
PROGRAM SYNTHESIS
RUZICA PISKAC
YALE UNIVERSITY

Oregon Programming Languages
Summer School 2023

HOW DOES SKETCH WORK?

harness void doublesketch(int x)

{

int t = x * ??;

assert t == x + x;

}

Search through all possible ways to fill the hole “??” such
that the specification is satisfied:

Find c such that:
∀𝑥𝑥. (𝑥𝑥 ∗ 𝑐𝑐 = 𝑥𝑥 + 𝑥𝑥)

Equivalently:
∃𝑐𝑐.∀𝑥𝑥. (𝑥𝑥 ∗ 𝑐𝑐 = 𝑥𝑥 + 𝑥𝑥)

In general, every sketching problem can be converted to
solving a formula of the form:

∃𝑐𝑐1𝑐𝑐2 …∀𝑥𝑥1𝑥𝑥2. 𝜑𝜑(𝑐𝑐1, 𝑐𝑐2, . . , 𝑥𝑥1, 𝑥𝑥2 …)

RECIPE FOR CONSTRAINT BASED SYNTHESIS

1. Convert the synthesis problem 𝑃𝑃 to a
formula 𝜑𝜑

2. Solve 𝜑𝜑 using a constraint solver

3. Map solution from constraint solver
back to the synthesis problem 𝑃𝑃

Types of constraint solvers:
• SAT Solvers (Boolean

Satisfiability)
• SMT Solvers (Satisfiability

Modulo Theories)
• Solvers for Quantified Formulas

(QBF or CEGIS solvers)

• Fix a background theory 𝑇𝑇: fixes types and
operations

• Function to be synthesized: name 𝑓𝑓 along
with its type
• General case: multiple functions to be

synthesized
• Inputs to SyGuS problem:

• Specification 𝜑𝜑(𝑥𝑥, 𝑓𝑓(𝑥𝑥))
• Typed formula using symbols in 𝑇𝑇 +

symbol 𝑓𝑓
• Set of expressions given by a context-free

grammar 𝐺𝐺
• Set of candidate expressions that use

symbols in 𝑇𝑇
• Computational problem

• Output 𝑒𝑒 from grammar 𝐺𝐺, such that
𝜑𝜑 [𝑒𝑒 → 𝑓𝑓] is valid (in theory T)

SYGUS: SYNTAX GUIDED
SYNTHESIS

Syntax-guided synthesis; FMCAD’13
Alur, Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh,
Solar-Lezama, Torlak, Udupa

SYNTAX-GUIDED
PROGRAM
SYNTHESIS
SLIDES BY RAJEEV ALUR AND THE EXCAPE: EXPEDITION TEAM

1. PROGRAMMING BY EXAMPLES (PBE)
Desired program P: bit-vector transformation that resets rightmost substring of contiguous 1’s to 0’s

1. P should be constructed from standard bit-vector operations

|, &, ~, +, -, <<, >>, 0, 1, …

2. P specified using input-output examples

00101  00100

01010  01000

10110  10000

Desired solution:

x & (1 + (x | (x-1))

6

Input Output
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
1 425 235 7654 425-235-7654
425 745-8139 425-745-8139

FLASHFILL: PBE IN PRACTICE
REF: GULWANI (POPL 2011)

Wired: Excel is now a lot easier for people who aren’t spreadsheet- and chart-
making pros. The application’s new Flash Fill feature recognizes patterns,
and will offer auto-complete options for your data. For example, if you
have a column of first names and a column of last names, and want to
create a new column of initials, you’ll only need to type in the first few
boxes before Excel recognizes what you’re doing and lets you press Enter
to complete the rest of the column.

7

SCYTHE: SQL QUERIES FROM INPUT-OUTPUT EXAMPLES

WANG, CHEUNG, BODIK; SCYTHE.CS.WASHINGTON.EDU

8

2. PROGRAM OPTIMIZATION

9

Can regular programmers match experts in code performance?
Improved energy performance in resource constrained settings
Adoption to new computing platforms such as GPUs

Opportunity: Semantics-preserving code transformation

Possible Solution: Superoptimizing Compiler
Structure of transformed code may be dissimilar to original

