
Sukyoung Ryu

with PLRG@KAIST and friends

July 5, 2023

[OPLSS: Static Analysis]

Automatic Derivation of Static Analysis

(1) Concepts in Static Analysis

(2) Operational / Denotational Semantics

(3) Abstract Interpretation

(4) Automatic Derivation of Static Analysis

OPLSS: Static Analysis

Sukyoung Ryu

with PLRG@KAIST and friends

July 5, 2023

[OPLSS: Static Analysis]

How to design and implement
programming languages

KAIST: Exception Analyzer

Harvard: Debugging Everywhere

Sun Microsystems: Fortress

KAIST: JavaScript Analyzer

https://octoverse.github.com/

https://octoverse.github.com/

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == ![]

 -> [] == false

 -> +[] == +false

 -> 0 == 0

 -> true

JavaScript Analyzer
SAFE @ KAIST

TAJS @ Aarhus University
WALA @ IBM T.J. Watson

ECMA-262: JavaScript Language Specification

The production of ArrayLiteral in ES12

Syntax

maintained by

ECMA-262: JavaScript Language Specification

The production of ArrayLiteral in ES12
The Evaluation algorithm for 

the third alternative of ArrayLiteral in ES12

Syntax

Semantics
maintained by

Problem: Hand-Written JavaScript Static Analyzer

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

define abstract

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

Problem: Hand-Written JavaScript Static Analyzer

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

Formal

Semantics

<latexit sha1_base64="a8rkyxWqADWwo4chPaKrQZo9g6M=">AAACPXicbVC7SgNBFJ2Nr/h+lVqMBsHGsCtBLYM2lgpGA5slzE5ukiHzWGZmxbDkM2z1U/wOP8BObG2dTbYw0QsXDufc54kTzoz1/XevNDe/sLhUXl5ZXVvf2Nza3rk3KtUUGlRxpZsxMcCZhIZllkMz0UBEzOEhHlzl+sMjaMOUvLPDBCJBepJ1GSXWUWHYOgjxCY5aB1F7q+JX/XHgvyAoQAUVcdPe9vZbHUVTAdJSTowJAz+xUUa0ZZTDaKWVGkgIHZAehA5KIsBE2fjmET5yTAd3lXYpLR6zvzsyIowZithVCmL7ZlbLyf+0MLXdiyhjMkktSDpZ1E05tgrnBuAO00AtHzpAqGbuVkz7RBNqnU1Tk+6CKMuPy8dMrX+a/DBVLMgAtFLCPUgkBT5yfgaz7v0F96fV4Kxau61V6peFs2W0hw7RMQrQOaqja3SDGogihZ7RC3r13rwP79P7mpSWvKJnF02F9/0DoGauIA==</latexit>

[[�]] abstractdefine

<latexit sha1_base64="73i+wUK58YewWc1CG/tcNMX86mQ=">AAACn3icbVHLbtNAFB2bVymvFJawMERIrCy7qqDLuhUUKoSCkjRFsRVdT67TUeZhzYyrRlY+kmW/hC3jxEJJy5VGOue+75m85MzYKLrx/Hv3Hzx8tPN498nTZ89fdPZenhtVaYpDqrjSFzkY5Ezi0DLL8aLUCCLnOMrnJ018dIXaMCUHdlFiJmAmWcEoWOeadOZpjjMma9AaFsuaL3dTi9fWFHU/+fJ5mab/+CA562/yUfI92eRn/eTbJg/DcEVRTtvuk043CqOVBXdB3IIuaa032fPepFNFK4HSUg7GjOOotJlrZxnl6HatDJZA5zDDsYMSBJqsXqmyDN47zzQolHZP2mDl3ayoQRizELnLFGAvze1Y4/xfbFzZ4jCrmSwri5KuBxUVD6wKGomDKdNILV84AFQzt2tAL0EDte4jtjoN4qxulmvabI2/Xt+wlSxgjlop4Q4ESZE3esa31bsLzvfD+GN48POge3TcKrtDXpN35AOJySdyRL6SHhkSSn6TPx7xPP+tf+r/8HvrVN9ra16RLfN//QVuVNB8</latexit>

SAFE
TAJS
WALA
JSAI
...

analyzer
developer

manual manual

[ECOOP'10]

[POPL'14]

[PLDI'15]

[POPL'17]

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
... [FOOL'12]

[SAS'09]

[ECOOP'12]

[FSE'14]

define abstract

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

Problem: Fast Evolving JavaScript

1996 1998 2000 2002 2004 2008 2010 2012 2014

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
...

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

Problem: Fast Evolving JavaScript

1996 1998 2000 2002 2004 2008 2010 2012 2014 2016 2018 2020 2022

1997 - ES1
First edition

1998 - ES2
Editorial 
changes

1999 - ES3
RegEx, String, 
Try/catch, etc

2009 - ES5
getters/setters,

strict mode,

exceptions, etc

2011 - ES5.1
Editorial 
Changes

2015 - ES6
classes, modules, etc.

2016 - ES7
destructuring patterns, etc.

Annual Releases

2017 - ES8
object manipulation, etc.

2018 - ES9
2020 - ES11

ES.Next

2019 - ES10
2021 - ES12

ECMAScript 2021 (ES12) - 879 pages

<latexit sha1_base64="MIe41XfV/Rjo6kgw3dO6hEXxyHA=">AAACpnicbVHbattAEF2pl7juzWkf2wdRU8iTkEpI+xialzQtJSVxHLCEO1qNnMWrXbE7CjHC/9n+TOnKViFKOrBw5sz9bFZJYSmKfnv+g4ePHu8MngyfPnv+4uVo99WF1bXhOOFaanOZgUUpFE5IkMTLyiCUmcRptjxq49NrNFZodU6rCtMSFkoUggM5aj4ySYYLoRowBlbrRq6HiXTVOcwTwhuyRXNytk6S4T/va989Ofvyre8foaHbTBiGGxdV3g2Zj8ZRGG0suA/iDoxZZ6fzXe9tkmtel6iIS7B2FkcVpa4dCS7RrVxbrIAvYYEzBxWUaNNmI846eO+YPCi0cU9RsGFvVzRQWrsqM5dZAl3Zu7GW/F9sVlPxKW2EqmpCxbeDiloGpINW6SAXBjnJlQPAjXC7BvwKDHBy/9HrdB6nTbtc26Y3/mZ7Qy+5hCUarUt3ICiOstUzvqvefXDxIYwPwv0f++PDz52yA/aGvWN7LGYf2SE7Zqdswjj7xf54O97A3/O/+xN/uk31va7mNeuZ//Mv5wzUIw==</latexit>

�JS
KJS
JSIL
JSCert
...

