
PROGRAM SYNTHESIS
RUZICA PISKAC
YALE UNIVERSITY

Oregon Programming Languages 
Summer School 2023



ACKNOWLEDGMENTS

• Based liberal theft of ideas and reuse of slides from Rajeev Alur, Roderick Bloem, 
Krishnendu Chatterjee, Ruediger Ehlers, Bernd Finkbeiner,  Priyanka Golia,
Andreas Griesmayer,  Tom Henzinger, Georg Hofferek, Swen Jacobs, Barbara 
Jobstmann, Ayrat Khalimov, Bettina Koenighofer, Robert Koenighofer, Andreas 
Morgenstern, Nir Piterman, Amir Pnueli, Yaniv, Sa’ar, Swen Schewe, Klaus Schneider, 
Armando Solar-Lezama, Stefan Staber, Emina Torlak, Moshe Vardi,  and many 
others

• Synthesizing good synthesis slides is a group effort 



CONSTRUCT CORRECT SYSTEMS 
AUTOMATICALLY FROM SPEC

Requirements

Specification Implementation

verification

synthesis

Don’t do same thing twice!



CONSTRUCT CORRECT SYSTEMS 
AUTOMATICALLY FROM SPEC

Requirements

Specification Implementation

verification

synthesis

Don’t do same thing twice!

Specifying is easier than implementing!



Removes need 
to Code!

Correct by 
Construction!



THIS TUTORIAL

• Reactive synthesis – from Church’s synthesis problem to scalable software

• Deductive synthesis – from the seminar Manna-Waldinger paper to scalable 
software

• Can reactive and deductive synthesis be friends?

• Syntax-guided synthesis

• New applications of software synthesis



REACTIVE 
SYNTHESIS

Server 0 Server 1 Server 15 Client 0 Client 1 Client 15

AMBA AHB



• Reactive systems: embedded systems, 
GUIs, robots, hardware circuits, …

• Church synthesis problem (1957):
• Given a requirement φ on the 

input-output behavior of a Boolean 
circuit, compute a circuit C that 
satisfies φ.

• Reactive synthesis: given a 
specification written in LTL (linear 
temporal logic), automatically 
compute the program that satisfies the 
specification 

φinput
i1, i2, i3,...

output
o1,o2, o3,...



TODAY’S LECTURE
Finite State Reactive systems

• Continuous interaction with environment
• Do not terminate
• Discrete time
• Correctness statements are temporal (temporal logic, automata)

Tomorrow’s lecture: functions
• Start with input, terminate with output (non-termination = bug)
• Correctness is input/output relation (Hoare logic)



SYNTHESIS 

Given
Input and output signals

Specification 𝜙𝜙 of behavior 

Determine

Realizability: Is there a  system that realizes specification? 

Synthesis: If system exists, construct it

System
in out

For any input trace 𝐼𝐼, we 
have 

𝐼𝐼||𝑆𝑆 𝐼𝐼 ⊨ 𝜙𝜙



LINEAR TEMPORAL LOGIC (LTL)

LTL PSL Meaning

𝑝𝑝 𝑝𝑝

𝑋𝑋𝑋𝑋 next 𝑋𝑋

𝐺𝐺𝑋𝑋 always 𝑋𝑋

𝐹𝐹𝑋𝑋 eventually!𝑋𝑋

𝑋𝑋 𝑈𝑈 𝜓𝜓 𝑋𝑋 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢! 𝜓𝜓

𝑋𝑋

𝑋𝑋𝑋𝑋 𝑋𝑋 𝑋𝑋𝑋𝑋

𝑋𝑋

𝜓𝜓𝑋𝑋 𝑋𝑋 𝑋𝑋

plus Boolean connectors (∨, ∧, ¬, →) and nesting

𝑝𝑝



LTL SYNTAX

• If ϕ is an atomic propositional formula, it is a formula in LTL

• If ϕ and ψ are LTL formulas, so are ϕ ∧ψ, ϕ ∨ψ,     ¬ ϕ, ϕ U ψ (until), X ϕ (next), Fϕ
(eventually), G ϕ (always)

• Interpretation: over computations π: ω ⇒ 2V which assigns truth values to the 
elements of V at each time instant
π ⊨ X ϕ iff π 1 ⊨ ϕ

π ⊨ G ϕ iff ∀i ⋅ π i⊨ ϕ

π ⊨ Fϕ iff ∃i ⋅ π i⊨ ϕ

π ⊨ ϕ U ψ iff ∃i ⋅ π i⊨ ψ ∧ ∀ j ⋅ 0 ≤ j  < i ⇒ π j ⊨ ϕ

Here, π i is the i th state on a path



EXPRESSING PROPERTIES IN LTL

• Good for safety (G ¬) and liveness (F) properties

• Express:
• When a request occurs, it will eventually be acknowledged

• G (request ⇒ F acknowledge)
• A path contains infinitely many q’s

• G F q
• At most a finite number of states in a path satisfy ¬q (or property q eventually 

stabilizes)
• F G q

• Action s precedes p after q
• [¬q U (q ∧ [¬p U s])]
• Note:  hard to do correctly.  



SATISFIABILITY & REALIZABILITY

Satisfiability: 

Is there a trace that satisfies spec?