SUPEROPTIMIZATION ILLUSTRATION

Given a program P, find a “better” equivalent program P’

average (bitvec[32] x, y) {
bitvec[64] x1 = x;
bitvec[64] y1 = y;
bitvec[64] z1 = (x1+y1)/2;
bitvec[32] z = z1;
return z

}

Find equivalent code without
extension to 64 bit vectors

10

average (x, y) =
(x and y) + [(x xor y) shift-right 1]

3. REPAIR/FEEDBACK FOR PROGRAMMING HOMEWORKS
SINGH ET AL (PLDI 2013)

Student Solution P
+ Reference Solution R
+ Error Model

11

Find min no of edits to P so as
to make it equivalent to R

4. AUTOMATIC INVARIANT GENERATION
SelectionSort(int A[],n) {

i := 0;
while(i < n−1) {

v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant: ?

Invariant: ?

12

Constraint solver

TEMPLATE-BASED AUTOMATIC INVARIANT
GENERATION

SelectionSort(int A[],n) {
i :=0;
while(i < n−1) {

v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. ? ∧ ?

Invariant:
? ∧ ? ∧
(∀k1,k2. ? ∧ ?) ∧ (∀k. ? ∧ ?)

13

TEMPLATE-BASED AUTOMATIC INVARIANT
GENERATION

SelectionSort(int A[],n) {
i :=0;
while(i < n−1) {

v := i;
j := i + 1;
while (j < n) {

if (A[j]<A[v])
v := j ;

j++;
}
swap(A[i], A[v]);
i++;

}
return A;

}

post: ∀k : 0 ≤k<n ⇒ A[k]≤A[k + 1]

Invariant:
∀k1,k2. 0≤k1<k2<n ∧

k1<i ⇒ A[k1]≤A[k2]

Invariant:
i<j ∧
i≤v<n ∧
(∀k1,k2. 0≤k1<k2<n ∧

k1<i ⇒ A[k1]≤A[k2]) ∧
(∀k. i1≤k<j ∧

k≥0 ⇒ A[v]≤A[k])

14

SYNTAX-GUIDED PROGRAM SYNTHESIS

Rich variety of projects in programming systems and software engineering

1. Programming by examples
2. Program superoptimization
3. Automatic program repair
4. Template-guided invariant generation

Computational problem at the core of all these synthesis projects:

Find a program that meets given syntactic and semantic constraints

15

CLASSICAL PROGRAM SYNTHESIS

16

Specification
“What”

Logical relation ϕ(x,y)
among input x and output y

Synthesizer

Implementation
“How”

Constructive proof of
Exists f. For all x. ϕ(x,f(x))

Function f(x) such that
ϕ(x,f(x))

SYNTAX-GUIDED PROGRAM SYNTHESIS

17

Semantic
Specification

Logical formula
ϕ(x,y)

Synthesizer

Implementation

Syntactic
Specification

Set E of
expressions

Search for e in E
s.t. ϕ(x,e(x))

www.sygus.org

SYNTAX-GUIDED SYNTHESIS: FORMALIZATION

18

SYNTAX-GUIDED PROGRAM SYNTHESIS

Find a program snippet e such that

1. e is in a set E of programs (syntactic constraint)

2. e satisfies logical specification ϕ (semantic constraint)

Core computational problem in many synthesis tools/applications

19

www.sygus.org

Can we formalize and standardize this computational problem?

Inspiration: Success of SMT solvers in formal verification

SMT: SATISFIABILITY MODULO THEORIES

Computational problem: Find a satisfying assignment to a formula
 Boolean + Int types, logical connectives, arithmetic operators
 Bit-vectors + bit-manipulation operations in C
 Boolean + Int types, logical/arithmetic ops + Uninterpreted functs

“Modulo Theory”: Interpretation for symbols is fixed
 Can use specialized algorithms (e.g. for arithmetic constraints)

Little Engines of Proof

SAT; Linear arithmetic; Congruence closure

SYNTAX-GUIDED SYNTHESIS (SYGUS) PROBLEM

Fix a background theory T: fixes types and operations

Function to be synthesized: name f along with its type
 General case: multiple functions to be synthesized

Inputs to SyGuS problem:
 Specification ϕ(x, f(x))

Typed formula using symbols in T + symbol f
 Set E of expressions given by a context-free grammar

Set of candidate expressions that use symbols in T

Computational problem:
Output e in E such that ϕ[f/e] is valid (in theory T)