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert
<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="bFjUIf8UdRmAPc2FjPUcR6RCit8=">AAAClnicbVDLattAFB0rfSTpI06yCTSLoaali2KkEtquitWQNg1duNiOA5Ywo/GVM3geYmYUYoT6ffmF/ES27bIjWyl10gsDZ84993WSjDNjff+64a09ePjo8frG5pOnz55vNbd3To3KNYUBVVzps4QY4EzCwDLL4SzTQETCYZjMDqv88AK0YUr27TyDWJCpZCmjxDpq3EyiBKZMFkRrMi8L3il+lrzcjCxcWpMWvfDLUfkWv8a3RD886ZVR9FcwDL+HleD2f9ILvy3yICd103Gz5bf9ReD7IKhBC9XRHW839qOJorkAaSknxowCP7Oxa2cZ5eC2yw1khM7IFEYOSiLAxMXCjBK/cswEp0q7Jy1esP9WFEQYMxeJUwpiz83dXEX+LzfKbfoxLpjMcguSLgelOcdW4cpZPGEaqOVzBwjVzO2K6TnRhFrn/0qnfhAX1XJVm5Xxl8sbVsSCzEArJdyBRFLglZ/BXffug9N37eB9++DHQavzuXZ2Hb1AL9EbFKAPqIOOURcNEEVX6Ab9Qr+9Pe+Td+R9XUq9Rl2zi1bC6/4Be5nOhA==</latexit>

SAFE, TAJS
WALA, JSAI

<latexit sha1_base64="MJ/kdLY9U4kkYOGJnSN4fLHVAm4=">AAACYHicbVDNTttAEN6YQgOlkMANelgRVeoBRTZChSMqF0p7oIIAUmJF6804rLI/1u64IrLyEjwNV3iLXnkS1kmQamCkkb755v9LMikchuG/WrDwYXHpY3155dPq57X1RnPj0pnccuhwI429TpgDKTR0UKCE68wCU4mEq2R0XOav/oJ1wugLHGcQKzbUIhWcoaf6jd0ewi26tPh1ej7ZpS/R6fnP35XwGCxO+o1W2A6nRt+CaA5aZG5n/WbtS29geK5AI5fMuW4UZhgXzKLgEiYrvdxBxviIDaHroWYKXFxM35rQr54Z0NRY7xrplP2/o2DKubFKfKVieONe50ryvVw3x/QwLoTOcgTNZ4vSXFI0tNSIDoQFjnLsAeNW+Fspv2GWcfRKViZdRHFRHleOqay/nf1QKVZsBNYY5R9kmoMs9Yxeq/cWXO61o+/t/T/7raMfc2XrZJvskG8kIgfkiJyQM9IhnNyRe/JAHmtPQT1YD5qz0qA279kkFQu2ngH3zbl7</latexit>

KJS, JSIL, JSCert

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

Main Idea: Deriving Static Analyzer from Spec.

ECMA-262

Analysis

Result

JavaScript

Programs

JS Static

Analyzer

automatically
derive

?

Overall Structure

ECMA-262

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

[FSE’22]

Mechanized

Specification

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]

Conformance Test

Synthesis

Type Analysis for

Specification

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

fs

[PLDI’23]

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

erent tools to detect bugs in JavaScript specifications and engines; JESTerential testing with JavaScript engines and JSTAR

2. Specifi
Validity Check

[ICSE'21] [ASE'21]

Mechanized

SpecificationECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specifi

JISET: JavaScript IR-based Semantics Extraction Toolchain
Jihyeok Park, Jihee Park, Seungmin An, and Sukyoung Ryu

[FSE’22]

erent tools to detect bugs in JavaScript specifications and engines; JEST

[ICSE'21]

fs

Motivation: Patterns in Writing Style of ECMA-262

The Evaluation algorithm for 
the third alternative of ArrayLiteral in ES12

• IRES - Intermediate Representation for ECMAScript

Key Idea: Metalanguage for ECMA-262

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

A Meta-Level Static Analysis for JavaScript
Anonymous Author(s)

In this report, we formalize a meta-level static analysis for
JavaScript as a de�ned-language with IRES as a de�ning-
language. We �rst de�ne IRES and a JavaScript de�nitional
interpreter as an IRES program. Then, we de�ne a meta-level
static analysis for JavaScript with the abstract semantics of
IRES in the abstract interpretation framework [2, 3]. In addi-
tion, we explain how to indirectly express abstract domains
and analysis sensitivities for JavaScript.

1 IRES: An IR for ECMAScript
We �rst de�ne IRES, an Intermediate Representation for EC-
MAScript, with its collecting and restricted semantics.

Programs P 3 % ::= 5 ⇤

Functions F 3 5 ::= syntax? def x(x⇤) {[l : 8]⇤}
Variables X 3 x
Labels L 3 l
Instructions I 3 8 ::= A B 4 | x B {} | x B 4(4⇤)

| if 4 l l | return 4
Expressions E 3 4 ::= Ep | op(4⇤) | A
References R 3 A ::= x | 4[4] | 4[4]js
Syntax and Notations. An IRES program % is a sequence

of functions. A function 5 is de�ned with its name, parame-
ters, and body instructions with labels. If it is de�ned with
the pre�x syntax, it is a syntax-directed function, otherwise,
a normal function. An instruction 8 is a reference update,
an object allocation, a function call, a branch, or a return
instruction. An expression 4 is a primitive value, a primitive
operation, or a reference expression. A reference is a vari-
able, an internal �eld access, or an external �eld access. For
a given program % , three helper functions func : L ! F ,
inst : L ! I, and next : L ! L return the function,
instruction, and next label, respectively, of a given label.

