PROGRAM SYNTHESIS

RUZICA PISKAC YALE UNIVERSITY

Oregon Programming Languages Summer School 2023

REACTIVE SYNTHESIS – "HOLY GRAIL" (WELL, ONE OF THEM)

Autonomous driving

- Reactive traffic planner decides whether vehicle should stay in the travel lane or perform a passing maneuver, whether it should go or stop, whether it is allowed to reverse, etc.
- Hierarchical control: reactive traffic planner interacts with mission control (above) and path planner (below).
- Specification consists of
 - Traffic rules (for example "no collision", "obey speed limits", ...
 - Goals (for example "eventually the checkpoint should be reached")
 More in the following survey paper [Murray et al, 2012]

REACTIVE SYNTHESIS

Is a Boolean circuit the right representation for these systems?

Cyber-physical Systems

Mobile Applications

Embedded Devices

Graphical User Interfaces

Idea: Temporal Stream Logic Abstract away from Boolean circuits

REACTIVE SYNTHESIS – LIMITATIONS

- Applications are still limited to small examples
 - Synthesis from LTL specifications is 2EXPTIME hard
 - Synthesis of distributed systems (where the processes have incomplete information) is in general undecidable
- We tried to synthesize a simple autonomous driving controller [<u>SCAV2017</u>] with current state of the art tools
- The controller only needs to switch between a small number of behaviors, like steering during a bend, or shifting gears on high rpm
- To detect those situations, the controller needs to process 20+ sensors of the car
- This accumulation of sensors values exceeded the capabilities of the tools

SPOILER ALERT

- New logic: TSL (temporal stream logic), defined over streams of data, with user defined/API predicates and function calls
- New synthesis "procedures" extending the existing work on reactive synthesis to this new logic, outputting executable FRP programs
- New applications: among others we synthesized a controller for a simulator for autonomous vehicles, a music player, ...

	🕍 🔒 3:3
Music Player	
PLA	Y
PAU	SE
Choose the position in the song to Select a track by typing either song song.mp3	
This app was synthesized form the	below TSL specification:
// Assume: □ (leaveApp(sys) ⇒ ! playButton(sys) ∧ ! pauseButto	n(sys) W resumeApp(sys)
∧ ! (playButton(sys) ∧ pauseButtor	n(sys))
∧!(leaveApp(sys) ∧ resumeApp(s	(s)
∧ [mp ← play(tr, trackPos(mp))] → ○ (musicPlaying(mp) W [mp ← ∧ [mp ← pause(mp)] → ○ (! musicPlaying(mp) W [mp ← play(tr, trackPos(mp))	
// Guarantee:	

TEMPORAL STREAM LOGIC (TSL)

CAV 2019. Finkbeiner, Klein, Piskac, Santolucito

 $\Box \big(\big(pressedEvent click \leftrightarrow [[count \leftrightarrow increment count]] \big) \\ \land [[screen \leftarrow display count]] \big)$

TSL EXAMPLE

```
yampaButton =
proc click -> do
rec
count' <- hold 0 -< count
pic <- arr display -< count'
count <- if pressedEvent click
then arr increment -< count'
else arr id -< count'
returnA -< pic
pressedEvent = ...</pre>
```

increment = ... display = ...

 $\Box \left(\left(\text{pressedEvent click} \leftrightarrow \llbracket \text{count} \leftarrow \text{increment count} \rrbracket \right) \\ \land \llbracket \text{screen} \leftarrow \text{display count} \rrbracket \right)$

Button

TSL EXAMPLE

```
yampaButton =
 proc click -> do
   rec
     count' <- hold 0 -< count
     pic <- arr display -< count'
     count <- if pressedEvent click</pre>
                then arr increment -< count'
                 else arr id -< count'
    returnA -< pic
pressedEvent = ...
increment = ...
display = ...
```

Button 3 click

 $\Box \left(\left(\text{pressedEvent} \text{ click } \leftrightarrow \llbracket \text{count} \leftarrow \text{ increment } \text{count} \rrbracket \right) \right)$

 $\land [[\texttt{screen} \leftarrow \texttt{display count}]])$

TEMPORAL STREAM LOGIC (TSL)

- All temporal operators are the same as in LTL
- Input variables are not Booleans but *signals*
- Temporal operators are defined on atoms which can either be an update atom, or a predicate applied on function terms

Android Lifecycle

```
Sys.leaveApp() {
    if (MP.musicPlaying())
        Ctrl.pause();
}
Sys.resumeApp() {
    pos = MP.trackPos();
    Ctrl.play(Tr,pos);
```

Finding resume and restart errors in android applications Shan, Z., Azim, T., Neamtiu, I OOPSLA 2016

```
Music Player
                                 PLAY
                                PAUSE
Choose the position in the song to start playing with the slider
Select a track by typing either song.mp3 or song2.mp3
song.mp3
This app was synthesized form the below TSL specification:
// Assume:
leaveApp(sys) \Rightarrow
  ! playButton(sys) \land ! pauseButton(sys) W resumeApp(sys)
\land ! (playButton(sys) \land pauseButton(sys))
\land ! (leaveApp(sys) \land resumeApp(sys)
\land [mp \leftarrow play(tr, trackPos(mp))] \Rightarrow
  \bigcirc (musicPlaying(mp) W [mp \leftarrow pause(mp)])
 \wedge [mp \leftarrow pause(mp)] \Rightarrow
   ○ (! musicPlaying(mp) W
      [mp - play(tr, trackPos(mp))])
// Guarantee:
playButton(sys) \Rightarrow [mp \leftarrow play(tr. trackPos(mp))]
                                  \bigcirc
                                                       \triangleleft
```

⁴⁶ 7 3:38

Available online: <u>GitHub</u>, <u>Google Store</u>

Android Lifecycle

```
Sys.leaveApp() {
    if (MP.musicPlaying())
        Ctrl.pause();
}
```

```
Sys.resumeApp() {
   pos = MP.trackPos();
   Ctrl.play(Tr,pos);
}
```

