
PROGRAM SYNTHESIS
RUZICA PISKAC
YALE UNIVERSITY

Oregon Programming Languages
Summer School 2023

REACTIVE SYNTHESIS – “HOLY GRAIL” (WELL, ONE OF THEM)

● Autonomous driving

○ Reactive traffic planner decides whether vehicle should stay in the travel lane or
perform a passing maneuver, whether it should go or stop, whether it is allowed to
reverse, etc.

○ Hierarchical control: reactive traffic planner interacts with mission control (above) and
path planner (below).

● Specification consists of

○ Traffic rules (for example “no collision”, “obey speed limits”, …

○ Goals (for example “eventually the checkpoint should be reached”)
● More in the following survey paper [Murray et al, 2012]

http://www.cds.caltech.edu/%7Emurray/preprints/wtm12-us_s.pdf

REACTIVE SYNTHESIS

Is a Boolean circuit the right
representation for these
systems?

Cyber-physical
Systems

Embedded
Devices

Graphical User
Interfaces

Mobile
Applications

Idea: Temporal Stream Logic
Abstract away from Boolean circuits

REACTIVE SYNTHESIS – LIMITATIONS

● Applications are still limited to small examples

○ Synthesis from LTL specifications is 2EXPTIME hard

○ Synthesis of distributed systems (where the processes have incomplete information) is in
general undecidable

● We tried to synthesize a simple autonomous driving controller [SCAV2017] with current state of
the art tools

● The controller only needs to switch between a small number of behaviors, like steering during a
bend, or shifting gears on high rpm

● To detect those situations, the controller needs to process 20+ sensors of the car
● This accumulation of sensors values exceeded the capabilities of the tools

https://dl.acm.org/citation.cfm?doid=3055378.3055385

SPOILER ALERT

● New logic: TSL (temporal stream logic), defined over streams of data, with user defined/API
predicates and function calls

● New synthesis “procedures” – extending the existing work on reactive synthesis to this new logic,
outputting executable FRP programs

● New applications: among others we synthesized a controller for a simulator for autonomous
vehicles, a music player, …

TEMPORAL STREAM LOGIC (TSL)
CAV 2019. Finkbeiner, Klein, Piskac, Santolucito

TSL EXAMPLE

TSL EXAMPLE

TEMPORAL STREAM LOGIC (TSL)
● All temporal operators are the same as in LTL
● Input variables are not Booleans but signals
● Temporal operators are defined on atoms which can either be an update atom, or a

predicate applied on function termsto signal terms

SYNTHESIZING A MUSIC PLAYER APP

Sys.leaveApp() {
if (MP.musicPlaying())
Ctrl.pause();

}

Sys.resumeApp() {
pos = MP.trackPos();
Ctrl.play(Tr,pos);

}

Finding resume and restart errors in android
applications Shan, Z., Azim, T., Neamtiu, I OOPSLA 2016 Available online: GitHub,

Google Store

• Android Lifecycle

https://github.com/santolucito/musicPlayerApp
https://play.google.com/store/apps/details?id=com.mark.myapplication

SYNTHESIZING A MUSIC PLAYER APP

Sys.leaveApp() {
if (MP.musicPlaying())
Ctrl.pause();

}

Sys.resumeApp() {
pos = MP.trackPos();
Ctrl.play(Tr,pos);

}

• Android Lifecycle
Input “variables” for specification:

• The Android system (Sys)
• The Android music player library (MP)
• Its control interface (Ctrl)
• The currently selected track (Tr)

• API functions and routines

SYNTHESIZING A MUSIC PLAYER APP

Sys.leaveApp() {
if (MP.musicPlaying())
Ctrl.pause();

}

Sys.resumeApp() {
pos = MP.trackPos();
Ctrl.play(Tr,pos);

}

• Android Lifecycle
ALWAYS (leaveApp(Sys) ∧
musicPlaying(MP)

⇒ [Ctrl ↢ pause()])

ALWAYS (resumeApp(Sys)
⇒ [Ctrl ↢
play(Tr,trackPos(MP)])

SYNTHESIZING A MUSIC PLAYER APP

Sys.leaveApp() {
if (MP.musicPlaying())
Ctrl.pause();

}

Sys.resumeApp() {
pos = MP.trackPos();
Ctrl.play(Tr,pos);

}

• Android Lifecycle
ALWAYS (leaveApp(Sys) ∧
musicPlaying(MP)

⇒ [Ctrl ↢ pause()])

ALWAYS (resumeApp(Sys)
⇒ [Ctrl ↢
play(Tr,trackPos(MP)])

New task:

On resume app, only play music if the music was already playing when paused.