States f 2 S = L ⇥ E ⇥ C⇤ ⇥ H
Environments d 2 E = X �n��!V
Calling Contexts 2 2 C = L ⇥ E
Heaps ⌘ 2 H = A

�n��!L ⇥M ⇥Mjs

Internal Field Maps < 2 M = Vstr
�n��!V

External Field Maps <js 2 Mjs = Vstr
�n��!V

Values E 2 V = A] Vp] T] F
Primitive Values Ep 2 Vp = Vbool] Vint] Vstr] · · ·
JS ASTs C 2 T

Concrete States. An IRES state f 2 S consists of a label,
an environment, a stack of calling contexts, and a heap. An
environment d 2 E is a �nite mapping from variables to
values. A calling context 2 2 C consists of a label and an

environment of the caller. A heap ⌘ 2 H is a �nite map-
ping from addresses to labels for allocation sites and two
�nite mappings from strings to values. The former mapping
represents internal �elds accessible by 4[4], and the latter
represents external �elds accessible by 4[4]js. A value E 2 V
is an address, a primitive value (e.g., a boolean 1, an integer : ,
and a string B), a JavaScript AST C 2 T, or a function 5 2 F .
Since IRES treats JavaScript ASTs as its values, we de�ne

them with tree nodes � as follows:
T 3 C ::= g: hq⇤i
� 3 q ::= B | C

A JavaScript AST g: hq1, · · · ,q=i denotes :-th alternative
in the syntactic production of nonterminal symbol g with
multiple tree nodes q1, · · · ,q= . A tree node is a string for a
terminal symbol or another tree for a nonterminal symbol.
We de�ne several notations to easily deal with JavaScript
ASTs. The notation g: .eval denotes an Evaluation function of
:-th alternative in the production g . Similarly, the notation
C .eval denotes the Evaluation function of the AST C , and it
is same with g: .eval when C = g: h· · · i. The Evaluation of
each AST takes the AST itself and its tree nodes that are
nonterminals as arguments. The notation subs(C) denotes
tree nodes that are subtrees of C .

Collecting Semantics. We de�ne denotational semantics
of instructions J8K : S! S and expressions J4K : S! V in
Section 1.1 and Section 1.2, respectively. Then, the collecting
semantics J%K of an IRES program % is a set of reachable states
P(S) from the initial states S] ✓ S. We can compute it using
a �xpoint algorithm:

J%K = lim
=!1

�= (S])

with a transfer function � : P(S) ! P(S):
� (() = ([{f 0 2 S | f 2 (^ f {% f 0}

where f {% f 0 denotes the one-step transition of a state f
to another state f 0 in the program % :

f {% f 0 () f = (l , _, _, _) ^ Jinst(l)K(f) = f 0

Restricted Semantics. Moreover, the restricted semantics
J%KR : P(S) ! P(S) is a set of reachable states from the
initial states restricted by a given set of states:

J%KR (() = lim
=!1

�= (S] \ ()

1.1 Instructions
J8K : S! S

• Variable Assignments:

Jx B 4K(f) = (next(l), d [x 7! E], 2,⌘)
1

Key Idea: Metalanguage for ECMA-262

compile

JISET [ASE'20]

ECMA-262 IRES

Functions

JavaScript IR-based Semantics Extraction Toolchain

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Spec.

Extractor

BNFES

Productions

Mechanized
Specification

Abstract

Algorithms

JavaScript

Parser

Parser

Generator

Algorithm

Compiler

Compile

Rules

Syntax Parsing Expression Grammar
+ Lookahead Parsing

JISET [ASE'20]

ECMA-262 IRES

Functions

JavaScript IR-based Semantics Extraction Toolchain

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Spec.

Extractor

BNFES

Productions

Mechanized
Specification

Abstract

Algorithms

JavaScript

Parser

Parser

Generator

Algorithm

Compiler

Compile

Rules

Syntax

Semantics

Parsing Expression Grammar
+ Lookahead Parsing

118 Compile Rules

JISET - Evaluation ≈ 96% Compiled

JISET - Evaluation ≈ 96% Compiled

Complete
Missing Parts

Passed
All Tests
• Test262 

(Official Conformance Tests)

- 18,556 applicable tests

• Parsing tests

- Passed all 18,556 tests

• Evaluation Tests

- Passed all 18,556 tests

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

erential testing with JavaScript engines and JSTAR

2. Specification
Validity Check

[ICSE'21] [ASE'21]

Mechanized

SpecificationECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specifi

JEST: N+1-version Differential Testing of Both JavaScript Engines
Jihyeok Park, Seungmin An, Dongjun Youn, Gyeongwon Kim, and Sukyoung Ryu

[FSE’22]

erent tools to detect bugs in JavaScript specifications and engines; JEST

[ICSE'21]

fs

JEST - Conformance with Engines

Conform

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMA-262

QuickJS
?

JEST - N+1-version Differential Testing

Synthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

JavaScript
Engines

ECMA-262

Test QuickJS

test

An engine bug in

test

test

test

JEST - N+1-version Differential Testing

A specification bug in A specification bug in ECMA-262
An engine bug in

TestSynthesize

Reference number
ECMA-123:2009

© Ecma International 2009

ECMA-262
11th Edition / June 2020

ECMAScript® 2020
Language Specification

ECMA-262
JavaScript

Engines

QuickJS

test

test

test

test

JEST [ICSE'21]

Mechanized

Specification

JavaScript

Engines

Mechanized
Specification

Assertion

Injector

Engine

Bugs

Program

Mutator

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer

JS Programs

Conformance

Tests

Specification

Bugs

Syntax-directed

Program Generation

Conformance Bugs

JEST [ICSE'21]

Mechanized

Specification

JavaScript

Engines

Mechanized
Specification

Assertion

Injector

Engine

Bugs

Program

Mutator

Coverage-guided

Mutation

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer

JS Programs

Conformance

Tests

Specification

Bugs

Syntax-directed

Program Generation

Conformance Bugs

JEST [ICSE'21]

Mechanized

Specification

JavaScript

Engines

Mechanized
Specification

Assertion

Injector

Engine

Bugs

Program

Mutator

Coverage-guided

Mutation

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer

JS Programs

Conformance

Tests

Specification

Bugs

Syntax-directed

Program Generation

Final State-based

Assertions

Conformance Bugs

JEST - Assertion Injector (7 Kinds)

 var x = 1 + 2;

+ $assert.sameValue(x, 3);

1. Exceptions (Exc) 
 

2. Aborts (Abort) 
 

3. Variable Values (Var) 
 

4. Object Values (Obj)

JEST - Assertion Injector (7 Kinds)

+ // Throw

 let x = 42;

 function x() {};

 var x = 1 + 2;

+ $assert.sameValue(x, 3);

+ // Abort

 var x = 42; x++;

 var x = {}, y = {}, z = { p: x, q: y };

+ $assert.sameValue(z.p, x); 
+ $assert.sameValue(z.q, y);

5. Object Properties (Desc) 
 
 
 

6. Property Keys (Key) 
 
 
 

7. Internal Methods and 
Slots (In)

JEST - Assertion Injector (7 Kinds)
 var x = { p: 42 };