Input "variables" for specification:

- The Android system (Sys)
- The Android music player library (MP)
- Its control interface (Ctrl)
- The currently selected track (\top \cap)
- API functions and routines

Android Lifecycle

```
Sys.leaveApp() {
    if (MP.musicPlaying())
        Ctrl.pause();
}
```

```
Sys.resumeApp() {
   pos = MP.trackPos();
   Ctrl.play(Tr,pos);
}
```

ALWAYS (leaveApp(Sys) ∧ musicPlaying(MP) ⇒ [Ctrl ← pause()])

ALWAYS (resumeApp(Sys) ⇒ [Ctrl ↔ play(Tr,trackPos(MP)])

Android Lifecycle

Sys.leaveApp() {
 if (MP.musicPlaying())
 Ctrl.pause();

New task:

On resume app, only play music if the music was already playing when paused.

 Android Lifecycle bool wasPlaying = false;

```
Sys.leaveApp() {
    if (MP.musicPlaying()){
        wasPlaying = true;
        Ctrl.pause();}
    else {
        wasPlaying = false;}
}
```

```
Sys.resumeApp() {
    if (wasPlaying) {
        pos = MP.trackPos();
        Ctrl.play(Tr,pos);
```

ALWAYS (leaveApp(Sys) ∧ musicPlaying(MP) ⇒ [Ctrl ← pause()])

```
AS\_SOON\_AS:
\varphi \land \psi \equiv \neg \psi \ W(\psi \land \varphi)
```

FUNCTION ABSTRACTION

ALWAYS (leaveApp(Sys) ∧ musicPlaying(MP) ⇒ [Ctrl ← pause()]) Reactive Synthesis?

Control

leaveApp(Sys){ ... }

musicPlaying(MP) { ... }

```
play(Tr,trackPos(MP)) { ... }
```

```
resumeApp(Sys) { ... }
```

Pure Data Transformations

SYNTHESIS FROM TSL SPECIFICATIONS

OVERVIEW OF THE SYNTHESIS PROCEDURE

TSL SYNTHESIS PROCEDURE

• **Theorem1:** TSL synthesis problem is undecidable (reducing the Post correspondence problem to a TSL synthesis problem)

TSL SYNTHESIS PROCEDURE

- **Theorem1:** TSL synthesis problem is undecidable (a proof by reducing the Post correspondence problem to a TSL synthesis problem)
- **Theorem2:** If the abstracted TSL formula is realizable (in LTL), then is the original formula also realizable
- An LTL synthesis tool constructs a control flow, which means that this flow holds for any given implementation of predicates and functions

TSL SYNTHESIS PROCEDURE – EXAMPLE 0.1

TSL specification

 $F p(x) \Rightarrow FG p(y)$ x - input, y - output signals

$$\boldsymbol{F} p_x \Rightarrow \boldsymbol{F} \boldsymbol{G} p_y$$

$$p_{x'} p_{y} - inputs$$

This LTL specification is unrealizable: the system simply set p_x to be always true, and p_y – to be always false

TSL SYNTHESIS PROCEDURE – EXAMPLE 1.1

TSL $F p(x) \Rightarrow FG p(y) \land F[y \leftrightarrow y]$

x – *input, y* – *output*

Syntactic conversion

LTL specification

 $G\left(\left(y_{y} \wedge \neg y_{x}\right) \\ \vee \left(\neg y_{y} \wedge y_{x}\right)\right) \wedge$ $\boldsymbol{F} p_x \Rightarrow \boldsymbol{F} \boldsymbol{G} p_y \wedge \boldsymbol{F} y_y$

 p_{x}, p_{v} – inputs

The top line specifies that *y* can be updated with only one value.

TSL TO LTL ABSTRACTION

- Given a TSL formula, the abstracted LTL formula will be a conjunction of
 - Syntactic conversion from the TSL formula
 - Globally quantified formulas describing the uniqueness of the updates
- This abstraction might need infinitely many terms, if there are functions in the specification
- There are specifications demonstrating that observation
- In practice: lazy instantiation and CEGAR loop

FROM STRATEGIES TO SPECIFICATION REFINEMENT

TSL specification

$$\boldsymbol{F} p(\boldsymbol{x}) \Rightarrow \boldsymbol{F} \boldsymbol{G} p(\boldsymbol{y})$$

x – input, y – output signals

TSL specification refinement

 $F p(x) \land$ $G([y \leftrightarrow x] \land p(x) \Rightarrow Xp(y)) \land$ $G([y \leftrightarrow x] \land \neg p(x) \Rightarrow X \neg p(y)) \land$ $G([y \leftrightarrow y] \land p(y) \Rightarrow Xp(y)) \land$ $G([y \leftrightarrow y] \land \neg p(y) \Rightarrow X \neg p(y)) \Rightarrow$

x – input, y – output signals

This new specification is strong enough to be realizable in LTL, when abstracted

MUSIC PLAYER SYNTHESIS

MUSIC PLAYER SYNTHESIS

Abstracting from data transformations allows synthesis to scale to new application domains.

We trade theoretical complexity for practical scalability.

