PROGRAM SYNTHESIS

RUZICA PISKAC
YALE UNIVERSITY

Oregon Programming Languages
Summer School 2023

ACKNOWLEDGMENTS

* Based liberal theft of ideas and reuse of slides from Rajeev Alur, Roderick Bloem,
Krishnendu Chatterjee, Ruediger Ehlers, Bernd Finkbeiner, Priyanka Golia,
Andreas Griesmayer, Tom Henzinger, Georg Hofferek, Swen Jacobs, Barbara
Jobstmann, Ayrat Khalimov, Bettina Koenighofer, Robert Koenighofer, Andreas
Morgenstern, Nir Piterman, Amir Pnueli, Yaniv, Sa’ar, Swen Schewe, Klaus Schneider,
Armando Solar-Lezama, Stefan Staber, Emina Torlak, Moshe Vardi, and many
others

 Synthesizing good synthesis slides is a group effort

CONSTRUCT CORRECT SYSTEMS
AUTOMATICALLY FROM SPEC

Don’t do same thing twice!
00O
QA O

=

synthesis

e Pt
)¢

CONSTRUCT CORRECT SYSTEMS
AUTOMATICALLY FROM SPEC

Don’t do same thing twice!
00 O

synthesis

g Pk

Specifying is easier than implementing!

Removes need

to Code!

a2 ,rg; ATT o
Lol e ST, (T2 £ 4
z? *‘x‘>" ?:Dumm»:s. ’52:7. » Y

‘1 A
251 135"-(@(«,\\}W e P

Geamea Correct by
Construction!

_n

iﬂ{‘ 7(0) 14??" 55 (('ff:t:fq) » 7o
.['m,n. Y Fﬂx ,w ;Mf/?)£+§ el L

oo (45 Nisoo(t)4
Vﬂ (C/ \‘Wﬂ ZTS gzvm? Q

x* :-'um'

THIS TUTORIAL

* Reactive synthesis - from Church’s synthesis problem to scalable software

* Deductive synthesis - from the seminar Manna-Waldinger paper to scalable
software

* Can reactive and deductive synthesis be friends?
* Syntax-guided synthesis

* New applications of software synthesis

REACTIVE
SYNTHESIS

Server 0 Server 1

* Reactive systems: embedded systems,
GUIs, robots, hardware circuits, ...
* Church synthesis problem (1957):
* (Given arequirement ¢ on the
input-output behavior of a Boolean

circuit, compute a circuit C that

APPLICATION OF RECURSIVE ARITHMETIC TO THE SatleleS (p

PROBLEM OF CIRCUIT SYNTHESIS

input

x

output ,

\ 4

©

I, [I3... 040, 0s,...

by Alonzo Church

- * Reactive synthesis: given a
A paper presented at the Summer Institute of Symbolic Logic IE, : Y) .
at Ithaca, N. Y. , in July, 1957 - with revisions made in specification written in LTL (linear

August , 1957. | temporal logic), automatically
compute the program that satisfies the

specification

TODAY’S LECTURE

Finite State Reactive systems
* Continuous interaction with environment
* Do not terminate
* Discrete time

 Correctness statements are temporal (temporal logic, automata)

Tomorrow’s lecture: functions
 Start with input, terminate with output (non-termination = bug)

* Correctness is input/output relation (Hoare logic)

SYNTHESIS

Given

Input and output signals in out
System |—>

Specification ¢ of behavior

Determine

Realizability: Is there a system thapecicgicatig?

Synthesis: If system exists, construct it

For any input trace I, we
have

HISU) = ¢

LINEAR TEMPORAL LOGIC (LTL)

p p @ @ @ @ @
%
X next ¢ ® e ® ® o
@ % @ @ ¢
Go alwaysp o o o ® ®
@
Fo eventuallylyp e O O ® O
¢ ¢ @ Y
oUY ountilly e O O o o

plus Boolean connectors (v, A, =, =) and nesting

LTL SYNTAX

* If pis an atomic propositional formula, it is a formula in LTL

* If pand y are LTL formulas, so are p Ay, oV @, — ¢, U @ (until), X ¢ (next), Fo
(eventually), G ¢ (always)

* Interpretation: over computations 17; w = 2" which assigns truth values to the
elements of V at each time instant
mTEXe iff TTE @
TEGe iffVi-m'Eqe
meEFp iff Ji-m'E@
mTEeUuyiff 3i-mewAvVj-0<j<i>miE@
Here, ' is the it state on a path

EXPRESSING PROPERTIES IN LTL

* Good for safety (G —) and liveness (F) properties

* Express:
* When a request occurs, it will eventually be acknowledged
* G (request = F acknowledge)
* A path contains infinitely many q" s
* GFgq

* At most a finite number of states in a path satisfy —q (or property g eventually
stabilizes)

s |[FiGig
» Action s precedes p after g

* [~qU (g A[~pUs])]
* Note: hard to do correctly.

SATISFIABILITY & REALIZABILITY

Satisfiability:

[s there a trace that satisfies spec?

Realizability:

[s there a system that satisfies spec?

SATISFIABILITY & REALIZABILITY

Satisfiability: Is there a trace that satisfies the spec?