Syntax-guided synthesis; FMCAD’13

with Bodik, Juniwal, Martin, Raghothaman, Seshia, Singh, Solar-Lezama, Torlak, Udupa
21

SYGUS EXAMPLE 1

Theory QF-LIA (Quantifier-free linear integer arithmetic)
Types: Integers and Booleans
Logical connectives, Conditionals, and Linear arithmetic
Quantifier-free formulas

Function to be synthesized f (int x1, x2) : int

Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

Candidate Implementations: Linear expressions
LinExp := x1 | x2 | Const | LinExp + LinExp | LinExp - LinExp

No solution exists

22

SYGUS EXAMPLE 2

Theory QF-LIA

Function to be synthesized: f (int x1 , x2) : int

Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

Candidate Implementations: Conditional expressions without +

Term := x1 | x2 | Const | If-Then-Else (Cond, Term, Term)
Cond := Term ≤ Term | Cond & Cond | ~ Cond | (Cond)

Possible solution:
If-Then-Else (x1 ≤ x2, x2, x1)

23

FROM SMT-LIB TO SYNTH-LIB

(set-logic LIA)
(synth-fun max2 ((x Int) (y Int)) Int

((Start Int (x y 0 1
(+ Start Start)
(- Start Start)

(ite StartBool Start Start)))
(StartBool Bool ((and StartBool StartBool)

(or StartBool StartBool)
(not StartBool)
(<= Start Start))))

(declare-var x Int)
(declare-var y Int)
(constraint (≤ x (max2 x y)))
(constraint (≤ y (max2 x y)))
(constraint (or (= x (max2 x y)) (= y (max2 x y))))
(check-synth)

24

www.sygus.org

Best SyGuS solver:
https://cvc5.github.io/

INVARIANT GENERATION AS SYGUS

25

bool x, y, z
int a, b, c

while(Test) {
loop-body
….

}

 Goal: Find inductive loop invariant automatically

 Function to be synthesized
Inv (bool x, bool z, int a, int b) : bool

 Compile loop-body into a logical predicate
Update(x,y,z,a,b,c, x’,y’,z’,a’,b’,c’)

 Specification:
(Inv & Update & Test’) ⇒ Inv’

& Pre ⇒ Inv & (Inv & ~Test ⇒ Post)

 Template for set of candidate invariants
Term := a | b | Const | Term + Term | If-Then-Else (Cond, Term, Term)
Cond := x | z | Cond & Cond | ~ Cond | (Cond)

SOLVING SYGUS

26

SOLVING SYGUS

Is SyGuS same as solving SMT formulas with quantifier alternation?

SyGuS can sometimes be reduced to Quantified-SMT, but not always
 Set E is all linear expressions over input vars x, y

SyGuS reduces to Exists a,b,c. Forall X. ϕ [f/ ax+by+c]
 Set E is all conditional expressions

SyGuS cannot be reduced to deciding a formula in LIA

Syntactic structure of the set E of candidate implementations can be used
effectively by a solver

Existing work on solving Quantified-SMT formulas suggests solution strategies
for SyGuS

27

SYGUS AS ACTIVE LEARNING

28

Search
Algorithm

Verification
Oracle

Initial examples I

Fail Success

Candidate
Expression

Counterexample

Concept class: Set E of expressions

Examples: Concrete input values

COUNTEREXAMPLE-GUIDED INDUCTIVE SYNTHESIS
SOLAR-LEZAMA ET AL (ASPLOS’06)

Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

Search
Algorithm

Verification
Oracle

I = { }

Candidate
f(x1, x2) = x1

Counterexample
(x1=0, x2=1)

CEGIS EXAMPLE

Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

30

Search
Algorithm

Verification
Oracle

I = {(x1 =0, x2 =1) }

Candidate
f(x1, x2) = x2

Counterexample
(x1 =1, x2 =0)

CEGIS EXAMPLE

Specification: (x1 ≤ f(x1, x2)) & (x2 ≤ f(x1, x2))

Set E: All expressions built from x1, x2,0,1, Comparison, If-Then-Else

31

Search
Algorithm

Verification
Oracle

{(x1 =0, x2 =1)
(x1 =1, x2 =0)
(x1 =0, x2 =0)
(x1 =1, x2 =1)} Candidate

ITE(x1 ≤ x2,x2,x1)