Graphical User Interfaces

Synthesized a self-driving car controller in < 4 seconds

Cyber-physical

Embedded Devices Boole B

Graphical User Interfaces

Synthesized a self-driving car controller in < 4 seconds

Cyber-physical

Mobile Applications

Embedded

Devices

Graphical User Interfaces

Synthesized a self-driving car controller in < 4 seconds

Cyber-physical

Embedded

Devices

Graphical User Interfaces

Synthesized a self-driving car controller in < 4 seconds

Embedded

Devices

MIN SEC STOP

Synthroids

Syntroids: Synthesizing a Game for FPGAs using Temporal Logic Specifications. Geier, Heim, Klein, Finkbeiner: FMCAD 2019

https://github.com/reactive-systems/Synthroids

https://barnard-pl-labs.github.io/dynamicGrammars/frontEnd/dynamicGrammars.html (Dylan Iskandar, Raven Rothkopf, Leyi Cui)

https://monkeyarya.github.io/moveCube/ (Arya Sinha)

https://barnard-pl-labs.github.io/tsl-api/ (Rhea Kothari, Danielle Cai, Nupur Dave)

https://stately.ai/viz/5fadaf7f-90ff-48cd-b36a-9a45dd5246a8 (Shmuel Berman) https://github.com/Barnard-PL-Labs/tsltools/blob/master/src/test/res/specs/Heating.tsl

Can reactive synthesis and syntax-guided synthesis be friends? Choi, Finkbeiner, Piskac, Santolucito: PLDI 2022

NOT ALL FUNCTIONS ARE REALLY UNINTERPRETED

```
always assume {
```

```
(! (room.heating.off <-> room.heating.on)) ;
([ room.heating.ctrl <- turnOn() ]
  -> F ([ room.heating.ctrl <- turnOff() ] R room.heating.on)) ;
([ room.heating.ctrl <- turnOff() ]
  -> F ([ room.heating.ctrl <- turnOn() ] R room.heating.off));
([ room.heating.ctrl <- turnOff() ]
  -> F (! (gt outside.temperature room.temperature)));
}
always guarantee {
gt outside.temperature room.temperature
```

```
-> F room.heating.off
```

Can reactive synthesis and syntax-guided synthesis be friends? Choi, Finkbeiner, Piskac, Santolucito: PLDI 2022

BEYOND UNINTERPRETED FUNCTIONS

$$\Box (\llbracket y \leftarrow \forall y \rrbracket \lor \llbracket y \leftarrow \forall x \rrbracket)$$
$$\land \diamondsuit p \ x \rightarrow \diamondsuit p \ y$$

TSL spec

 $\Box (x_to_y \to (p_x \leftrightarrow \bigcirc p_y)) \implies \\ \Box \neg (y_to_y \land x_to_y) \\ \land \Box (y_to_y \lor x_to_y) \\ \land \Diamond p_x \to \Diamond p_y \\ \text{Refined Approximation} \\ \Box (y_to_y \lor y) \\$

BEYOND UNINTERPRETED FUNCTIONS

$$\Box (\llbracket y \leftarrow \forall y \rrbracket \lor \llbracket y \leftarrow \forall x \rrbracket)$$
$$\land \diamondsuit p \ x \rightarrow \diamondsuit p \ y$$

TSL spec

The refinement is a partial encoding of the semantics of uninterpreted functions.

Can we use the same strategy for other theories?

 $\Box (x_to_y \to (p_x \leftrightarrow \bigcirc p_y)) \implies \\ \Box \neg (y_to_y \land x_to_y) \\ \land \Box (y_to_y \lor x_to_y) \\ \land \Diamond p_x \to \Diamond p_y \\ \text{Refined Approximation}$

Can reactive synthesis and syntax-guided synthesis be friends? Choi, Finkbeiner, Piskac, Santolucito: PLDI 2022

SYNTAX-GUIDED SYNTHESIS (SYGUS)

Semantic Constraint

Input v_1	Output
Dr. Eran Yahav	Yahav, E.
Prof. Kathleen S. Fisher	Fisher, K.
Bill Gates, Sr.	Gates, B.
George Ciprian Necula	Necula, G.
Ken McMillan, II	McMillan, K.

Syntactic Constraint

String expr P := Switch $((b_1, e_1), \dots, (b_n, e_n))$ Bool b := $d_1 \vee \dots \vee d_n$ Conjunct d := $\pi_1 \wedge \dots \wedge \pi_n$ Predicate π := Match $(v_i, \mathbf{r}, k) \mid \neg$ Match (v_i, \mathbf{r}, k) Trace expr e := Concatenate (f_1, \dots, f_n) Atomic expr f := SubStr $(v_i, \mathbf{p}_1, \mathbf{p}_2)$ \mid ConstStr(s) \mid Loop $(\lambda w : e)$ Position p := CPos $(k) \mid$ Pos $(\mathbf{r}_1, \mathbf{r}_2, c)$ Integer expr c := $k \mid k_1 w + k_2$ Regular Expression r := TokenSeq (T_1, \dots, T_m) Token T := $C + \mid [\neg C] +$ \mid SpecialToken Syntax-Guided Synthesis

Synthesized Program

H	5· 0-									Flash Fill	Excel
	ile Home	Insert Pag	ge Layout Formulas	Data	Review	View S					
ľ	Bocar	Calibri	• 11 • A		= %	📴 Wrap	Text	General			
Pas	ste	D T	u • 🖽 • 🖄 • 🗚	• = = :		Merg	e & Center		% » *.0		tional F
	Clipboard	G	Font	G.	Alic	nment		G N	lumber	rorma r ₂	tting *
			e								
C3	Ŧ	× ✓	f _x Angad Kumar	ſ							
1	А	В	С	D	E	F	G	н	1	J	K
1	Last Name	First Name	Name								
2	dhir	pooja	Pooja Dhir	- ¢							
3	kumar	angad	Angad Kumar	_ ~							
4	kohli	Simran	Simran Kohli								
5	KOHLI	RAJIV	Rajiv Kohli								
6	kohli	muskan	Muskan Kohli								
7	kohli	Suhani	Suhani Kohli								
8	tara	jayant	Jayant Tara								
9	rawat	JAYANT	Jayant Rawat								
10	verma	vicky	Vicky Verma								
11	sagar	jatin	Jatin Sagar								
12											
13											

Great for data transformation problems!

REACTIVE SYNTHESIS

Temporal Logic Specification

Guarantee 3. When a length-four locked burst starts, no other accesses : HREADY is high, so the current burst ends at the fourth occurrence of 1 true initially separately from the case in which it is not).