Realizability: Is there a system that satisfies the spec?

input reql, reg?

NSRS GRsa Tt v S o e n T

G((reqgl — grantl) A (regZ2 — grant2)
G g rantl N fgrant2.t)

Satisfiable?

Yes

Realizable?

No

Inputs universally quantified

)

reql
reg2
grantl

grant2

reql
reqg?
e e CLaNE]l

grant2

ol g o[Mz o[l iy

] | | 1 | ™

ez o)l Ml 58 e o (e 5|

I

req2 .

weg) 1 Wl o il ol Bide 5|

eql

2ol oyl e o Sley)

|_grant 1

grantZ.

Y

iz 70 B> B e 5B e o |

Y

SATISFIABILITY & REALIZABILITY

Satisfiability: Is there a trace that satisfies the spec?

reql |_grantl
req2 ; grantZ'

Realizability: Is there a system that satisfies the spec?

input reql

output grantl

G(grantl © X reql)
Satisfiable?

Yes (No matter how we set grantl).

Realizable?

No, clairvoyant!

FORMAL VERIFICATION

Given: — System

System provides outputs

A specification

One Player: (not a game!)

* Environment provides inputs

System is good if it fulfills the spec for all possible inputs

SYNTHESIS IS A GAME

Given: — System

e s el —
A specification
Two Players (a game!)
* Environment provides inputs

e System provides outputs

System is good if it fulfills the spec for all possible inputs

REACTIVE SYNTHESIS SETTINGS

Reactive Systems
 Constant interaction
e No Termination

* E.g. Cell phones, Operating Systems, Powerpoint

—¥ System

Finite State
* Non-terminating, finite systems are graphs with loops

* Not our current focus: functions

* “Create a function that computes sqrt(2)”

EXAMPLE I: CHESS

 Environment determines black moves

—» System [—>

* System determines white moves

* Winning condition:

* If all black moves are legal, then all white moves are
legal and eventually, white reaches checkmate

Easy to specify!

CHECKERS AND SYSTEMS

Checkers are passive :
Systems are active

Judge if given behavior is OK _
Construct correct behavior

Used in verification :
Result of synthesis

el Property Synthesis: systems not checkers G Y

reql |_grantl

s By System ran'2,

SYNTHESIS

b 1. Specify
EXAMPLE II: ARBITER 0 e e
3. Solve Game
r0 : Arbiter g0 s 4. Create System
BTl | >
rl gl
Input: r0, rl

Output: g0, g1

What is the specification?

b 1. Specify
EXAMPLE II: ARBITER 0 e e
3. Solve Game
r0 : Arbiter g0 s 4. Create System
BTl | >
rl gl
Input: r0, rl

Output: g0, g1

G(r0 — Fg0)
G(rl — Fgl)

Specify
Create Game
Solve Game
Create System

ARBITER SPECIFICATION

1.
/2
3.
4,

Deterministic Biichi automaton for
G(r — Fg)

Accepting states must be visited infinitely often

ARBITER GAME

Game for

G(r — Fg)

Box: environment

Circle: system

Accepting states must be visited infinitely often

1. Specify
2. Create Game
3. Solve Game
4. Create System
r0 0
Arbiter 5
rl gl

ARBITER GAME

Game for

G(r — Fg)

Box: environment

Circle: system

Accepting states must be visited infinitely often

qo

1. Specify
2. Create Game
3. Solve Game
4. Create System
r0 0
Arbiter 5
rl gl
a1 g
SeLE)

ARBITER STRATEGY

Game for

G(r — Fg)

Box: environment

Circle: system

1. Specify
2. Create Game
3. Solve Game
4. Create System

r0 . 0
Arbiter 5

rl gl

q1 g1-—
L

1. Specify
ARBITER STRATEGY L Spedly
—rV g g 3. Solve Game
Game for . A . 4. Create System
>4 o0
0
Arbiter &
—
gl
Box: environment —g 91—
w

Circle: system

ARBITER STRATEGY

Game for

G(r » Fg)

initial state = q0
while(){

r = getinput();

if(state==q0 && r==0) {g=0; state=q0}

if(state==q0 && r==1) {g=0; state=q1}

if(state==q1

}

) {g=1; state=q0}

Specify
Create Game
Solve Game

Create System

L o

Arbiter gv

	Program Synthesis
	Acknowledgments
	Construct Correct Systems Automatically from Spec
	Construct Correct Systems Automatically from Spec
	Slide Number 5
	This Tutorial
	Reactive Synthesis
	Slide Number 8
	Today’s Lecture
	Synthesis
	Linear Temporal Logic (LTL)
	LTL Syntax
	Expressing Properties in LTL
	Satisfiability & Realizability
	Satisfiability & Realizability
	Satisfiability & Realizability
	Formal Verification
	Synthesis is a Game
	Reactive Synthesis Settings
	Example I: Chess
	Checkers and Systems
	Synthesis
	Example II: Arbiter
	Example II: Arbiter
	Arbiter Specification
	Arbiter Game
	Arbiter Game
	Arbiter Strategy
	Arbiter Strategy
	Arbiter Strategy

