Introduction to Proof Theory

Lecture 1 Proof Theory and Proof Systems

Marianna Girlando, Sonia Marin

University of Amsterdam, University of Birmingham

OPLSS 2023

Eugene, Oregon, June 26 - July 8, 2023

Introduction

Propositional and first order syntax

Proof systems

1 History : Why it started ? Formal language & First proof system Clamical Logic & Arithmetic 2. Intuitionistic / Constructive Related to prog long theory 3. Natural Deduction Sequent colculus 4. Cut Elimination / Normalization 5. Back to arithmetics Etc.

Introduction

Propositional and first order syntax

Proof systems

Propositional logic: syntax

Language

Countably many propositional variables:

$$\operatorname{Var}_{p} = \{p, q, r, \dots\}$$

- Propositional constants: 1 (false)
- ▶ Connectives: \lor (disjunction), \land (conjunction), \rightarrow (implication)

Formulas (Form_p) A, B, C, ... are inductively generated as follows:

- Propositional variables and constants are formulas
- ▶ If A, B are formulas then $A \lor B, A \land B, A \rightarrow B$ are formulas.

$$\neg A := A \longrightarrow \bot \qquad T := p \lor (p \rightarrow \bot)$$

How do we interpret propositional formulas?

Propositional assignment: assigns {0, 1} to propositional variables

 $\alpha: \operatorname{Var}_{\rho} \to \{0, 1\}$

Extend the assignment to formulas

Α	B	$A \wedge B$	A	В	$A \lor B$	A	В	$A \rightarrow B$
1	1	1	1	1	1	1	1	1
1	0	0	1	0	1	1	0	0
0	1	0	0	1	1	0	1	1
0	0	0	0	0	1 1 1 0	0	0	1

Equivalently: Define $\alpha \models A$ " α satisfies A" $\alpha \not\models \bot$ $\alpha \models p$ iff $\alpha(p) = 1$ $\alpha \models A \land B$ iff $\alpha \models A$ and $\alpha \models B$ $\alpha \models A \lor B$ iff $\alpha \models A$ or $\alpha \models B$

 $\alpha \models \mathsf{A} \to \mathsf{B} \quad \textit{iff} \quad \alpha \not\models \mathsf{A} \text{ or } \alpha \models \mathsf{B}$

Predicate logic: language

We define a predicate language $\mathcal{L}^{=}$ as follows:

- ▷ Countably many variables: $Var = \{x, y, z, ...\}$
- A set of function symbols: Fun = {f, g, h, ...}
 Each function symbol has a fixed *arity* (n of arguments it takes)

0-ary function symbols are called constants

A set of predicate symbols: $Pred = \{P, Q, R, ...\}$

Each predicate symbol has a fixed *arity* (n of arguments it takes)

Propositional variables are 0-ary predicates

- The equality symbol = (2-ary predicate)
- Propositional constants: 1
- Connectives \lor, \land, \rightarrow .
- ▶ Quantifiers: ∃ (existential) and ∀ (universal)

Predicate logic: terms

$$f: \mathbb{N}^{h} \longrightarrow \mathbb{N}$$

Terms (Ter) *s*, *t*, *u*, ... are inductively generated as follows:

- Variables are terms
- If *f* ∈ Fun is a *k*-ary function symbol and *t*₁,..., *t_k* are terms, then the following is a term:

$$f(t_1,\ldots,t_k)$$

Any constant is a term.

Informally, terms denote individual entities.

Predicate logic: formulas

Atomic formulas $P(t_1, ..., t_k)$ are inductively generated as follows:

- ▶ If s, t are terms, then s = t is an atomic formula.
- If P is a predicate symbol or arity k and t₁,..., tk are terms, then the following is an atomic formula:

 $P(t_1,\ldots,t_k)$

Formulas (Form) *P*, *Q*, *R*,... are inductively generated as follows:

- Atomic formulas are formulas
- ⊥ is a formula
- ▶ If A, B are formulas then $A \lor B, A \land B$ and $A \rightarrow B$ are formulas
- ▶ If A is a formula then $\exists xA$ and $\forall xA$ are formulas.

Introduction

Propositional and first order syntax

Proof systems

Proof systems, informally

A proof system consists of:

- Set of axioms;
- Set of inference rules.

A proof of a formula *A* is constructed by chaining together axioms, inference rules, and objects generated from axioms and inference rules, until *A* is reached.

A logic can be identified with the set of provable formulas.

Various kinds of proof systems

- Hilbert-Frege proof systems, or axiom systems, or reductive systems (Prawitz, 1971)
- Gentzen-style proof systems

Today:

- Axiom system for propositional logic
- Axiom system for first-order logic
- First-order theories and Peano Arithmetic

An axiom system for classical propositional logic: \mathcal{H}_{cp}

A, B, C formulas of \mathcal{L}_{p}

PL1.
$$A \rightarrow (B \rightarrow A)$$

PL2. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
PL3. $(A \wedge B) \rightarrow A$
PL4. $(A \wedge B) \rightarrow B$
PL5. $A \rightarrow (B \rightarrow (A \wedge B))$
PL6. $A \rightarrow (A \vee B)$
PL7. $B \rightarrow (A \vee B)$
PL8. $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \vee B) \rightarrow C))$
PL9. $\perp \rightarrow A$
PL10. $A \vee (A \rightarrow \perp)$
 $\frac{A \rightarrow B}{B}$

Examples

Proofs in \mathcal{H}_{cp}

For A formula of \mathcal{L}_p , Γ set of formulas of \mathcal{L}_p :

A \mathcal{H}_{cp} derivation of A from assumptions in Γ is a list of \mathcal{L}_p formulas

where $A_n = A$ and for each A_i , for $i \le n$, we have that either:

- A_i is an axiom of \mathcal{H}_{cp} ;
- ▶ $A_i \in \Gamma$;

► A_i is obtained by applying (mp) to formulas in A_1, \ldots, A_{i-1} . We write $\Gamma \vdash_{\mathcal{H}_{co}} A$ if there is a derivation of A from formulas in Γ .

A proof of A is a derivation of A from \emptyset . We write $\vdash_{\mathcal{H}_{cp}} A$ if there is a proof of A.

Classical propositional logic CPL is defined as $\{A \mid \vdash_{\mathcal{H}_{cp}} A\}$.

Deduction Theorem

For A formula of \mathcal{L}_{p} , Γ set of formulas of \mathcal{L}_{p} :