 $\Box ((\mathsf{HMASTLOCK} \land \mathsf{HBURST} = \mathsf{BURST4} \land \mathsf{START} \land \mathsf{HREADY}) \rightarrow$

 $\bigcirc (\neg \text{START} \mathcal{W}[3](\neg \text{START} \land \text{HREADY}))),$

 $\Box \big((\mathsf{HMASTLOCK} \land \mathsf{HBURST} = \mathsf{BURST4} \land \mathsf{START} \land \neg \mathsf{HREADY}) \rightarrow$

 $\bigcirc (\neg \text{START} \mathcal{W}[4](\neg \text{START} \land \text{HREADY})).$

Guarantee 6. If we do not start an access in the next time step, the bus

For each master i,

 $\Box \big(\bigcirc (\neg \text{START}) \to \big(\big(\text{HMASTER} = i \leftrightarrow \bigcirc (\text{HMASTER} = i) \big) \land \\ \big(\text{HMASTLOCK} \leftrightarrow \bigcirc (\text{HMASTLOCK}) \big) \big) \big).$

Assumption 4. We assume that all input signals are low initially.

$$\bigwedge (\neg HBUSREQ[i] \land \neg HLOCK[i]) \land \neg HREADY.$$

Synthesized Model

Great for control-flow problems!

Reactive Synthesis

SYNTAX-GUIDED SYNTHESIS (SYGUS)

H	5.9-									Flash Fill	- Excel
F	File Home	Insert Pag	ge Layout Formulas	; Data	Review	View	🛛 Tell me w				
ľ	Cut	Calibri	• 11 • A	▲ = =	= %	≣ € Wraj	p Text	General			A I
a	iste	D 7	u • 🖽 • 🖄 • 📕	• = =		E Mer	ge & Center	· 🔄 · 9	% * ^{*.0}		ditional Form atting - Tab
	Clipboard	r _{ie}	Font	G.	Alig	nment		rs N	lumber	5	
C	3 *	: × 🗸	<i>f</i> _≭ Angad Kuma	r							
à	A	В	С	D	E	F	G	н	1	J	к
1	Last Name	First Name	Name								
2	dhir	pooja	Pooja Dhir	- 0							
3	kumar	angad	Angad Kumar	7							
4	kohli	Simran	Simran Kohli								
5	KOHLI	RAJIV	Rajiv Kohli								
5	kohli	muskan	Muskan Kohli								
7	kohli	Suhani	Suhani Kohli								
3	tara	jayant	Jayant Tara								
9	rawat	JAYANT	Jayant Rawat								
0	verma	vicky	Vicky Verma								
1	sagar	jatin	Jatin Sagar								
2											
3											
4											

Good for data transformation problems

REACTIVE SYNTHESIS

Good for control-flow problems

But there's a catch...

SYNTAX-GUIDED SYNTHESIS (SYGUS)

H	5 • ∂•									Flash Fi	ill - Excel
	File Home	Insert Pag	e Layout Formulas	Data	Review	View	Tell me wi				
ľ	Cut	Calibri	• 11 • A	▲ = =	= %-	🗟 Wrap	Text	General		-	
Pa	iste	D 7	u • 🖂 - 🖄 - 🛕	• = =	=	Merg	e & Center	- 100 - 9	% * ⁶⁰		nditional Forma matting - Tabl
	Clipboard	r _a	Font	Fa	Alig	nment		rs N	lumber	15	-
C	3 ~	: × 🗸	<i>f</i> _≭ Angad Kuma	r							
à	A	В	С	D	E	F	G	н	I.	J	к
1	Last Name	First Name	Name								
2	dhir	pooja	Pooja Dhir	- O							
3	kumar	angad	Angad Kumar								
4	kohli	Simran	Simran Kohli								
5	KOHLI	RAJIV	Rajiv Kohli								
6	kohli	muskan	Muskan Kohli								
7	kohli	Suhani	Suhani Kohli								
В	tara	jayant	Jayant Tara								
9	rawat	JAYANT	Jayant Rawat								
10	verma	vicky	Vicky Verma								
1	sagar	jatin	Jatin Sagar								
2											
3											
14											

Good for data transformation problems

Not designed for control flow

REACTIVE SYNTHESIS

Good for control-flow problems

Not designed for data transformations

But even trivial programs have both data and control.

WHAT DOES IT MEAN TO HAVE BOTH DATA AND CONTROL?

Linux Completely Fair Scheduler

- Runs the task "that has run for the least amount of time"
- "Time" is weighted
 - 1 μ s of prioritized task \rightarrow 0.25 μ s
 - 1 μ s of a low-priority task \rightarrow 5 μ s
- Control: Enqueuing and dequeing tasks
- Data: Calculate how long each process has run

EVEN VAST SIMPLIFICATIONS CAN STILL HAVE DATA AND CONTROL

- Scheduler with two tasks
- Task 1 must run at least twice

- States:
 - Run task 1
 - Run task 2
- Data transformations:
 - Count number of executions
- Can we synthesize this?

WE HAVE A LANGUAGE TO SPECIFY IT...

- Scheduler with two tasks
- Task 1 must run at least twice

• States:

- Run task 1
- Run task 2
- Data transformations:
 - Count number of executions

Temporal Stream Logic Modulo Theories (TSL-MT)

 $\Box([\texttt{task} \leftrightarrow \texttt{task1}] \lor [\texttt{task} \leftrightarrow \texttt{task2}] \\ \land [\texttt{task} \leftrightarrow \texttt{task1}] \leftrightarrow [\texttt{taskTime1} \leftrightarrow \texttt{add} \texttt{taskTime1} 1] \\ \land [\texttt{task} \leftarrow \texttt{task2}] \leftrightarrow [\texttt{taskTime2} \leftarrow \texttt{add} \texttt{taskTime2} 1] \\ \land \texttt{eq} \texttt{taskTime1} 0 \rightarrow \diamondsuit(\texttt{eq} \texttt{taskTime1} 2))$

WE HAVE A LANGUAGE TO SPECIFY IT...