Realizability:

Is there a system that satisfies spec?



SATISFIABILITY & REALIZABILITY
Satisfiability: Is there a trace that satisfies the spec?

Realizability: Is there a system that satisfies the spec?

input req1, req2

output grant1, grant2

G( (req1 → grant1) ∧ (req2 → grant2) )

G ¬( grant1 ∧ grant2 )

Satisfiable? 

Yes

Realizable? 

No

Inputs universally quantified

req1

req2

grant1

grant2

req1 F F F F F F

req2 F F F F F F

grant1 F F F F F F

grant2 F F F F F F

req1 T T T T T T

req2 T T T T T T

grant1

grant2



SATISFIABILITY & REALIZABILITY
Satisfiability: Is there a trace that satisfies the spec?

Realizability: Is there a system that satisfies the spec?

Realizability  ≠ Satisfiability

input req1

output grant1

G( grant1 ↔ X req1 )

Satisfiable? 

Yes (No matter how we set grant1).

Realizable?

No, clairvoyant!

req1

req2

grant1

grant2

¬r
¬r

r
rr ¬r



FORMAL VERIFICATION
Given: 

System provides outputs

A specification

One Player: (not a game!)

• Environment provides inputs

System is good if it fulfills the spec for all possible inputs

System



SYNTHESIS IS A GAME
Given: 

System provides outputsstem provides outputs

A specification

Two Players (a game!)

• Environment provides inputs

• System provides outputs

System is good if it fulfills the spec for all possible inputs.

System



REACTIVE SYNTHESIS SETTINGS
Reactive Systems

• Constant interaction

• No Termination

• E.g. Cell phones, Operating Systems, Powerpoint

Finite State

• Non-terminating, finite systems are graphs with loops

• Not our current focus: functions
• “Create a function that computes sqrt(2)”

System



EXAMPLE I: CHESS
• Environment determines black moves

• System determines white moves

• Winning condition:
• If all black moves are legal, then all white moves are 

legal and eventually, white reaches checkmate

Easy to specify!

System



CHECKERS AND SYSTEMS
Checkers are passive

Judge if given behavior is OK

Used in verification

Systems are active

Construct correct behavior 

Result of synthesis

System
req1

req2

grant1

grant2

Checker

Property Synthesis: systems not checkers Thinks of movesChecks moves



SYNTHESIS

1. Specify

2. Create Game

3. Solve Game

4. Create System



EXAMPLE II: ARBITER

Input: r0, r1

Output: g0, g1

What is the specification?

Arbiterr0 g0

1. Specify
2. Create Game
3. Solve Game
4. Create System

r1 g1



EXAMPLE II: ARBITER

Input: r0, r1

Output: g0, g1

G(r0 → Fg0)

G(r1 → Fg1)

G(¬g0 ∨ ¬g1)

Arbiterr0 g0

1. Specify
2. Create Game
3. Solve Game
4. Create System

r1 g1



ARBITER SPECIFICATION

Deterministic Büchi automaton for

G(r → Fg)

Accepting states must be visited infinitely often

1. Specify
2. Create Game
3. Solve Game
4. Create System

Don’t get 
stuck here!



ARBITER GAME
Game for

G(r → Fg)

Box: environment

Circle: system

1. Specify
2. Create Game
3. Solve Game
4. Create System

Arbiterr0 g0

r1 g1

Accepting states must be visited infinitely often



ARBITER GAME
Game for

G(r → Fg)

Box: environment

Circle: system

1. Specify
2. Create Game
3. Solve Game
4. Create System

Arbiterr0 g0

r1 g1

Accepting states must be visited infinitely often



ARBITER STRATEGY
Game for

G(r → Fg)

Box: environment

Circle: system

1. Specify
2. Create Game
3. Solve Game
4. Create System

Arbiterr0 g0

r1 g1



ARBITER STRATEGY
Game for

G(r → Fg)

Box: environment

Circle: system

1. Specify
2. Create Game
3. Solve Game
4. Create System

Arbiterr0 g0

r1 g1



ARBITER STRATEGY
Game for

G(r → Fg)

initial state = q0

while(){

r = getinput();

if(state==q0 && r==0) {g=0; state=q0}

if(state==q0 && r==1) {g=0; state=q1}

if(state==q1              ) {g=1; state=q0}

}

1. Specify
2. Create Game
3. Solve Game
4. Create System

Arbiterr0 g0

r1 g1


	Program Synthesis
	Acknowledgments
	Construct Correct Systems Automatically from Spec
	Construct Correct Systems Automatically from Spec
	Slide Number 5
	This Tutorial
	Reactive Synthesis
	Slide Number 8
	Today’s Lecture
	Synthesis 
	Linear Temporal Logic (LTL)
	LTL Syntax
	Expressing Properties in LTL
	Satisfiability & Realizability
	Satisfiability & Realizability
	Satisfiability & Realizability
	Formal Verification
	Synthesis is a Game
	Reactive Synthesis Settings
	Example I: Chess
	Checkers and Systems
	Synthesis
	Example II: Arbiter
	Example II: Arbiter
	Arbiter Specification
	Arbiter Game
	Arbiter Game
	Arbiter Strategy
	Arbiter Strategy
	Arbiter Strategy