SYNTHESIZING A MUSIC PLAYER APP

bool wasPlaying = false;

Sys.leaveApp() {
if (MP.musicPlaying()){
wasPlaying = true;
Ctrl.pause();}

else {
wasPlaying = false;}

}

Sys.resumeApp() {
if (wasPlaying) {
pos = MP.trackPos();
Ctrl.play(Tr,pos);

}
}

• Android Lifecycle ALWAYS (leaveApp(Sys) ∧
musicPlaying(MP)

⇒ [Ctrl ↢ pause()])

ALWAYS (
leaveApp(Sys) ∧ musicPlaying(MP)
⇒
[Ctrl ↢ play(Tr,trackPos(MP)]

AS_SOON_AS
resumeApp(Sys)])

AS_SOON_AS:
φ A ψ ≡ ¬ψ W(ψ ៱ φ)

Control

Pure Data
Transformations

FUNCTION ABSTRACTION

ALWAYS (leaveApp(Sys) ∧ musicPlaying(MP)
⇒ [Ctrl ↢ pause()])

ALWAYS (leaveApp(Sys) ∧ musicPlaying(MP) ⇒
[Ctrl ↢ play(Tr,trackPos(MP)]

AS_SOON_AS resumeApp(Sys)])

leaveApp(Sys){ ... }

musicPlaying(MP) { ... }

play(Tr,trackPos(MP)) { ... }

resumeApp(Sys) { ... }

Reactive
Synthesis?

SYNTHESIS FROM TSL SPECIFICATIONS

LTL SYNTHESIS LTL formula

nondeterministic
Büchi automaton

deterministic
parity automaton

parity game

realizable unrealizable

Player 0 wins Player 1 wins

OVERVIEW OF THE SYNTHESIS PROCEDURE

TSL SYNTHESIS PROCEDURE

● Theorem1: TSL synthesis problem is undecidable (reducing the Post correspondence problem to
a TSL synthesis problem)

TSL SYNTHESIS PROCEDURE

● Theorem1: TSL synthesis problem is undecidable (a proof by reducing the Post correspondence
problem to a TSL synthesis problem)

● Theorem2: If the abstracted TSL formula is realizable (in LTL), then is the original formula also
realizable

● An LTL synthesis tool constructs a control flow, which means that this flow holds for any given
implementation of predicates and functions

TSL SYNTHESIS PROCEDURE – EXAMPLE 0.1

TSL specification

𝑭𝑭 𝑝𝑝 𝑥𝑥 ⇒ 𝑭𝑭𝑭𝑭 𝑝𝑝 𝑦𝑦

x – input, y – output
signals

LTL specification

𝑭𝑭 𝑝𝑝𝑥𝑥 ⇒ 𝑭𝑭𝑭𝑭 𝑝𝑝𝑦𝑦

px, py – inputs

Syntactic
conversion

This LTL specification is
unrealizable: the system
simply set px to be always
true, and py – to be always
false

TSL SYNTHESIS PROCEDURE – EXAMPLE 1.1

TSL
𝑭𝑭 𝑝𝑝 𝑥𝑥 ⇒ 𝑭𝑭𝑭𝑭 𝑝𝑝 𝑦𝑦 ∧ 𝑭𝑭 [𝑦𝑦 ↢ 𝑦𝑦]

x – input, y – output

LTL specification

𝑮𝑮�

�

𝑦𝑦𝑦𝑦 ∧ ¬𝑦𝑦𝑥𝑥
∨ ¬𝑦𝑦𝑦𝑦 ∧ 𝑦𝑦𝑥𝑥 ∧

𝑭𝑭 𝑝𝑝𝑥𝑥 ⇒ 𝑭𝑭𝑭𝑭 𝑝𝑝𝑦𝑦 ∧ 𝑭𝑭 𝑦𝑦𝑦𝑦

px, py – inputs

Syntactic
conversion

The top line specifies that y can be updated with only
one value.