- Scheduler with two tasks
- Task 1 must run at least twice

States:

- Run task 1
- Run task 2

Data transformations:
 Count number of executions

Temporal Stream Logic Modulo Theories (TSL-MT)

```
\Box([\texttt{task} \leftrightarrow \texttt{task1}] \lor [\texttt{task} \leftrightarrow \texttt{task2}] \\ \land [\texttt{task} \leftrightarrow \texttt{task1}] \leftrightarrow [\texttt{taskTime1} \leftrightarrow \texttt{add} \texttt{taskTime1} 1] \\ \land [\texttt{task} \leftrightarrow \texttt{task2}] \leftrightarrow [\texttt{taskTime2} \leftrightarrow \texttt{add} \texttt{taskTime2} 1] \\ \land \texttt{eq} \texttt{taskTime1} 0 \rightarrow \diamondsuit(\texttt{eq} \texttt{taskTime1} 2))
```

Control

- $\Box([task \leftrightarrow task1] \lor [task \leftrightarrow task2]$
- $\land [\texttt{task} \longleftrightarrow \texttt{task2}] \leftrightarrow [\texttt{taskTime2} \longleftrightarrow \texttt{add} \texttt{taskTime2} \ 1]$
- $\land \texttt{ eq taskTime1 } 0 \rightarrow \diamondsuit(\texttt{eq taskTime1 } 2))$

FIRST, ADD THEORIES TO TSL TO GET TSL-MT...

 $\land [\texttt{task} \leftrightarrow \texttt{task1}] \leftrightarrow$

 $\land [task \leftrightarrow task2] \leftrightarrow$

- Scheduler with two tasks
- Task 1 must run at least twice

• States:

- Run task 1
- Run task 2

Data transformations: ^ eq taskTime1 0 →
 Count number of executions

Temporal Stream Logic Modulo Theories (TSL-MT)

$\lfloor task \leftrightarrow task2 floor$	$\Box(\texttt{[task} \twoheadleftarrow \texttt{task1}] \lor \texttt{[task} \longleftrightarrow \texttt{task2}]$
\bullet [taskTime1 \leftrightarrow add taskTime1 1]	$\land \; [\texttt{task} \hookleftarrow \texttt{task1}] \leftrightarrow [\texttt{taskTime1} \hookleftarrow \texttt{add} \texttt{taskTime1} \; 1]$
\bullet [taskTime2 \leftarrow add taskTime2 1]	$\land \; [\texttt{task} \hookleftarrow \texttt{task2}] \leftrightarrow [\texttt{taskTime2} \hookleftarrow \texttt{add taskTime2}\; 1]$
\diamond (eq taskTime1 2))	\wedge eq taskTime1 0 $ ightarrow$ \diamondsuit (eq taskTime1 $2)$)

THEN, WE NEED A SYNTHESIS PROCEDURE FOR TSL-MT...

- Reactive (TSL) Synthesis can synthesize "control"
- All functions are uninterpreted!
- SyGuS can synthesize "data"
- But it can't generate state machines!

Temporal Stream Logic Modulo Theories (TSL-MT)

HOW TO SYNTHESIZE?

Temporal Stream Logic Modulo Theories (TSL-MT)

SYNTAX-GUIDED SYNTHESIS (SYGUS)

Η	5 • ∂•									Flash Fil	I - Excel
1	File Home	Insert Pag	e Layout Formulas	Data	Review	View	♀ Tell me wi				
ľ	Cut	Calibri	• 11 • A	▲ = =	= %	e Wra	p Text	General			周節
Pa	iste 💉 Format I	D 7	u • 🖽 • 🖄 • 🗚	• = =		🖽 Mer	ge & Center		% * ^{*-0}	-9.0	ditional Form atting • Tab
	Clipboard	rs.	Font	ra.	Alig	nment		rsi N	lumber	5	
C	3 ~	: × 🗸	$f_{\!x}$ Angad Kumar								
4	A	В	С	D	E	F	G	н	1	J	к
1	Last Name	First Name	Name								
2	dhir	pooja	Pooja Dhir	- O							
3	kumar	angad	Angad Kumar	7 0							
4	kohli	Simran	Simran Kohli								
5	KOHLI	RAJIV	Rajiv Kohli								
6	kohli	muskan	Muskan Kohli								
7	kohli	Suhani	Suhani Kohli								
8	tara	jayant	Jayant Tara								
9	rawat	JAYANT	Jayant Rawat								
10	verma	vicky	Vicky Verma								
11	sagar	jatin	Jatin Sagar								
12											
13											
14											

Good for data transformation problems

Does not have control flow

REACTIVE SYNTHESIS

Good for control-flow problems

Does not have data transformations

SYNTAX-GUIDED SYNTHESIS (SYGUS)

	5 • ∂•									Flash Fi	ll - Excel
F	File Home	Insert Pag	e Layout Formulas	Data	Review	View	♀ Tell me wi				
ľ	Cut	Calibri	• 11 • A	▲ = =	= %-	🖹 Wra	p Text	General		-	
Pa	iste • 🍼 Format F	D 7	u • 🖂 • 🖄 • 🗚	• = =	= = =	Mer	ge & Center	- 10 - 9	% * ^{6.0}		nditional Form natting = Tab
	Clipboard	r ₂	Font	G.	Alig	nment		rs N	lumber	r ₅₁	2
C	3 *	: × 🗸	fx Angad Kumar								
à	A	В	С	D	E	F	G	н	1	J	к
1	Last Name	First Name	Name								
2	dhir	pooja	Pooja Dhir	- C							
3	kumar	angad	Angad Kumar	7 0							
4	kohli	Simran	Simran Kohli								
5	KOHLI	RAJIV	Rajiv Kohli								
5	kohli	muskan	Muskan Kohli								
7	kohli	Suhani	Suhani Kohli								
3	tara	jayant	Jayant Tara								
9	rawat	JAYANT	Jayant Rawat								
0	verma	vicky	Vicky Verma								
1	sagar	jatin	Jatin Sagar								
2											
13											
4											

Good for data transformation problems

Does not have control flow

REACTIVE SYNTHESIS

Good for control-flow problems

Does not have data transformations

REACTIVE SYNTHESIS AND SYNTAX-GUIDED SYNTHESIS CAN BE FRIENDS!

