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CONSTRUCT CORRECT SYSTEMS
AUTOMATICALLY FROM SPEC

Don’t do same thing twice!
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CONSTRUCT CORRECT SYSTEMS
AUTOMATICALLY FROM SPEC

Don’t do same thing twice!
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Specifying is easier than implementing!



Removes need
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THIS TUTORIAL

* Reactive synthesis - from Church’s synthesis problem to scalable software

* Deductive synthesis - from the seminar Manna-Waldinger paper to scalable
software

* Can reactive and deductive synthesis be friends?
* Syntax-guided synthesis

* New applications of software synthesis




REACTIVE
SYNTHESIS

Server 0 Server 1




* Reactive systems: embedded systems,
GUIs, robots, hardware circuits, ...
* Church synthesis problem (1957):
* (Given arequirement ¢ on the
input-output behavior of a Boolean

circuit, compute a circuit C that

APPLICATION OF RECURSIVE ARITHMETIC TO THE SatleleS (p

PROBLEM OF CIRCUIT SYNTHESIS

input
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by Alonzo Church

- * Reactive synthesis: given a
A paper presented at the Summer Institute of Symbolic Logic IE, : Y ) .
at Ithaca, N. Y. , in July, 1957 - with revisions made in specification written in LTL (linear

August , 1957. | temporal logic), automatically
compute the program that satisfies the

specification




TODAY’S LECTURE

Finite State Reactive systems
* Continuous interaction with environment
* Do not terminate
* Discrete time

 Correctness statements are temporal (temporal logic, automata)

Tomorrow’s lecture: functions
 Start with input, terminate with output (non-termination = bug)

* Correctness is input/output relation (Hoare logic)



SYNTHESIS

Given

Input and output signals in out
System |—>

Specification ¢ of behavior

Determine

Realizability: Is there a system thapecicgicatig?

Synthesis: If system exists, construct it

For any input trace I, we
have

HISU) = ¢




LINEAR TEMPORAL LOGIC (LTL)

p p @ @ @ @ @
%
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plus Boolean connectors (v, A, =, =) and nesting



LTL SYNTAX

* If pis an atomic propositional formula, it is a formula in LTL

* If pand y are LTL formulas, so are p Ay, oV @, — ¢, U @ (until), X ¢ (next), Fo
(eventually), G ¢ (always)

* Interpretation: over computations 17; w = 2" which assigns truth values to the
elements of V at each time instant
mTEXe iff TTE @
TEGe iffVi-m'Eqe
meEFp iff Ji-m'E@
mTEeUuyiff 3i-mewAvVj-0<j<i>miE@
Here, ' is the it state on a path




EXPRESSING PROPERTIES IN LTL

* Good for safety (G —) and liveness (F) properties

* Express:
* When a request occurs, it will eventually be acknowledged
* G (request = F acknowledge)
* A path contains infinitely many q" s
* GFgq

* At most a finite number of states in a path satisfy —q (or property g eventually
stabilizes)

s |[FiGig
» Action s precedes p after g

* [~qU (g A[~pUs])]
* Note: hard to do correctly.




SATISFIABILITY & REALIZABILITY

Satisfiability:

[s there a trace that satisfies spec?

Realizability:

[s there a system that satisfies spec?



SATISFIABILITY & REALIZABILITY

Satisfiability: Is there a trace that satisfies the spec?

Realizability: Is there a system that satisfies the spec?

input reql, reg?

NSRS GRsa Tt v S o e n T

G( (reqgl — grantl) A (regZ2 — grant2)
G g rantl N fgrant2.t)

Satisfiable?

Yes

Realizable?

No

Inputs universally quantified
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SATISFIABILITY & REALIZABILITY

Satisfiability: Is there a trace that satisfies the spec?

reql |_grantl
req2 ; grantZ'

Realizability: Is there a system that satisfies the spec?

input reql

output grantl

G( grantl © X reql )
Satisfiable?

Yes (No matter how we set grantl).

Realizable?

No, clairvoyant!



FORMAL VERIFICATION

Given: — System

System provides outputs

A specification

One Player: (not a game!)

* Environment provides inputs

System is good if it fulfills the spec for all possible inputs



SYNTHESIS IS A GAME

Given: — System

e s el —
A specification
Two Players (a game!)
* Environment provides inputs

e System provides outputs

System is good if it fulfills the spec for all possible inputs



REACTIVE SYNTHESIS SETTINGS

Reactive Systems
 Constant interaction
e No Termination

* E.g. Cell phones, Operating Systems, Powerpoint

—¥ System

Finite State
* Non-terminating, finite systems are graphs with loops

* Not our current focus: functions

* “Create a function that computes sqrt(2)”



EXAMPLE I: CHESS

 Environment determines black moves

—» System [ —>

* System determines white moves

* Winning condition:

* If all black moves are legal, then all white moves are
legal and eventually, white reaches checkmate

Easy to specify!




CHECKERS AND SYSTEMS

Checkers are passive :
Systems are active

Judge if given behavior is OK _
Construct correct behavior

Used in verification :
Result of synthesis

el Property Synthesis: systems not checkers G Y

reql |_grantl

s By System ran'2,




SYNTHESIS




b 1. Specify
EXAMPLE II: ARBITER 0 e e
3.  Solve Game
r0 : Arbiter g0 s 4. Create System
BTl | >
rl gl
Input: r0, rl

Output: g0, g1

What is the specification?



b 1. Specify
EXAMPLE II: ARBITER 0 e e
3.  Solve Game
r0 : Arbiter g0 s 4. Create System
BTl | >
rl gl
Input: r0, rl

Output: g0, g1

G(r0 — Fg0)
G(rl — Fgl)



Specify
Create Game
Solve Game
Create System

ARBITER SPECIFICATION

1.
/2
3.
4,

Deterministic Biichi automaton for
G(r — Fg)

Accepting states must be visited infinitely often




ARBITER GAME

Game for

G(r — Fg)

Box: environment

Circle: system

Accepting states must be visited infinitely often

1.  Specify
2. Create Game
3.  Solve Game
4. Create System
r0 0
Arbiter 5
rl gl




ARBITER GAME

Game for

G(r — Fg)

Box: environment

Circle: system

Accepting states must be visited infinitely often

qo

1.  Specify
2. Create Game
3.  Solve Game
4. Create System
r0 0
Arbiter 5
rl gl
a1 g
SeLE)



ARBITER STRATEGY

Game for

G(r — Fg)

Box: environment

Circle: system

1.  Specify
2.  Create Game
3. Solve Game
4. Create System

r0 . 0
Arbiter 5

rl gl

q1 g1-—
L



1.  Specify
ARBITER STRATEGY L Spedly
—rV g g 3. Solve Game
Game for . A . 4.  Create System
>4 o0
0
Arbiter &
—
gl
Box: environment —g 91—
w

Circle: system



ARBITER STRATEGY

Game for

G(r » Fg)

initial state = q0
while(){

r = getinput();

if(state==q0 && r==0) {g=0; state=q0}

if(state==q0 && r==1) {g=0; state=q1}

if(state==q1

}

) {g=1; state=q0}

Specify
Create Game
Solve Game

Create System

L o

Arbiter gv
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