TSL TO LTL ABSTRACTION

● Given a TSL formula, the abstracted LTL formula will be a conjunction of

○ Syntactic conversion from the TSL formula

○ Globally quantified formulas describing the uniqueness of the updates

● This abstraction might need infinitely many terms, if there are functions in the
specification

● There are specifications demonstrating that observation
● In practice: lazy instantiation and CEGAR loop

FROM STRATEGIES TO SPECIFICATION REFINEMENT

TSL specification

𝑭𝑭 𝑝𝑝 𝑥𝑥 ⇒ 𝑭𝑭𝑭𝑭 𝑝𝑝 𝑦𝑦

x – input, y – output
signals

TSL specification refinement

𝑭𝑭 𝑝𝑝 𝑥𝑥 ∧
𝑮𝑮 𝑦𝑦 ↢ 𝑥𝑥 ∧ 𝑝𝑝 𝑥𝑥 ⇒ 𝑿𝑿𝑝𝑝 𝑦𝑦 ∧

𝑮𝑮 𝑦𝑦 ↢ 𝑥𝑥 ∧ ¬𝑝𝑝 𝑥𝑥 ⇒ 𝑿𝑿¬𝑝𝑝 𝑦𝑦 ∧
𝑮𝑮 𝑦𝑦 ↢ 𝑦𝑦 ∧ 𝑝𝑝 𝑦𝑦 ⇒ 𝑿𝑿𝑝𝑝 𝑦𝑦 ∧
𝑮𝑮 𝑦𝑦 ↢ 𝑦𝑦 ∧ ¬𝑝𝑝 𝑦𝑦 ⇒ 𝑿𝑿¬𝑝𝑝 𝑦𝑦

⇒ 𝑭𝑭𝑭𝑭 𝑝𝑝 𝑦𝑦

x – input, y – output signals

This new specification is strong enough
to be realizable in LTL, when abstracted

MUSIC PLAYER SYNTHESIS

MUSIC PLAYER SYNTHESIS

REACTIVE SYSTEMS

Abstracting from data
transformations allows
synthesis to scale to new
application domains.

We trade theoretical complexity
for practical scalability.

Cyber-physical
Systems

Embedded
Devices

Graphical User
Interfaces

Mobile
Applications

Temporal Stream Logic - Synthesis Beyond the Bools. CAV 2019. Finkbeiner, Klein, Piskac, Santolucito
Synthesizing Functional Reactive Programs. Haskell 2019. Finkbeiner, Klein, Piskac, Santolucito

REACTIVE SYSTEMS

Synthesized a self-driving car
controller in < 4 seconds

Cyber-physical
Systems

Embedded
Devices

Graphical User
Interfaces

Mobile
Applications

Temporal Stream Logic - Synthesis Beyond the Bools. CAV 2019. Finkbeiner, Klein, Piskac, Santolucito
Synthesizing Functional Reactive Programs. Haskell 2019. Finkbeiner, Klein, Piskac, Santolucito

REACTIVE SYSTEMS

Synthesized a self-driving car
controller in < 4 seconds

Cyber-physical
Systems

Embedded
Devices

Graphical User
Interfaces

Mobile
Applications

Temporal Stream Logic - Synthesis Beyond the Bools. CAV 2019. Finkbeiner, Klein, Piskac, Santolucito
Synthesizing Functional Reactive Programs. Haskell 2019. Finkbeiner, Klein, Piskac, Santolucito

REACTIVE SYSTEMS

Synthesized a self-driving car
controller in < 4 seconds

Cyber-physical
Systems

Embedded
Devices

Graphical User
Interfaces

Mobile
Applications

Temporal Stream Logic - Synthesis Beyond the Bools. CAV 2019. Finkbeiner, Klein, Piskac, Santolucito
Synthesizing Functional Reactive Programs. Haskell 2019. Finkbeiner, Klein, Piskac, Santolucito

REACTIVE SYSTEMS

Synthesized a self-driving car
controller in < 4 seconds

Cyber-physical
Systems

Embedded
Devices

Graphical User
Interfaces

Mobile
Applications

Temporal Stream Logic - Synthesis Beyond the Bools. CAV 2019. Finkbeiner, Klein, Piskac, Santolucito
Synthesizing Functional Reactive Programs. Haskell 2019. Finkbeiner, Klein, Piskac, Santolucito

33

Syntroids: Synthesizing a Game for FPGAs using Temporal Logic Specifications.
Geier, Heim, Klein, Finkbeiner: FMCAD 2019