- SyGuS can "teach" Reactive Synthesis how to solve data transformation problems
- Reactive Synthesis can then handle control flow problems
- Use both to solve problems they excel at, then communicate!
- Can synthesize a simple linux scheduler...
- But also C code for the Linux Completely Fair Scheduler!

SYNTHESIZING THE TWO-TASK SCHEDULER

- Scheduler with two tasks
- Task 1 must run at least twice

Original Specification

REMOVING FUNCTION&PREDICATE INTERPRETATIONS FROM TSL-MT

• Temporal Stream Logic Modulo Theories to... Temporal Stream Logic

$\Box(\texttt{[task \leftarrow \texttt{task1}]} \lor \texttt{[task \leftarrow \texttt{task2}]}$	$\Box(\texttt{[task \leftrightarrow \texttt{task1}]} \lor \texttt{[task \leftrightarrow \texttt{task2}]}$
$\land \ [\texttt{task} \gets \texttt{task1}] \ \leftrightarrow \ [\texttt{taskTime1} \gets \texttt{add} \ \texttt{taskTime1} \ 1]$	$\land \ [\texttt{task} \longleftrightarrow \texttt{task1}] \ \leftrightarrow \ [\texttt{taskTime1} \longleftrightarrow \texttt{add} \texttt{taskTime1} \ 1]$
$\land \ [\texttt{task} \gets \texttt{task2}] \ \leftrightarrow \ [\texttt{taskTime2} \gets \texttt{add} \ \texttt{taskTime2} \ 1]$	$\land \ [\texttt{task} \leftarrow\!\!\!\! \leftarrow \texttt{task2}] \ \leftrightarrow \ [\texttt{taskTime2} \leftarrow\!\!\!\! \leftarrow \texttt{add taskTime2} \ 1]$
\wedge eq taskTime1 0 $ ightarrow$ \diamondsuit (eq taskTime1 $2)$)	\wedge eq taskTime1 0 $ ightarrow$ (eq taskTime1 $2)$)

- Removes interpretations of **eq** and **add**: make it a **pure control flow problem**
- But it now doesn't know that 0 + 1 + 1 = 2

SYNTAX-GUIDED SYNTHESIS (SYGUS)

Semantic Constraint

Input v_1	Output
Dr. Eran Yahav	Yahav, E.
Prof. Kathleen S. Fisher	Fisher, K.
Bill Gates, Sr.	Gates, B.
George Ciprian Necula	Necula, G.
Ken McMillan, II	McMillan, K.

Syntactic Constraint

 $\begin{array}{rcl} \text{String expr } P & := & \texttt{Switch}((b_1,e_1),\cdot\cdot,(b_n,e_n)) \\ & & \texttt{Bool } b & := & d_1 \lor \cdot \cdot \lor d_n \\ & & \texttt{Conjunct } d & := & \pi_1 \land \cdot \cdot \land \pi_n \\ & & \texttt{Predicate } \pi & := & \texttt{Match}(v_i,\mathbf{r},k) \mid \neg \texttt{Match}(v_i,\mathbf{r},k) \\ & & \texttt{Trace expr } e & := & \texttt{Concatenate}(f_1,\cdot\cdot,f_n) \\ & & \texttt{Atomic expr } f & := & \texttt{SubStr}(v_i,p_1,p_2) \\ & & \mid & \texttt{ConstStr}(s) \\ & & \mid & \texttt{Loop}(\lambda w:e) \\ & & \texttt{Position } p & := & \texttt{CPos}(k) \mid \texttt{Pos}(\mathbf{r}_1,\mathbf{r}_2,\mathbf{c}) \\ & & \texttt{Integer expr } c & := & k \mid k_1w + k_2 \\ & & \texttt{Regular Expression } r & := & \texttt{TokenSeq}(\mathsf{T}_1,\cdot\cdot,\mathsf{T}_m) \\ & & & \texttt{Token } \mathsf{T} & := & C + & \mid & [\neg C] + \\ & & & \mid & \texttt{SpecialToken} \end{array}$

Syntax-Guided Synthesis

Synthesized Program

Ы	5· C-										Flash Fil	I - Excel
	ile Home	Insert	Page Layout	Formulas	Data	Review	View					
1	Cut	Calib	ri *	11 · A A		= %	📴 Wra	p Text	General			周目
Pa	ste Copy	D	7 II - (00)	- 👌 - 🛕 -				an Di Camban		v . €.0	00 Con	ditional Form
	- Format P	Painter					= E wier	ge of Center		70 7 .00 -		atting - Tab
	Clipboard	ra i	Font	15		Alig	Inment		5 N	lumber	F 2	
C3	· ·	: × 、	f _x Ar	ngad Kumar								
0.5				igad Kulliai								
Â	A	В		С	D	E	F	G	н	1	J	K
1	Last Name	First Name	Name									
2	dhir	pooja	Poojal	Dhir	¢							
3	kumar	angad	Angad	Kumar								
4	kohli	Simran	Simran	Kohli								
5	KOHLI	RAJIV	Rajiv K	ohli								
6	kohli	muskan	Muska	n Kohli								
7	kohli	Suhani	Suhani	Kohli								
8	tara	jayant	Jayant	Tara								
9	rawat	JAYANT	Jayant	Rawat								
10	verma	vicky	Vicky \	/erma								
	sagar	jatin	Jatin S	agar								
12												
13												
14												

DERIVE AND SOLVE SYGUS PROBLEMS Original specification

Semantic Constraint

HOW TO COMMUNICATE SYGUS RESULT TO REACTIVE SYNTHESIS?