Success

Goal: Find f in E such that for all x in D, ϕ(x, f) holds

I = { }; /* Interesting set of inputs */

Repeat

Learn: Find f in E such that for all x in I, ϕ(f, x) holds

Verify: Find x in D such that ϕ(f, x) does not hol

If so, add x to I

Else, return f

32

Counterexample-guided Inductive Synthesis (CEGIS)

SYGUS SOLUTIONS

CEGIS approach (Solar-Lezama et al, ASPLOS’08)

Similar strategies for solving quantified formulas and invariant generation

Initial learning strategies based on:
1. Enumerative (search with pruning): Udupa et al (PLDI’13)
2. Symbolic (solving constraints): Gulwani et al (PLDI’11)
3. Stochastic (probabilistic walk): Schkufza et al (ASPLOS’13)

33

1. ENUMERATIVE SEARCH

Given:
Specification ϕ(x, f(x))
Grammar for set E of candidate implementations
Finite set I of inputs

Find an expression e(x) in E s.t. ϕ(x,e(x)) holds for all x in I

Attempt 0: Enumerate expressions in E in increasing size till you find one that
satisfies ϕ for all inputs in I

Attempt 1: Pruning of search space based on:
Expressions e1 and e2 are equivalent

if e1(x)=e2(x) on all x in I
Only one representative among equivalent subexpressions needs

to be considered for building larger expressions

34

ILLUSTRATING PRUNING

Spec: (x1 < f(x1, x2)) & (x2 < f(x1, x2))
Grammar: E := x1 | x2 | 0 | 1 | E + E
I = { (x1=0, x2=1) }
Find an expression f such that (f(0,1) > 0) & (f(0,1) > 1)

35

x1 x2

0 1

x1 + x1 x1 + x2 x2 + x2

x2 + x1

2. SYMBOLIC SEARCH

Use a constraint solver for both synthesis and verification steps

36

 Each production in the grammar is thought of as a component.
Input and Output ports of every component are typed.

 A well-typed loop-free program comprising these component corresponds
to an expression DAG from the grammar.

ITE

Term

Term

Term

Cond
>=

Term Term

Cond

+

Term Term

Term

x
Term

y
Term

0
Term

1
Term

SYMBOLIC ENCODING

37

x
n1

x
n2

y
n3

y
n4

0
n5

1
n6

+
n7

+
n8

>=
n9

ITE
n10

 Synthesis Constraints:
Shape is a DAG, Types are consistent
Spec ϕ[f/e] is satisfied on every concrete input in I

 Use an SMT solver (Z3) to find a satisfying solution.

 If synthesis fails, try increasing the number of occurrences of components in
the library in an outer loop

 Start with a library consisting of some number of occurrences of each
component.

3. STOCHASTIC SEARCH

Idea: Find desired expression e by probabilistic walk on graph where nodes are
expressions and edges capture single-edits

Metropolis-Hastings Algorithm: Given a probability distribution P over domain
X, and an ergodic Markov chain over X, samples from X

Fix expression size n. X is the set of expressions En of size n. P(e) ∝Score(e)
(“Extent to which e meets the spec φ”)

For a given set Examples, Score(e) = exp(- 0.5 Wrong(e)), where Wrong(e) = No
of inputs in Examples for which ~ ϕ [f/e]

Score(e) is large when Wrong(e) is small. Expressions e with Wrong(e) = 0 more
likely to be chosen in the limit than any other expression

38

Initial candidate expression e sampled uniformly from En

When Score(e) = 1, return e

Pick node v in parse tree of e uniformly at random. Replace subtree rooted at e
with subtree of same size, sampled uniformly

STOCHASTIC SEARCH

39

+

z

e

+

yx

+

z

e’

-

1z

 With probability min{ 1, Score(e’)/Score(e) }, replace e with e’

 Outer loop responsible for updating expression size n

PART IV

SYGUS COMPETITION AND EVOLUTION

40

SMT SUCCESS STORY

41

SMT-LIB Standardized Interchange Format (smt-lib.org)
Problem classification + Benchmark repositories
LIA, LIA_UF, LRA, QF_LIA, …

+ Annual Competition (smt-competition.org)

Z3 Yices CVC4 MathSAT5

CBMC SAGE VCC Spec# …

…

SYGUS COMPETITION

42

SYNTH-LIB Standardized Interchange Format
Problem classification + Benchmark repository