+ $verifyProperty(x, "p", {

+ value: 42.0, writable: true, 
+ enumerable: true, configurable: true 
+ });

 var x = {[Symbol.match]: 0, p: 0, 3: 0, q: 0, 1: 0}

+ $assert.compareArray( 
+ Reflect.ownKeys(x), 
+ ["1", "3", "p", "q", Symbol.match]

+);

 function f() {}

+ $assert.sameValue(Object.getPrototypeOf(f),

+ Function.prototype);

+ $assert.sameValue(Object.isExtensible(x), true); 
+ $assert.callable(f); 
+ $assert.constructable(f);

• JEST successfully synthesized 1,700 conformance tests from ES11

JEST - Evaluation

JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification

Jihyeok Park
School of Computing

KAIST

Daejeon, South Korea
jhpark0223@kaist.ac.kr

Seungmin An
School of Computing

KAIST

Daejeon, South Korea
h2oche@kaist.ac.kr

Dongjun Youn
School of Computing

KAIST

Daejeon, South Korea
f52985@kaist.ac.kr

Gyeongwon Kim
School of Computing

KAIST

Daejeon, South Korea
gyeongwon.kim@kaist.ac.kr

Sukyoung Ryu
School of Computing

KAIST

Daejeon, South Korea
sryu.cs@kaist.ac.kr

GraalVM
Abstract—Modern programming follows the continuous inte-

gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,

each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential

testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well

44 Bugs
in Engines

• JEST successfully synthesized 1,700 conformance tests from ES11

JEST - Evaluation

27 Bugs
in Spec.

JEST: N+1-version Differential Testing of
Both JavaScript Engines and Specification

Jihyeok Park
School of Computing

KAIST

Daejeon, South Korea
jhpark0223@kaist.ac.kr

Seungmin An
School of Computing

KAIST

Daejeon, South Korea
h2oche@kaist.ac.kr

Dongjun Youn
School of Computing

KAIST

Daejeon, South Korea
f52985@kaist.ac.kr

Gyeongwon Kim
School of Computing

KAIST

Daejeon, South Korea
gyeongwon.kim@kaist.ac.kr

Sukyoung Ryu
School of Computing

KAIST

Daejeon, South Korea
sryu.cs@kaist.ac.kr

GraalVM
Abstract—Modern programming follows the continuous inte-

gration (CI) and continuous deployment (CD) approach rather
than the traditional waterfall model. Even the development of
modern programming languages uses the CI/CD approach to
swiftly provide new language features and to adapt to new devel-
opment environments. Unlike in the conventional approach, in the
modern CI/CD approach, a language specification is no more the
oracle of the language semantics because both the specification
and its implementations (interpreters or compilers) can co-evolve.
In this setting, both the specification and implementations may
have bugs, and guaranteeing their correctness is non-trivial.

In this paper, we propose a novel N+1-version differential
testing to resolve the problem. Unlike the traditional differential
testing, our approach consists of three steps: 1) to automatically
synthesize programs guided by the syntax and semantics from a
given language specification, 2) to generate conformance tests by
injecting assertions to the synthesized programs to check their
final program states, 3) to detect bugs in the specification and
implementations via executing the conformance tests on multiple
implementations, and 4) to localize bugs on the specification
using statistical information. We actualize our approach for the
JavaScript programming language via JEST, which performs
N+1-version differential testing for modern JavaScript engines
and ECMAScript, the language specification describing the
syntax and semantics of JavaScript in a natural language. We
evaluated JEST with four JavaScript engines that support all
modern JavaScript language features and the latest version of
ECMAScript (ES11, 2020). JEST automatically synthesized 1,700
programs that covered 97.78% of syntax and 87.70% of semantics
from ES11. Using the assertion-injected JavaScript programs,
it detected 44 engine bugs in four different engines and 27
specification bugs in ES11.

Index Terms—JavaScript, conformance test generation, mech-
anized specification, differential testing

I. INTRODUCTION

In Peter O’Hearn’s keynote speech in ICSE 2020, he quoted
the following from Mark Zuckerberg’s Letter to Investors [1]:

The Hacker Way is an approach to building that in-
volves continuous improvement and iteration. Hack-
ers believe that somethings can always be better, and
that nothing is ever complete.

Indeed, modern programming follows the continuous integra-
tion (CI) and continuous deployment (CD) approach [2] rather
than the traditional waterfall model. Instead of a sequential
model that divides software development into several phases,

each of which takes time, CI/CD amounts to a cycle of quick
software development, deployment, and back to development
with feedback. Even the development of programming lan-
guages uses the CI/CD approach.

Consider JavaScript, one of the most widely used pro-
gramming languages for client-side and server-side program-
ming [3] and embedded systems [4]–[6]. Various JavaScript
engines provide diverse extensions to adapt to fast-changing
user demands. At the same time, ECMAScript, the offi-
cial specification that describes the syntax and semantics of
JavaScript, is annually updated since ECMAScript 6 (ES6,
2015) [7] to support new features in response to user demands.
Such updates in both the specification and implementations in
tandem make it difficult for them to be in sync.

Another example is Solidity [8], the standard smart contract
programming language for the Ethereum blockchain. The
Solidity language specification is continuously updated, and
the Solidity compiler is also frequently released. According to
Hwang and Ryu [9], the average number of days between
consecutive releases from Solidity 0.1.2 to 0.5.7 is 27. In
most cases, the Solidity compiler reflects updates in the
specification, but even the specification is revised according to
the semantics implemented in the compiler. As in JavaScript,
bidirectional effects in the specification and the implementa-
tion make it hard to guarantee their correspondence.

In this approach, both the specification and the implemen-
tation may contain bugs, and guaranteeing their correctness
is a challenging task. The conventional approach to build
a programming language is uni-directional from a language
specification to its implementation. The specification is be-
lieved to be correct and the conformance of an implementation
to the specification is checked by dynamic testing. Unlike in
the conventional approach, in the modern CI/CD approach,
the specification may not be the oracle, because both the
specification and the implementation can co-evolve.

