X)

Abstract Environments of € Ef = X — T#
Abstract Types ™ e T* = P(T)

Abstract Semantic Functions

Then, we define the abstract semantics [P]* of a program P
as the least fixpoint of the abstract transfer F* : S¥ — SF:

[[P]]ﬁ = limn%w(Fﬁ)n(dE)
FH(d*) = d* U (L myepomingmy [0t (DI 7) (@)

where d* = (m,_) and d* denotes the initial abstract state.

B. Instructions: |[z]]ti (L x T*) — S¥ — SF

e Variable Declarations:

[1et x = e](£,7)(d") = ({(next((),7) — ok}, @)

where
d* = (m,_) Ao* =m([,7)A

o = 0¥ > [e]i(o)