+ SyGuS-COMP (Competition for solvers) held since FLoC 2014

Program
optimization

Program
repair

Programming
by examples

Invariant
generation

Techniques for Solvers:
Learning, Constraint solvers, Enumerative/stochastic search

Collaborators: D. Fisman, S. Padhi, A. Reynolds, R. Singh, A. Solar-Lezama, A. Udupa

SYGUS PROGRESS

Over 2000 benchmarks
 Hacker’s delight
 Invariant generation (based on verification competition SV-Comp)
 FlashFill (programming by examples system from Microsoft)
 Synthesis of attack-resilient crypto circuits
 Program repair
 Motion planning
 ICFP programming competition

Special tracks for competition
 Invariant generation
 Programming by examples
 Conditional linear arithmetic

New solution strategies and applications

43

www.sygus.org

 Problem definition

Syntactic constraint on space of allowed programs

Semantic constraint given by logical formula

 Solution strategies

Counterexample-guided inductive synthesis

Search in program space + Verification of candidate solutions

 Applications

Programming by examples

Program repair/optimization with respect to syntactic constraints

 Annual competition (SyGuS-comp)

Standardized interchange format + benchmarks repository
44

SyGuS Conclusions

www.sygus.org

USING SYNTHESIS FOR
MODULAR
VERIFICATION
C
JOINT WORK WITH WILLIAM HALLAHAN AND RANJIT JHALA

VERIFICATION

map :: (a -> b) ->
map f [] = []
map f (x:xs) =

[a] -> [b]xs: { ys: | size xs == size ys }

map f xsf x:

map id [1] = []
Counterexample:

8 | map f (x:xs) = map f xs
^^^^^^^^

Inferred type
VV : {v : [a] | size xs == size v

&& size v >= 0}
not a subtype of Required type

VV : {VV : [a] | size ?a == size VV}
In Context

xs : {v : [a] | size v >= 0}
?a : {?a : [a] | size ?a >= 0}William T. Hallahan, Anton Xue, Maxwell Troy Bland, Ranjit Jhala, and Ruzica

Piskac. Lazy Counterfactual Symbolic Execution. PLDI 2019.

MODULAR VERIFICATION

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y > x }
incr x = x + 1

To verify a caller, modular verifiers use callee’s
specification

Error: Liquid Type Mismatch

5 | add2 x = incr (incr x)
^^^^^^^^^

Inferred type
VV : {v : Int | v > ?a}

not a subtype of Required type
VV : {VV : Int | VV == x + 2}

In Context
x : Int
?a : {?a : Int | ?a > x}

add2 0 = 3
violating add2’s specification
if incr 0 = 2

MODULAR VERIFICATION

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y > x }
incr x = x + 1

To verify a caller, modular verifiers use callee’s
specification

Error: Liquid Type Mismatch

5 | add2 x = incr (incr x)
^^^^^^^^^

Inferred type
VV : {v : Int | v > ?a}

not a subtype of Required type
VV : {VV : Int | VV == x + 2}

In Context
x : Int
?a : {?a : Int | ?a > x}

add2 0 = 3
violating add2’s specification
if incr 0 = 2

MODULAR VERIFICATION

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y = x + 1 }
incr x = x + 1

add2 0 = 3
violating add2’s specification
if incr 0 = 2

To verify a caller, modular verifiers use callee’s
specification

OVERVIEW

Code

Users
Specification

s

Verifier Verified!

Concrete
Counterexample

Abstract
Counterexample

G2

OVERVIEW

Code

Users
Specification

s

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specification

s

Concrete
Counterexample

(to users
specification)

Synthesize
rSynthesizer

OVERVIEW

Code

Users
Specification

s

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specification

s

Concrete
Counterexample

(to users
specification)

Synthesize
r

LIA
Specification
Synthesizer

COUNTEREXAMPLES

map :: (a -> b) -> xs:[a] -> { ys:[b] | size xs == size ys}
map f [] = []
map f (x:xs) = map f xs

Concrete Counterexample

Abstract Counterexample

map id [1] = []

add2 :: x:Int -> { y:Int | y == x + 2 }
add2 x = incr (incr x)

incr :: x:Int -> { y:Int | y > x }
incr x = x + 1

add2 0 = 3
if incr 0 = 2

OVERVIEW

Code

Users
Specification

s

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specifications

Concrete
Counterexample

(to users
specification)