In this paper, we propose a novel N+1-version differential

testing, which enables testing of co-evolving specifications
and their implementations. The differential testing [10] is a
testing technique, which executes N implementations of a
specification concurrently for each input, and detects a prob-
lem when the outputs are in disagreement. In addition to N
implementations, our approach tests the specification as well

44 Bugs
in Engines

JEST - Example in

TABLE III: Specification bugs in ECMAScript 2020 (ES11) detected by JEST

Name Feature # Description Assertion Known Created Resolved Existed
ES11-1 Function 12 Wrong order between property keys for functions Key O 2019-02-07 2020-04-11 429 days
ES11-2 Function 8 Missing property name for anonymous functions Key O 2015-06-01 2020-04-11 1,776 days

ES11-3 Loop 1 Returning iterator objects instead of iterator records
in ForIn/OfHeadEvaluation for for-in loops Exc O 2017-10-17 2020-04-30 926 days

ES11-4 Expression 4 Using the wrong variable oldvalue instead of
oldValue in Evaluation of UpdateExpression

Abort O 2019-09-27 2020-04-23 209 days

ES11-5 Expression 1 Unhandling abrupt completion
in Abstract Equality Comparison Exc O 2015-06-01 2020-04-28 1,793 days

ES11-6 Object 1 Unhandling abrupt completion in Evaluation of
PropertyDefinition for object literals Exc X 2019-02-07 TBD TBD

TABLE II: The number of engine bugs detected by JEST

Engines Exc Abort Var Obj Desc Key In Total
V8 0 0 0 0 0 2 0 2
GraalJS 6 0 0 0 2 8 0 16
QuickJS 3 0 1 0 0 2 0 6
Moddable XS 12 0 0 0 3 5 0 20

Total 21 0 1 0 5 17 0 44

semantics of ES11. Among 71 bugs, we excluded 7 syntax
bugs and localized only 64 semantics bugs. Figure 5 shows
the ranks of algorithms that caused the semantics bugs. The
average rank is 3.19, and 82.8% of the algorithms causing the
bugs are ranked less than 5, 93.8% less than 10, and 98.4%
less than 15. Note that the location of one bug is ranked 21
because of the limitation of SBFL; its localization accuracy
becomes low for a small number of failed test cases.

C. Bug Detection in JavaScript Engines

From four JavaScript engines, JEST detected 44 bugs: 2
from V8, 16 from GraalJS, 6 from QuickJS, and 20 from
Moddable XS. Table II presents how many bugs for each
assertion are detected for each engine. We injected seven
kinds of assertions: exceptions (Exc), aborts (Abort), variable
values (Var), object values (Obj), object properties (Desc),
property keys (Key), and internal methods and slots (In). The
effectiveness of bug finding is different for different assertions.
The Exc and Key assertions detected engine bugs the most; out
of 44 bugs, the former detected 21 bugs and the latter detected
17 bugs. Desc and Var detected 5 and 1 bugs, respectively, but
the other assertions did not detect any engine bugs.

The most reliable JavaScript engine is V8 because JEST

found only two bugs and the bugs are due to specification
bugs in ES11. Because V8 strictly follows the semantics
of functions described in ES11, it also implemented wrong
semantics that led to ES11-1 and ES11-2 listed in Table III.
The V8 team confirmed the bugs and fixed them.

We detected 16 engine bugs in GraalJS and one of them
caused an engine crash. When we apply the prefix incre-
ment operator for undefined as ++undefined, GraalJS throws
java.lang.IllegalStateException. Because it crashes the
engine, developers even cannot catch the exception as follows:

try { ++undefined; } catch(e) { }

The GraalJS team has been fixing the bugs we reported and
asked whether we plan to publish the conformance test suite,

because the tests generated by JEST detected many semantics
bugs that were not detected by other conformance tests: “Right

now, we are running Test262 and the V8 and Nashorn unit test

suites in our CI for every change, it might make sense to add

your suite as well.”

In QuickJS, JEST detected 6 engine bugs, most of which
are due to corner cases of the function semantics. For example,
the following code should throw a ReferenceError exception:

function f (... { x = x }) { return x; } f()

because the variable x is not yet initialized when it tries to
read the right-hand side of x = x. However, since QuickJS
assumes that the initial value of x is undefined, the function
call f() returns undefined. The QuickJS team confirmed our
bug reports and it has been fixing the bugs.

JEST found the most bugs in Moddable XS; it detected 20
bugs for various language features such as optional chains,
Number.prototype.toString, iterators of Map and Set, and
complex assignment patterns. Among them, optional chains
are newly introduced in ES11, which shows that our approach
is applicable to finding bugs in new language features. We
reported all the bugs found, and the Moddable XS team has
been fixing them. They showed interests in using our test suite:
“As you know, it is difficult to verify changes because the

language specification is so big. Test262, as great a resource

as it is, is not definitive.”

D. Bug Detection in ECMAScript

From the latest ECMAScript ES11, JEST detected 27
specification bugs. Table III summarizes the bugs categorized
by their root causes. Among them, five categories (ES11-1 to
ES11-5) were already reported and fixed in the current draft of
the next ECMAScript but ES11-6 was never reported before.
We reported it to TC39; they confirmed it and they will fix it
in the next version, ECMAScript 2021 (ES12).

ES11-1 contains 12 bugs; it is due to a wrong order between
property keys of all kinds of function values such as async
and generator functions, arrow functions, and classes. For
example, if we define a class declaration with a name A

(class A {}), three properties are defined in the function
stored in the variable A: length with a number value 0,
prototype with an object, and name with a string "A". The
problem is the different order of their keys because of the
wrong order of their creation. From ECMAScript 2015 (ES6),

“Right now, we are running Test262 and the V8 and Nashorn unit test suites

in our CI for every change, it might make sense to add your suite as well.”

- A Developer of GraalVM

Crash

Analysis

Result

JavaScript

Programs

Derived Static

Analyzerspecification. Finally, we present JSAVER

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]

Mechanized

SpecificationECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

JSTAR: JavaScript Specification Type Analyzer using Refinement
Jihyeok Park, Seungmin An, Wonho Shin, Yusung Sim, and Sukyoung Ryu

[FSE’22]

erent tools to detect bugs in JavaScript specifications and engines; JEST

[ICSE'21]

fs

JSTAR - Types in Specification

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JSTAR - Types in Specification

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JSTAR - Types in Specification

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

n: (Number) ∧ ToNumber(x): (Number v Exception)

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JSTAR - Types in Specification

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

n: (Number) ∧ ToNumber(x): (Number v Exception)

Type Mismatch for

numeric operator `>`

Math.round(true) = ???

Math.round(false) = ???

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JSTAR - Types in Specification

...

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

x: (String v Boolean v Number v Object v ...)

n: (Number) ∧ ToNumber(x): (Number v Exception)

Type Mismatch for

numeric operator `>`

Math.round(true) = ???

Math.round(false) = ???

Math.round(true) = 1

Math.round(false) = 0

https://github.com/tc39/ecma262/tree/575149cfd77aebcf3a129e165bd89e14caafc31c

JSTAR [ASE'21]
JavaScript Specification Type Analyzer using Refinement

Mechanized

Specification

Abstract

Transfer Func.