LIVE DEMOS

https://barnard-pl-labs.github.io/dynamicGrammars/frontEnd/dynamicGrammars.html
(Dylan Iskandar, Raven Rothkopf, Leyi Cui)

https://monkeyarya.github.io/moveCube/
(Arya Sinha)

https://barnard-pl-labs.github.io/tsl-api/
(Rhea Kothari, Danielle Cai, Nupur Dave)

https://stately.ai/viz/5fadaf7f-90ff-48cd-b36a-9a45dd5246a8
(Shmuel Berman)
https://github.com/Barnard-PL-Labs/tsltools/blob/master/src/test/res/specs/Heating.tsl

https://barnard-pl-labs.github.io/dynamicGrammars/frontEnd/dynamicGrammars.html
https://monkeyarya.github.io/moveCube/
https://barnard-pl-labs.github.io/tsl-api/
https://stately.ai/viz/5fadaf7f-90ff-48cd-b36a-9a45dd5246a8
https://github.com/Barnard-PL-Labs/tsltools/blob/master/src/test/res/specs/Heating.tsl

NOT ALL FUNCTIONS ARE REALLY UNINTERPRETED

always assume {

(! (room.heating.off <-> room.heating.on)) ;
([room.heating.ctrl <- turnOn()]

-> F ([room.heating.ctrl <- turnOff()] R room.heating.on)) ;
([room.heating.ctrl <- turnOff()]
-> F ([room.heating.ctrl <- turnOn()] R room.heating.off));

([room.heating.ctrl <- turnOff()]
-> F (! (gt outside.temperature room.temperature)));

}
always guarantee {

gt outside.temperature room.temperature
-> F room.heating.off

Can reactive synthesis and syntax-guided synthesis be friends?
Choi, Finkbeiner, Piskac, Santolucito: PLDI 2022

BEYOND UNINTERPRETED FUNCTIONS

Can reactive synthesis and syntax-guided synthesis be friends?
Choi, Finkbeiner, Piskac, Santolucito: PLDI 2022

BEYOND UNINTERPRETED FUNCTIONS

The refinement is a partial
encoding of the semantics of
uninterpreted functions.

Can we use the same strategy for
other theories?

Can reactive synthesis and syntax-guided synthesis be friends?
Choi, Finkbeiner, Piskac, Santolucito: PLDI 2022

SYNTAX-GUIDED SYNTHESIS (SYGUS)

Semantic Constraint

Syntactic Constraint
Syntax-Guided Synthesis

Synthesized Program

Great for data transformation problems!

REACTIVE SYNTHESIS

Temporal Logic Specification Synthesized Model

Reactive Synthesis

Great for control-flow problems!

REACTIVE SYNTHESIS

Good for data transformation problems Good for control-flow problems

SYNTAX-GUIDED SYNTHESIS
(SYGUS)

But there’s a catch…

REACTIVE SYNTHESIS

Good for data transformation problems Good for control-flow problems

Not designed for control flow Not designed for data transformations

SYNTAX-GUIDED SYNTHESIS
(SYGUS)

But even trivial programs have both data and control.

WHAT DOES IT MEAN TO HAVE BOTH DATA AND CONTROL?

Linux Completely Fair Scheduler
● Runs the task

“that has run for the least amount of time”

● “Time” is weighted
○ 1 μs of prioritized task → 0.25 μs
○ 1 μs of a low-priority task → 5 μs

● Control:
Enqueuing and dequeing tasks

● Data:
Calculate how long each process has run

EVEN VAST SIMPLIFICATIONS CAN STILL HAVE DATA AND
CONTROL
● Scheduler with two tasks
● Task 1 must run at least twice

● States:
○ Run task 1
○ Run task 2

● Data transformations:
○ Count number of executions

● Can we synthesize this?

WE HAVE A LANGUAGE TO SPECIFY IT…

Temporal Stream Logic Modulo Theories (TSL-MT)

FoSSaCS ‘22 Finkbeiner et. al

● Scheduler with two tasks
● Task 1 must run at least twice

● States:
○ Run task 1
○ Run task 2

● Data transformations:
○ Count number of executions

WE HAVE A LANGUAGE TO SPECIFY IT…

Temporal Stream Logic Modulo Theories (TSL-MT)

FoSSaCS ‘22 Finkbeiner et. al

Control

● Scheduler with two tasks
● Task 1 must run at least twice

● States:
○ Run task 1
○ Run task 2

● Data transformations:
○ Count number of executions

FIRST, ADD THEORIES TO TSL TO GET TSL-MT...