Synthesize
rSynthesizer

EXAMPLE

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a]
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

concat [[], []] = [0]
if app [] [] = [0]

Abstract counterexample:

app [] [] = []
Real evaluation:

Synthesis
constraints:preapp([], []) ⇒ ¬postapp([], [], [0])

preapp([], []) ⇒ postapp([], [], [])

EXAMPLE

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

concat [[], []] = [0]
if app [] [] = [0]

Abstract counterexample:

app [] [] = []
Real evaluation:

Synthesis constraints:
preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])

EXAMPLE

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == 0 }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [] = [0]
Concrete counterexample:

preapp([0], []) ⇒ postapp([0], [], [0])

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])

Synthesis constraints:

EXAMPLE

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [] = [0]
Concrete counterexample:

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])
preapp([0], []) ⇒ postapp([0], [], [0])

Synthesis constraints:

EXAMPLE

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x }
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [0] = [0, 0]
Concrete counterexample:

preapp([0], [0]) ⇒ postapp([0], [0], [0, 0])

preapp([], []) ⇒ ¬postapp([], [], [0])

preapp([], []) ⇒ postapp([], [], [])
preapp([0], []) ⇒ postapp([0], [], [0])

Synthesis constraints:

EXAMPLE

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [0] = [0, 0]
Concrete counterexample:

}

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])
preapp([0], []) ⇒ postapp([0], [], [0])
preapp([0], [0]) ⇒ postapp([0], [0], [0])

Synthesis constraints:

EXAMPLE

concat :: x:[[a]] -> {v : [a] | size v = sumsize x}
concat [] = []
concat (xs:[]) = xs
concat (xs:(ys:xss)) = concat ((app xs ys):xss)

app :: x:[a] -> y:[a] -> { z:[a] | size z == size x + size y
app [] [] = []
app xs [] = xs
app [] ys = ys
app (x:xs) ys = x:app xs ys

app [0] [0] = [0, 0]
Concrete counterexample:

}

preapp([], []) ⇒ ¬postapp([], [], [0])
preapp([], []) ⇒ postapp([], [], [])
preapp([0], []) ⇒ postapp([0], [], [0])
preapp([0], [0]) ⇒ postapp([0], [0], [0])

Synthesis constraints:

CALL GRAPH TRAVERSAL

conca
t

app

concatMap

map

f

gh

… … …

Level
1

2

k - 2

k - 1

k

…

User
provided
specification

Synthesized
specification

Walk down the call graph, from level 1 to level k.

At level i, synthesize specifications for the
functions
at level i + 1 that would (if correct) prove
specifications of functions at level i.

Backtrack if:
• a concrete counterexamples to a specification at

level <= i is found
• specification synthesis problem becomes

unrealizable

OVERVIEW

Code

Users
Specification

s

Verifier Verified!

Concrete
Counterexample
(to synthesized
specification)

Abstract
Counterexample

G2

Synthesized
Specification

s

Concrete
Counterexample

(to users
specification)

Synthesizer
LIA

Specification
Synthesizer

SYNTHESIZER

Constraints Measures
(size, sumsize)

Synthesize
specification

Verifier
Specification Interpolant

Realizable Unrealizable

SYNTHESIZER

Constraints

Convert to
Integer

template

Synthesize
specification

over LIA
(using SMT)

Convert
back to full

features

Verifier
Specification Interpolant

Realizabl
e

Unrealizable

Measures
(size,

sumsize)

SYNTHESIZER

Synthesize LIA specifications for:

Integer Literal
Inputs/Outputs

f :: {x:Int | x < 0} -> { y:Int | y > 0} -> [Int]

Integer Measures
f :: Int -> Int -> { xs:[Int] | size xs > 0 }

size :: [a] -> Int
sumsize :: [[a]] -> Int

ADT Contents f :: Int -> Int -> [{ x:Int | x > 0 }]

f :: Int -> Int -
> [Int]

f x y = [x + 4,
y + 4]