Analysis

Initializer

Initial

Abstract State

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Type Analysis

Result

Operand

Checker

Assertion

Checker

Arity

Checker

Reference

Checker

Specification

Bugs

JSTAR [ASE'21]
JavaScript Specification Type Analyzer using Refinement

Mechanized

Specification

Abstract

Transfer Func.

Analysis

Initializer

Initial

Abstract State

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Type Analysis

Result

Operand

Checker

Assertion

Checker

Arity

Checker

Reference

Checker

Specification

Bugs

Precision ↑

1. Type Sensitivity

2. Condition-based Refinement

Intermediate Representation for ECMAScript

Semantic Domains

Semantics of Instructions

Semantics of Expressions

Abstract Semantic Domains

Abstract Semantic Functions

JSTAR - Evaluation
• Type Analysis for 864 versions of ECMA-262 in 3 years

93 Bugs
Detected
TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

59.2%
Precision

JSTAR - Evaluation
• Type Analysis for 864 versions of ECMA-262 in 3 years

93 Bugs
Detected
TABLE II: The analysis precision of JSTAR without refinement (no-refine), with refinement (refine), and their difference (�)

Checker Bug Kind Precision = (# True Bugs) / (# Detected Bugs)
no-refine refine �

Reference
UnknownVar 62 / 106 17 / 60 63 / 78 17 / 31 +1 / -28 / -29
DuplicatedVar 45 / 46 46 / 47 +1 / +1

Arity MissingParam 4 / 4 4 / 4 4 / 4 4 / 4 / /
Assertion Assertion 4 / 56 4 / 56 4 / 31 4 / 31 / -25 / -25

Operand
NoNumber 22 / 113 2 / 65 22 / 44 2 / 6 / -69 / -59
Abrupt 20 / 48 20 / 38 / -10

Total 92 / 279 (33.0%) 93 / 157 (59.2%) +1 / -122 (+26.3%)

(a) Life spans sorted by creation (b) The histogram of life spans

Fig. 7: Life spans of true bugs

A. Performance

Figure 6 shows the statistics of the type analysis using
JSTAR for 864 versions of ECMAScript: (a) the number of
analyzed functions, (b) the number of flow- and type-sensitive
views, (c) the number of worklist iterations, and (d) the analy-
sis time. For each version, JSTAR analyzed 1,696.6 functions
on average. Since ECMAScript has gradually evolved, it ana-
lyzed 1,491 functions for the first version in 2018 but analyzed
1,864 functions in the latest. JSTAR analyzes functions with
flow- and type-sensitive views. On average, each version has
92.0K views and each function has 54.1 views.

We measured the performance of JSTAR with the worklist
iteration number and the analysis time. For each version of
ECMAScript, JSTAR took 137.3 seconds with 301.6K worklist
iterations on average. The average analysis time is 8.0 seconds
for specification extraction (extract), 128.5 seconds for type
analysis (analyze), and 0.8 seconds for bug detection (detect).
The performance overhead is modest enough for JSTAR to be
integrated in the open development process of ECMAScript.

B. Precision

We measured the analysis precision with the ratio of true
bugs in the reported bugs by JSTAR. As summarized in the
refine column of Table II, the analysis precision is 59.2%; 93
out of 157 detected bugs are true bugs. The reference checker
detected the most bugs with 80.8% precision; 17 unknown
variables (UnknownVar) and 46 duplicated variable declara-
tions (DuplicatedVar) are true bugs. We found four missing
parameters (MissingParam) with 100.0% precision and four
assertion failures (Assertion) with 12.9% precision. Finally,
the operand checker detected two non-numeric operand bugs

(NoNumber) with 33.3% precision and 20 unchecked abrupt
completion bugs (Abrupt) with 52.6% precision.

To understand the impact of the detected true bugs, we
extended JSTAR to automatically extract when they are created
and resolved in the ECMAScript official repository. A bug is
created when it exists in a specific version but does not exist in
its previous version, and a bug is resolved vice versa. The life

span of a bug denotes the number of days between the created
date and the resolved date. Figure 7 illustrates the life spans of
true bugs; Figure 7(a) depicts the life spans sorted by creation
and Figure 7(b) depicts the histogram of the life spans in a
logarithmic scale. Among 93 true bugs, 49 bugs are inherited,
which means that they are created before 2018. Moreover, 14
bugs still exist in the latest ECMAScript, which are newly
detected by JSTAR. We discuss the details of 14 newly found
bugs in Section V-D. Even though we assume that 49 inherited
bugs are created on January 1, 2018, the average life span is
422.8 and the maximum life span is 1,164. All the bugs with
the maximum life span are inherited ones and they are all
newly detected.

We manually investigated 64 false-positive bugs to under-
stand why JSTAR detected them. Among them, 17 bugs are
due to extraction failure of mechanized specifications caused
by wrong writing styles. Because ECMAScript is written in
HTML, JISET extracts abstract algorithms using the emu-alg
HTML tag. Unfortunately, several abstract algorithms are
defined with the opening tag <emu-alg> but without the
closing tag </emu-alg>, which causes extraction failure of
mechanized specifications leading to false-positive bugs. The
remaining 47 bugs are due to imprecise analysis. We found
that 28 bugs are due to imprecise analysis of the conditions
of assertions and branches for specific function calls. For
example, consider the following algorithm step for GetValue:

Since IsPropertyReference always returns false when the
Base field of a given reference record is cunresolvable, the
field access V .[[Base]] cannot be cunresolvable on line 4.a.
However, because the type analysis does not compute such in-
formation, cunresolvable is also passed as the argument of
ToObject. We believe that an advanced refinement technique

14 Bugs
in ES12

59.2%
Precision

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]

Mechanized

SpecificationECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

Automatically Deriving JavaScript Static Analyzers from Language Specifications
Jihyeok Park, Seungmin An, and Sukyoung Ryu

[FSE’22]

erent tools to detect bugs in JavaScript specifications and engines; JEST

[ICSE'21]

fs

JSAVER - Meta-Level Static Analysis
ECMA-262

JS-IR

Compiler

JavaScript
Program IR Program IR 

Static Analyzer Analysis Result

JavaScript Static Analyzer

manual

compiler-based approach (existing)

JSAVER - Meta-Level Static Analysis
ECMA-262

JS-IR

Compiler

JavaScript
Program IR Program IR 

Static Analyzer Analysis Result

JavaScript Static Analyzer

manual

compiler-based approach (existing)

ECMA-262

JavaScript

Program Analysis ResultIR

Static Analyzer

JS Interpreter

(= IR Program)

JavaScript
Static

Analyzer

manual

interpreter-based approach (ours)

JSAVER [FSE'22]
JavaScript Static Analyzer via ECMAScript Representation

Abstract

Transfer Func.