Original specification

$\Box(\texttt{[task \leftarrow \texttt{task1}] \lor [task \leftarrow \texttt{task2}]}$
$\land \ [\texttt{task} \gets \texttt{task1}] \ \leftrightarrow \ [\texttt{taskTime1} \gets \texttt{add} \ \texttt{taskTime1} \ 1]$
$\land \ [\texttt{task} \gets \texttt{task2}] \ \leftrightarrow \ [\texttt{taskTime2} \gets \texttt{add} \ \texttt{taskTime2} \ 1]$
\land eq taskTime1 $0 \rightarrow \diamondsuit$ (eq taskTime1 $2)$)

SyGuS-synthesized function

 $\mathcal{S} = (\texttt{add} (\texttt{add} \texttt{taskTime1} 1) 1)$

Solution: Transform each "level" of the AST into a timestep of computation

TRANSFORMING SYGUS RESULT TO TEMPORAL STREAM LOGIC (TSL)

Original specification

$\Box([\texttt{task} \leftarrow \texttt{task1}] \lor$	$[\texttt{task} \leftarrow \texttt{task2}]$
$\land \ [\texttt{task} \gets \texttt{task1}] \ \leftrightarrow$	$[\texttt{taskTime1} \longleftrightarrow \texttt{add taskTime1} \ 1]$
$\land \ [\texttt{task} \gets \texttt{task2}] \ \leftrightarrow$	$[\texttt{taskTime2} \longleftrightarrow \texttt{add taskTime2} \ 1]$
\wedge eq taskTime1 0 \rightarrow	\diamondsuit (eq taskTime1 2))

SyGuS-synthesized function

$$\mathcal{S} = (\texttt{add} (\texttt{add} \texttt{taskTime1} 1) 1)$$

SyGuS Result as TSL Assumption $Pre-conditionProgramPost-conditioneq taskTime1 0Seq taskTime1 2((Pre-conditionaddSadd1<math>\rightarrow$ Post-condition)1

COMBINE CONTROL SPECIFICATION WITH THE DATA ASSUMPTION

Temporal Stream Logic (TSL) Specification

$\Box([\texttt{task} \longleftrightarrow \texttt{task1}] \lor$	$[\texttt{task} \leftarrow \texttt{task2}]$
$\land \ [\texttt{task} \gets \texttt{task1}] \ \leftrightarrow$	$[\texttt{taskTime1} \leftrightarrow \texttt{add} \texttt{taskTime1} 1]$
$\land \ [\texttt{task} \gets \texttt{task2}] \ \leftrightarrow$	$[\texttt{taskTime2} \gets \texttt{add taskTime2} \ 1]$
\wedge eq taskTime1 0 \rightarrow	\diamondsuit (eq taskTime1 2))

SyGuS Result as TSL Assumption

□ ((eq taskTime1 0
\wedge	$[\texttt{taskTime1} \longleftrightarrow \texttt{add taskTime1} \ 1]$
$\land \bigcirc$	$[\texttt{taskTime1} \gets \texttt{add taskTime1} \ 1]$
\rightarrow 00	eq taskTime1 2)

TSL specification with assumptions: Teaching reactive synthesis that 0+1+1=2!

(□	((eq taskTime1 0		
	\wedge	$[\texttt{taskTime1} \leftrightarrow \texttt{add taskTime1} 1]$		Accumution
	$\land \bigcirc$	$[\texttt{taskTime1} \longleftrightarrow \texttt{add taskTime1} 1])$	6	Assumption
	\rightarrow 00	eq taskTime1 2 $)) \rightarrow$		

$\Box(\texttt{[task} \gets \texttt{task1}) \lor$	$[\texttt{task} \leftrightarrow \texttt{task2}]$
$\land \ [\texttt{task} \gets \texttt{task1}] \ \leftrightarrow$	$[\texttt{taskTime1} \longleftrightarrow \texttt{add} \texttt{taskTime1} \ 1]$
$\land \ [\texttt{task} \gets \texttt{task2}] \ \leftrightarrow$	$[\texttt{taskTime2} \gets \texttt{add taskTime2} \ 1]$
\wedge eq taskTime1 0 \rightarrow	\diamondsuit (eq taskTime1 2))

Guarantee

RESULT CAN NOW BE SYNTHESIZED!

- From our original TSL-MT specification, we obtained the TSL specification with assumptions
- We know how to synthesize TSL! (CAV '19, Haskell '19)

TSL specification with assumptions: Teaching reactive synthesis that 0+1+1=2!

$\land \ [\texttt{task} \hookleftarrow \texttt{task1}] \ \leftrightarrow \ [\texttt{taskTime1} \hookleftarrow \texttt{add} \texttt{taskTime1} \ 1]$	$lsk \leftarrow task2$
	$\texttt{skTime1} \longleftrightarrow \texttt{add taskTime1} 1]$
$\land \ [\texttt{task} \hookleftarrow \texttt{task2}] \ \leftrightarrow \ [\texttt{taskTime2} \hookleftarrow \texttt{add} \texttt{taskTime2} \ 1]$	$\texttt{skTime2} \longleftrightarrow \texttt{add taskTime2} \ 1]$
\wedge eq taskTime1 0 $ ightarrow$ \diamondsuit (eq taskTime1 $2)$)	(eq taskTime1 2))

Guarantee

Synthesizing a ...