Over:
Specification Type Specification Example

CONVERSION

pref(0, 1) ⇒ postf(0, 1, [4, 5]) Constraint

size [4, 5] = 2

pref(0, 1) ⇒ postf(0, 1, 2)
Integer Measures

Synthesize LIA specifications for: f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]

postf(x, y, z) = z > 0

postf(x, y, z) = { z:[a] | size z > 0 }

CONVERSION

pref(0, 1) ⇒ postf(0, 1, [4, 5]) Constraint

pref(0, 1) ⇒ postf(0, 1, 2)
∧ postf_cons(0, 1, 4)
∧ postf_cons(0, 1, 5)

postf_cons(x, y, r)
[4, 5]

ADT Contents

Synthesize LIA specifications for: f :: Int -> Int -> [Int]

f x y = [x + 4, y + 4]

postf(x, y, r) = r > 0
post f_cons(x, y, r) = r > 2

{ r:[{ x:Int | x > 2 }] | size r > 0 }

SOUNDNESS AND COMPLETENESS

Soundness Theorem –
Assuming a sound verifier, counterexample generator, and synthesizer,
the inference algorithm is sound.

Completeness Definition –
We say an inference function is complete if, whenever there exists some
set of specifications that will allow verification, the algorithm succeeds in
finding such a set.

Completeness Theorem –
Assuming a finite number of possible specifications, and a sound and
complete verifier, counterexample generator, and synthesizer, the
inference algorithm is complete.

EVALUATION

Ran the inference algorithm on 15 benchmarks, some created by us, some
drawn from a graduate student level class homework assignment.

0
20
40
60
80

100
120
140
160
180
200

Benchmarks

Time(
s)

Ti
m

eo
ut

Largest benchmark is the inner loop of a kmeans implementation, involving 34
functions. We prove the codes specifications in 596 seconds (slightly under 10
minutes.)

SUMMARY
• For verification to succeed, modular verifiers require

specifications to not only be correct, but be sufficiently
supported by callee’s specifications.

• Given specifications written by the user, our inference algorithm
automatically finds the required set of specifications for a
modular verifier to succeed.

• Using an SMT solver to synthesizer LIA specifications allows us
SyGuS like synthesis, but to also prove unrealizability and get
interpolants.

• Our approach is implemented to find LiquidHaskell
specifications, using G2 as a counterexamples generator, and it’s
effectiveness is demonstrated on a variety of benchmarks.

	Program Synthesis
	How does Sketch work?
	Recipe for Constraint based synthesis
	 SyGus: Syntax Guided Synthesis
	Syntax-Guided Program Synthesis
	1. Programming By Examples (PBE)
	FlashFill: PBE in Practice�				Ref: Gulwani (POPL 2011)
	Scythe: SQL queries from input-output examples��Wang, Cheung, Bodik; scythe.cs.washington.edu
	2. Program Optimization
	Superoptimization Illustration
	3. Repair/Feedback for Programming Homeworks�						Singh et al (PLDI 2013)
	4. Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Template-based Automatic Invariant Generation
	Syntax-Guided Program Synthesis
	Classical Program Synthesis
	Syntax-Guided Program Synthesis
	�Syntax-guided Synthesis: Formalization
	Syntax-Guided Program Synthesis
	SMT: Satisfiability Modulo Theories
	Syntax-Guided Synthesis (SyGuS) Problem
	SyGuS Example 1
	SyGuS Example 2
	From SMT-LIB to SYNTH-LIB
	Invariant Generation as SyGuS
	��Solving SyGuS
	Solving SyGuS
	SyGuS as Active Learning
	Counterexample-Guided Inductive Synthesis�				Solar-Lezama et al (ASPLOS’06)
	CEGIS Example
	CEGIS Example
	Slide Number 32
	SyGuS Solutions
	1. Enumerative Search
	Illustrating Pruning
	2. Symbolic Search
	Symbolic Encoding
	3. Stochastic Search
	Stochastic Search
	Part IV��SyGuS Competition and Evolution
	SMT Success Story
	SyGuS Competition
	SyGuS Progress
	Slide Number 44
	Using Synthesis for Modular Verification
	Verification
	Modular Verification
	Modular Verification
	Modular Verification
	Overview
	Overview
	Overview
	Counterexamples
	Overview
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Call Graph Traversal
	Overview
	Synthesizer
	Synthesizer
	Synthesizer
	Conversion
	Conversion
	Soundness and Completeness
	Evaluation
	SUMMARY