Initial

Abstract State

Analysis

Result

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Analysis

initializer

Abstract

Syntax Tree

IRES

Functions

JavaScript

Parser

JavaScript

Programs

Mechanized

Specification

JSAVER - Evaluation

• Soundness / Precision / Performance

- 18,556 applicable tests in Test262

- 3,903 tests analyzable by all the three
analyzers

JSAVER - Evaluation

• Soundness / Precision / Performance

- 18,556 applicable tests in Test262

- 3,903 tests analyzable by all the three
analyzers

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(|  : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(|  : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(|  : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(|  : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(|  : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

ESEC/FSE 2022, 14 - 18 November, 2022, Singapore Anon.

(a) The analysis precision (b) The analysis performance

Figure 9: The analysis precision and performance for 3,878
tests soundly analyzable by all of �ve analyzers

1 let x = /* �a� or �b� */;
2 let y = �c${x}d�; // �cad� or �cbd�
3 let z = �${x}e${x}�; // �aea� or �beb�

Figure 10: A JavaScript program using template literals

Test262 test programs, JSAES12 analyzed them with a high analysis
precision of 99.0% in 590 ms on average. Then, we compared its anal-
ysis precision with that of TAJS and SAFE. For a fair comparison,
we measured the analysis precision for 3,878 test programs soundly
analyzable by all of �ve analyzers: TAJS, TAJS with Babel, SAFE,
SAFE with Babel, and JSAES12. Figure 9(a) depicts the average and
distribution of the analysis precision in violin plots [19]. TAJS and
SAFE analyzed 3,878 test programs with 85.1% and 89.9% precision
on average, respectively. While Babel increased the number of test
programs soundly analyzed by existing analyzers, it decreased the
average analysis precision of TAJS to 84.9% and had no e�ect on
SAFE. It is due to that Babel transpiles simple ES6+ features into
a more complex combination of ES5 features even though TAJS
directly supports a small part of the ES6 features like arrow func-
tions or Symbol. However, JSAES12 has the highest analysis precision
of 99.5% on average.

On the other hand, the analysis speed of JSAES12 is slower than
that of TAJS and SAFE, and Figure 9(b) depicts them in violin
plots on a logarithmic scale. TAJS and SAFE took 139 ms and 181
ms, respectively, to analyze 3,878 test programs on average. Babel
increases their average analysis time to 169 ms and 199 ms, respec-
tively, because it transpiles all ES6+ features in test programs to
verbose ES5.1 features. However, JSAES12 took 357 ms on average to
analyze them because JSAVER derives precise abstract semantics for
all language features. On the contrary, TAJS and SAFE developers
often imprecisely or even unsoundly model the abstract semantics
of speci�c language features to increase the analysis speed. For ex-
ample, TAJS does not discriminate positive/negative in�nity values
or positive/negative zeros to reduce the number of possible cases
in abstract values. Similarly, SAFE ignores the semantics of getters
and setters to analyze object property reads quickly.

6.3 Con�gurability
We demonstrate the con�gurability of JSAVER with several case

studies for abstract domains and analysis sensitivities. We discuss
how di�erent abstract domains or analysis sensitivities a�ect anal-
ysis results of JSAES12 with examples.

Table 2: De�nitions of three string abstract domains

Domain De�nition

SS:
SS: = {>} [{(✓ ⌃⇤ | |(|  : }
W (() = (
(· (0 = {B · B0 | B 2 (^ B0 2 (0 }

CI
CI = {?} [{ [!,*] | !,* ✓ ⌃ ^ ! ✓ * }
W ([!,*]) = {F 2 ⌃⇤ | ! ✓ chars(F) ✓ * }
[!,*] · [!0,* 0] = [! [!0,* [* 0]

PS
PS = {?} [(⌃⇤ ⇥ ⌃⇤)
W (h?, B i) = {? · F | F 2 ⌃⇤ } \ {F · B | F 2 ⌃⇤ }
h?, B i · h?0, B0 i = h?, B0 i

6.3.1 Abstract Domains. As explained in Section 4.3, we can con�g-
ure abstract domains for JavaScript values by con�guring those for
IRES values. In JavaScript static analysis, researchers have presented
diverse string domains to precisely analyze object property names.
Among them, we implemented three representative string abstract
domains [4]: the String Set (SS:) domain, the Character Inclusion
(CI) domain, and the Pre�x-Su�x (PS) domain. Table 2 summarizes
formal de�nitions of their elements, concretization functions, and
concatenation operations. In the table, ⌃ denotes a set of charac-
ters, and the set of strings is Vstr = ⌃⇤. We analyzed a JavaScript
program in Figure 10 using JSAES12 with di�erent string abstract
domains. The program uses a new language feature introduced
in ES6 called a template literal, which is a literal delimited with
backticks (�), allowing embedded expressions called substitutions.
For example, the template literal �c${x}d� on line 2 concatenates
a string �c�, the value in the variable x, and a string �d�. Since x

points to �a� or �b� on line 1, the variable y points to �cad� or �cbd�.
Similarly, z points to �aea� or �beb� by concatenating x, �e�, and x.

First, the String Set (SS:) domain represents a set of strings whose
size is bounded by : as an abstract string. Therefore, JSAES12 with
SS5 produced the following analysis results:

x 7! {�a�, �b�}
y 7! {�c�} · {�a�, �b�} · {�d�} = {�cad�, �cbd�}
z 7! {�a�, �b�} · {�e�} · {�a�, �b�} = {�aea�, �aeb�, �bea�, �beb�}

It produced precise analysis results for x and y. However, the result
for z has spurious values �aeb� and �bea� because it does not keep
the information that the left and right strings of �e� are the same.

The Character Inclusion (CI) domain tracks the lower and upper
bounds of characters occurring in strings. The analysis with this
domain produced the following analysis results:

x 7! [ú, {a, b}]
y 7! [{c}, {c}] · [ú, {a, b}] · [{d}, {d}] = [{c, d}, {a, b, c, d}]
z 7! [ú, {a, b}] · [{e}, {e}] · [ú, {a, b}] = [{e}, {a, b, e}]

This domain ignores structures of strings, but it is a cheap abstract
domain to check only the inclusion of characters in strings. For
example, it can say that the string in y always includes c and d, and
the string in z always includes e.