12. 1. 1.	\Box ([task \leftarrow task1] \lor [task \leftarrow task2]	
Tomp	$\land \ [\texttt{task} \hookleftarrow \texttt{task1}] \ \leftrightarrow \ [\texttt{taskTime1} \longleftarrow \texttt{add} \texttt{taskTime1} \ 1]$	
remp	$\Box([\texttt{task} \leftrightarrow \texttt{task1}] \lor [\texttt{task} \leftrightarrow \texttt{task2}] \\ \land [\texttt{task} \leftrightarrow \texttt{task1}] \leftrightarrow [\texttt{taskTime1} \leftrightarrow \texttt{add} \texttt{taskTime1} 1] \\ \land [\texttt{task} \leftrightarrow \texttt{task2}] \leftrightarrow [\texttt{taskTime2} \leftrightarrow \texttt{add} \texttt{taskTime2} 1]$	
	\wedge eq taskTime1 $0 \rightarrow \diamondsuit$ (eq taskTime1 2))	

Specification

Synthesizing a ...

(□ ((

 \wedge

 $\land \cap$

eq taskTime1 0

12. 1. 1.	\Box ([task \leftarrow task1] \lor [task \leftarrow task2]	
Tomp	$\land \ [\texttt{task} \hookleftarrow \texttt{task1}] \ \leftrightarrow \ [\texttt{taskTime1} \longleftarrow \texttt{add} \texttt{taskTime1} \ 1]$	
remp	$\Box([\texttt{task} \leftrightarrow \texttt{task1}] \lor [\texttt{task} \leftrightarrow \texttt{task2}] \\ \land [\texttt{task} \leftrightarrow \texttt{task1}] \leftrightarrow [\texttt{taskTime1} \leftrightarrow \texttt{add} \texttt{taskTime1} 1] \\ \land [\texttt{task} \leftrightarrow \texttt{task2}] \leftrightarrow [\texttt{taskTime2} \leftrightarrow \texttt{add} \texttt{taskTime2} 1]$	
	\wedge eq taskTime1 $0 \rightarrow \diamondsuit$ (eq taskTime1 2))	

Specification

REACTIVE SYNTHESIS

Temporal Logic Specification

Guarantee 3. When a length-four locked burst starts, no other accesses : HREADY is high, so the current burst ends at the fourth occurrence of 1 true initially separately from the case in which it is not).

 $\Box ((\mathsf{HMASTLOCK} \land \mathsf{HBURST} = \mathsf{BURST4} \land \mathsf{START} \land \mathsf{HREADY}) \rightarrow$

 $\bigcirc (\neg \text{START} \mathcal{W}[3](\neg \text{START} \land \text{HREADY}))),$

 $\Box (\mathsf{HMASTLOCK} \land \mathsf{HBURST} = \mathsf{BURST4} \land \mathsf{START} \land \neg \mathsf{HREADY}) \rightarrow$

Reactive Synthesis

 $\bigcirc (\neg \text{START} \mathcal{W}[4](\neg \text{START} \land \text{HREADY})).$

Guarantee 6. If we do not start an access in the next time step, the bus

For each master i,

 $\Box \big(\bigcirc (\neg \text{START}) \to \big(\big(\text{HMASTER} = i \leftrightarrow \bigcirc (\text{HMASTER} = i) \big) \land \\ \big(\text{HMASTLOCK} \leftrightarrow \bigcirc (\text{HMASTLOCK}) \big) \big) \big).$

Assumption 4. We assume that all input signals are low initially.

$$\bigwedge (\neg HBUSREQ[i] \land \neg HLOCK[i]) \land \neg HREADY.$$

Synthesized Model

EVALUATION OF TEMOS (FOR TSL-MT)

Benchmark (φ)	$ \varphi $	$ \mathbb{P} $	F	<i>\V</i>	ψ Generation (s)	TSL Synthesis (s)	Sum (s)	Synthesized LoC
Music Synthesizer								
Vibrato	10	2	2	21	0.431	0.914	1.345	206
Modulation	33	4	4	41	2.012	3.983	5.995	1352
Intertwined	58	4	4	41	2.157	3.178	5.335	1366
Multi-effect	27	6	6	45	3.145	81.470	84.615	1463
Pong								
Single-Player	27	1	1	5	0.043	0.571	0.614	169
Two-Player	49	2	2	12	0.181	0.625	0.806	195
Bouncing	27	3	2	25	0.418	0.808	1.226	169
Automatic	27	5	2	54	0.541	0.988	1.529	214
Escalator								
Simple	29	1	2	2	0.011	0.434	0.445	166
Counting	57	2	2	8	0.100	0.592	0.692	241
Bidirectional	57	5	11	9	0.340	2.291	2.631	279
Smart	65	8	2	34	3.034	0.935	3.969	179
CPU Scheduler								
Round Robin	21	2	4	16	0.149	0.740	0.889	252
Load Balancer	39	3	4	12	0.531	2.128	2.659	208
Preemptive	54	4	4	12	0.548	0.765	1.313	356
CFS	81	8	5	12	0.533	2.443	2.976	2825

SOME USEFUL LINKS

• Rajeev Alur's tutorial on SyGuS (additional material: real world applications): https://simons.berkeley.edu/talks/syntax-guided-program-synthesis

• Roderick Bloom's tutorial on reactive synthesis (additional material: shield synthesis): https://www.newton.ac.uk/seminar/36472/

 Bernd Finkbeiner's tutorial on reactive synthesis (additional material: bounded synthesis, synthesis of distributed systems): <u>https://simons.berkeley.edu/talks/reactive-synthesis</u>

• Priyanka Golia's talk on functional synthesis: https://priyanka-golia.github.io/files/slides/qbf_workshop.pdf

• Simons program on synthesis:

https://simons.berkeley.edu/workshops/synthesis-models-systems/schedule#simons-tabs

CONCLUSIONS

- Software synthesis is an exciting idea that started as an interesting theoretical question ("can we derive the program automatically?") but today is a part of software development used by millions of users
- Various types of software synthesis:
 - Reactive synthesis
 - Deductive synthesis / functional synthesis
 - Syntax-guided synthesis
- Which synthesis type to choose (and what is your specification) depends on the application and goal
- Various applications: network, cyber-psychical systems, AI correctness.
- Synthesis today: connecting many different fields of research