Temporal Stream Logic Modulo Theories (TSL-MT)

FoSSaCS ‘22 Finkbeiner et. al

Control Data

● Scheduler with two tasks
● Task 1 must run at least twice

● States:
○ Run task 1
○ Run task 2

● Data transformations:
○ Count number of executions

THEN, WE NEED A SYNTHESIS PROCEDURE FOR TSL-MT...

● Reactive (TSL) Synthesis
can synthesize “control”

● All functions are uninterpreted!

● SyGuS can synthesize “data”

● But it can’t generate
state machines!

Temporal Stream Logic Modulo Theories (TSL-MT)

Control Data

PLDI ‘22 Choi et. al

HOW TO SYNTHESIZE?

Temporal Stream Logic Modulo Theories (TSL-MT)

Control Data

PLDI ‘22 Choi et. al

REACTIVE SYNTHESIS

Good for data transformation problems Good for control-flow problems

Does not have control flow Does not have data transformations

SYNTAX-GUIDED SYNTHESIS
(SYGUS)

REACTIVE SYNTHESIS

Good for data transformation problems Good for control-flow problems

Does not have control flow Does not have data transformations

SYNTAX-GUIDED SYNTHESIS
(SYGUS)

REACTIVE SYNTHESIS AND SYNTAX-GUIDED SYNTHESIS CAN BE
FRIENDS!
● SyGuS can “teach” Reactive Synthesis how to solve data transformation

problems

● Reactive Synthesis can then handle control flow problems

● Use both to solve problems they excel at, then communicate!

● Can synthesize a simple linux scheduler…

● But also C code for the Linux Completely Fair Scheduler!

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

SYNTHESIZING THE TWO-TASK SCHEDULER

● Scheduler with two tasks

● Task 1 must run at least twice

Original Specification

Control Data

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Temporal Stream Logic (TSL) Specification

Combine

Remove function & predicate interpretations

REMOVING FUNCTION&PREDICATE INTERPRETATIONS FROM
TSL-MT
● Temporal Stream Logic Modulo Theories to…

Temporal Stream Logic

● Removes interpretations of eq and add: make it a pure control flow problem

● But it now doesn’t know that 0 + 1 + 1 = 2

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Combine

Temporal Stream Logic (TSL) Specification

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Derive and solve SyGuS problems

SYNTAX-GUIDED SYNTHESIS (SYGUS)

Semantic Constraint

Syntactic Constraint
Syntax-Guided Synthesis

Synthesized Program

DERIVE AND SOLVE SYGUS PROBLEMS Original specification

SyGuS-synthesized function

Semantic Constraint

Syntactic Constraint

Syntax-Guided
Synthesis

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

SyGuS function

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Transform SyGuS result to TSL assumption

HOW TO COMMUNICATE SYGUS RESULT TO REACTIVE
SYNTHESIS?

Solution: Transform each “level” of the AST into a timestep of computation

Original specification SyGuS-synthesized function

TRANSFORMING SYGUS RESULT TO TEMPORAL STREAM
LOGIC (TSL)

SyGuS Result as TSL Assumption AST

Original specification SyGuS-synthesized function

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

SyGuS Result as TSL Assumption

TSL specification with assumptions:
Teaching reactive synthesis that 0+1+1=2!

Temporal Stream Logic (TSL) Specification

COMBINE CONTROL SPECIFICATION WITH THE DATA
ASSUMPTION

Assumption

Guarantee

● From our original
TSL-MT specification,
we obtained the
TSL specification with assumptions

● We know how
to synthesize TSL!
(CAV ‘19, Haskell ‘19)

RESULT CAN NOW BE SYNTHESIZED!

Assumption

Guarantee

TSL specification with assumptions:
Teaching reactive synthesis that 0+1+1=2!

TSL Specification With Assumptions

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

Executable
Code

Reactive Synthesis

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Synthesizing a … Temporal Stream Logic Modulo Theories Specification

Control Flow Problem Data Transformation Problem

Derive and solve SyGuS problems

SyGuS function

Transform SyGuS result to TSL assumption

Reactive (TSL) Assumption

TSL Specification With Assumptions

Executable
Code

Remove function & predicate interpretations

Temporal Stream Logic (TSL) Specification

Combine

Reactive Synthesis

REACTIVE SYNTHESIS

Temporal Logic Specification Synthesized Model

Reactive Synthesis

EVALUATION OF TEMOS (FOR TSL-MT)