The last domain, Pre�x-Su�x (PS) keeps pre�xes and su�xes of
strings. JSAES12 produced the following analysis results with PS:

x 7! h��, ��i
y 7! h�c�, �c�i · h��, ��i · h�d�, �d�i = h�c�, �d�i
z 7! h��, ��i · h�e�, �e�i · h��, ��i = h��, ��i

This domain is also cheap but focuses on pre�xes and su�xes. Thus,
the analysis results cannot say anything about the strings in x or z,
but it describes that the string in y starts with �c� and ends with �d�.

Analysis

Result

JavaScript

Programs

Derived Static

Analyzer

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

3. Derivation of
Static Analyzers

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

2. Specification
Validity Check

[ICSE'21] [ASE'21]

Mechanized

SpecificationECMA-262

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

1. Mechanized Spec.
Extraction

[ASE'20]

Conformance Test

Synthesis

Type Analysis for

Specification

[FSE’22]

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

fs

[PLDI’23]

Feature-Sensitive Coverage for Conformance Testing of Programming Language
Implementations

Jihyeok Park, Dongjun Yoon, Kanguk Lee, and Sukyoung Ryu

JEST [ICSE'21]

Mechanized

Specification

JavaScript

Engines

Mechanized
Specification

Assertion

Injector

Engine

Bugs

Program

Mutator

Coverage-guided

Mutation

JavaScript Engines and Specification Tester

DCS �¿�. 1•Xî ⌅\¯ò� ∏¥ Ö8| ⌅\ ê§lΩ∏ �� Ñ�.
⌅∞YÄ . 2022D. 46+iv Ω. ¿ƒP⇠: X��. (�8 |8)
Jihyeok Park. JavaScript Static Analysis for Evolving Language Specifica-
tions. School of Computing . 2022. 46+iv pages. Advisor: Sukyoung Ryu.
(Text in English)

�]

ê§lΩ∏X Ÿ�x 1»¸ ı°\ X¯`@ ê§lΩ∏ ⌅\¯®‰X âŸD �UXå ttX0 ¥

5å Ã‡‰. lê‰@ t| t∞X‡ê ‰ë\ ê§lΩ∏ �� Ñ�0‰D ⌧⌧tT¿Ã, t‰@
®P ⇠Ÿ<\ $ƒ� ⇠»0– xŸ—}�t‡ $X– Ë}X‰. ⇣\, 2014D –Ä0 ê§lΩ∏X
∏¥ Ö8� ‰D 1‡⇠0 ‹ëXt⌧ t 8⌧î T Ï�tL‰. ¯ Y⌅ |8–⌧î ê§lΩ∏ ∏¥
Ö8\Ä0êŸ<\ê§lΩ∏��Ñ�0| ƒt¥î»\¥)›D⌧H\‰. tî 1)0ƒTÖ8
îú, 2) 0ƒT Ö8 ®1 Ä¨, ¯¨‡ 3) �� Ñ�0 ƒX 8 �¿ Ëƒ\ l1⌧‰. ¯ |8–⌧î
0ƒT Ö8 îú 0 D ⌧HX‡, t| t©t �• \‡ ê§lΩ∏ Ö8\Ä0 0ƒT Ö8| îú
\‰. ⇣\, ê§lΩ∏ ‘ƒD t©\ N+1-Ñ⌅ (Ñ L§⇧¸ 0ƒT Ö8X ¿Ö Ñ�D ⌧HX‡,
t| µt Ö8 ✏ ‘ƒX ∞hD Äú\‰. \Ö�<\, T¿ �� Ñ� 0 D ⌧HX‡, îú\ 0ƒT
Ö8\Ä0 êŸ<\ ê§lΩ∏ �� Ñ�0| ƒ\‰. ¯ Y⌅ |8–⌧ ⌧‹\)›@ ⌅\¯ò�
∏¥| ⌅\ Ö8, L§∏, ¯¨‡ ƒl‰X ıƒT| ⌅\ lX 0¿D »(` É<\ 0�\‰.

u Ï ± – ê§lΩ∏, 0ƒT Ö8 îú, Ö8 ¿Ö Ñ�, N+1-Ñ⌅ (Ñ L§⇧, T¿ �� Ñ�

Abstract
The highly dynamic nature and complex semantics of JavaScript make it difficult to correctly understand
the behaviors of JavaScript programs. To automatically reason about them, researchers have developed
various JavaScript static analyzers that conform to ECMAScript, the standard specification of JavaScript.
However, all the existing JavaScript static analyzers are manually designed; thus, the current approach
is labor-intensive and error-prone. Moreover, since late 2014, this problem becomes more critical because
the JavaScript language itself rapidly evolves with a yearly release cadence and open development process.

In this thesis, we introduce a novel approach to automatically derive JavaScript static analyzers
from any version of ECMAScript. Our approach consists of three steps: 1) mechanized specification
extraction, 2) mechanized specification validity check, and 3) derivation of static analyzers. First, we
present a tool JISET that automatically extracts a mechanized specification from ECMAScript. We show
that it successfully extracts a mechanized specification from the latest ECMAScript. Then, we present
two different tools to detect bugs in JavaScript specifications and engines; JEST performs N+1-version
differential testing with JavaScript engines and JSTAR performs a type analysis for the mechanized
specification. Finally, we present JSAVER that automatically derives JavaScript static analyzers from
mechanized specifications using a meta-level static analysis. For evaluation, we derive a JavaScript
static analyzer from the latest ECMAScript and show that it successfully analyzes all applicable official
conformance tests in a sound way. We believe that the thesis would be the first step towards the
co-evolution of specifications, tests, and tools for programming languages.

Keywords JavaScript, mechanized specification extraction, N+1-version differential testing, specifica-
tion type analysis, meta-level static analysis.

Seed

Synthesizer

JS Programs

Conformance

Tests

Specification

Bugs

Conformance Bugs

Rust?

Verse?

WebAssembly?

P4?

Reviewer #2
This is the right order to design
and document languages:

first the semantics,

then the implementation

and documentation, ideally
generated from the semantics.

Automatic Derivation of Static Analysis

• "If you go and talk to an old person and he or she says, “We tried that 25 years ago and it
didn’t work," don’t take that for an answer, ask why it didn’t work and what’s different today.”

• “Keep the big picture in mind; look for opportunities to bridge disciplines rather than rat
holding on just one; don’t settle for just a 5% improvement, aim big; and finally read read
read voraciously, read papers, read code, read books, absorb as much information as you
can, you never can tell what you learned five years ago might suddenly be relevant now.”