SOME USEFUL LINKS

● Rajeev Alur’s tutorial on SyGuS (additional material: real world applications):
https://simons.berkeley.edu/talks/syntax-guided-program-synthesis

● Roderick Bloom’s tutorial on reactive synthesis (additional material: shield synthesis):
https://www.newton.ac.uk/seminar/36472/

● Bernd Finkbeiner’s tutorial on reactive synthesis (additional material: bounded synthesis,
synthesis of distributed systems):
https://simons.berkeley.edu/talks/reactive-synthesis

● Priyanka Golia’s talk on functional synthesis:
https://priyanka-golia.github.io/files/slides/qbf_workshop.pdf

● Simons program on synthesis:
https://simons.berkeley.edu/workshops/synthesis-models-systems/schedule#simons-tabs

https://simons.berkeley.edu/talks/syntax-guided-program-synthesis
https://www.newton.ac.uk/seminar/36472/
https://simons.berkeley.edu/talks/reactive-synthesis
https://nam12.safelinks.protection.outlook.com/?url=https%3A%2F%2Fpriyanka-golia.github.io%2Ffiles%2Fslides%2Fqbf_workshop.pdf&data=05%7C01%7Cruzica.piskac%40yale.edu%7C05b8d579ea1e4a00229108db7d817a44%7Cdd8cbebb21394df8b4114e3e87abeb5c%7C0%7C0%7C638241768529909165%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=vdZbUlHARRGgMAXl%2BeySph32YDZhX6wlBvABUFFX%2B1U%3D&reserved=0
https://simons.berkeley.edu/workshops/synthesis-models-systems/schedule#simons-tabs

CONCLUSIONS
● Software synthesis is an exciting idea that started as an interesting theoretical

question (“can we derive the program automatically?”) but today is a part of
software development used by millions of users

● Various types of software synthesis:

○ Reactive synthesis

○ Deductive synthesis / functional synthesis

○ Syntax-guided synthesis

● Which synthesis type to choose (and what is your specification) depends on the
application and goal

● Various applications: network, cyber-psychical systems, AI correctness.

● Synthesis today: connecting many different fields of research

	Program Synthesis
	Reactive Synthesis – “Holy grail” (well, one of them)
	Reactive Synthesis
	Reactive Synthesis – Limitations
	Spoiler Alert
	Temporal Stream Logic (TSL)
	TSL Example
	TSL Example
	Temporal Stream Logic (TSL)
	Synthesizing a music player app
	Synthesizing a music player app
	Synthesizing a music player app
	Synthesizing a music player app
	Synthesizing a music player app
	Function abstraction
	Synthesis from TSL Specifications
	LTL Synthesis
	Overview of the synthesis procedure
	TSL synthesis procedure
	TSL synthesis procedure
	TSL synthesis procedure – Example 0.1
	TSL synthesis procedure – Example 1.1
	TSL to LTL abstraction
	Slide Number 24
	From strategies to specification refinement
	Music Player Synthesis
	Music Player Synthesis
	Reactive Systems
	Reactive Systems
	Reactive Systems
	Reactive Systems
	Reactive Systems
	Slide Number 33
	Live Demos
	Not all functions are really uninterpreted
	Beyond uninterpreted functions
	Beyond uninterpreted functions
	Syntax-Guided Synthesis (SyGuS)
	Reactive Synthesis
	Reactive Synthesis
	Reactive Synthesis
	What does it mean to have both data and control?
	Even vast simplifications can still have data and control
	We have a language to specify it…
	We have a language to specify it…
	First, add theories to TSL to get TSL-MT...
	then, we need a synthesis procedure for TSL-MT...
	How to synthesize?
	Reactive Synthesis
	Reactive Synthesis
	Reactive Synthesis and Syntax-Guided Synthesis Can Be Friends!
	Slide Number 52
	Synthesizing the two-task scheduler
	Slide Number 54
	Slide Number 55
	Removing function&predicate interpretations from TSL-MT
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Syntax-Guided Synthesis (SyGuS)
	Derive and solve SyGuS problems
	Slide Number 62
	Slide Number 63
	Slide Number 64
	How to communicate SyGuS result to reactive synthesis?
	Transforming SyGuS result to Temporal Stream Logic (TSL)
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Combine Control Specification with the Data Assumption
	Result can now be synthesized!
	Slide Number 72
	Slide Number 73
	Reactive Synthesis
	Evaluation of Temos (for TSL-MT)
	Some useful Links
	Conclusions

