Introduction to Proof Theory

Lecture 2 Natural Deduction

Marianna Girlando, Sonia Marin

University of Amsterdam, University of Birmingham

OPLSS 2023

Eugene, Oregon, June 26 - July 8, 2023

Outline

First-order logic, Peano arithmetic

Intuitionistic logic

Natural deduction

What we saw yesterday

An axiom system for first-order logic: \mathcal{H}_{fo}

A, B, C formulas of $\mathcal{L}^{=}$

Axioms and inference rules of \mathcal{H}_{cp} , plus:

FO1.
$$\forall x(A(x)) \rightarrow A(t)$$
 true
FO2. $A(t) \rightarrow \exists x(A(x))$
FO3. $\forall x(A \rightarrow B(x)) \rightarrow (A \rightarrow \forall x(B(x)))$ where $x \notin FV(A)$
FO4. $\forall x(A(x) \rightarrow B) \rightarrow (\exists x(A(x)) \rightarrow B)$ where $x \notin FV(B)$

An axiom system for first-order logic: \mathcal{H}_{fo}

A, B, C formulas of $\mathcal{L}^{=}$

Axioms and inference rules of \mathcal{H}_{cp} , plus:

Prove the following:

 $\ \ \, \boxtimes \ \ \, \{\forall x(A \to B), \forall x(A)\} \vdash_{\mathcal{H}_{fo}} \forall x(B)$

Proofs in \mathcal{H}_{fo}

A formula of $\mathcal{L}^{=}$, Γ set of formulas of $\mathcal{L}^{=}$:

A \mathcal{H}_{fo} derivation of A from assumptions in Γ is a list of $\mathcal{L}^{=}$ formulas

where $A_n = A$ and for each A_i , for $i \le n$, we have that either:

- A_i is an axiom of \mathcal{H}_{fo} ;
- ▶ $A_i \in \Gamma$;

▶ A_i is obtained by applying (mp) or (gen) to A_1, \ldots, A_{i-1} .

We write $\Gamma \vdash_{\mathcal{H}_{fo}} A$ if there is a derivation of A from formulas in Γ .

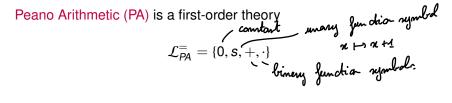
A proof of A is a derivation of A from \emptyset . We write $\vdash_{\mathcal{H}_{io}} A$ if there is a proof of A.

First-order logic FOL is defined as $\{A \mid \vdash_{\mathcal{H}_{fo}} A\}$. (

Peano Arithmetic (PA)

A first-order theory \mathcal{T} consists of:

- A predicate language $\mathcal{L}_{\mathcal{T}}^{=}$;
- ▶ A set of formulas in the language $\mathcal{L}_{\mathcal{T}}^=$, the non-logical axioms of the theory.



Peano Arithmetic (PA)

A first-order theory \mathcal{T} consists of:

- A predicate language $\mathcal{L}_{\mathcal{T}}^{=}$;
- A set of formulas in the language L⁼_T, the non-logical axioms of the theory.

٥

৬ (৩) ৬ (৬(০))

Peano Arithmetic (PA) is a first-order theory

$$(0 = s(a)) - L_{PA}^{=} = \{0, s, +, \cdot\}$$

PA1.
$$\forall x(0 \notin s(x))$$

PA2. $\forall x \forall y(s(x) = s(y) \rightarrow x = y)$
PA3. $\forall x(x+0=x)$
PA4. $\forall x \forall y(x+s(y) = s(x+y))$
PA5. $\forall x(x \cdot 0 = 0)$
 $\Rightarrow (s(o)) + o \in s(v)$
 $\Rightarrow (s(o)) \cdot s(o)$

PA6.
$$\forall x \forall y (x \cdot s(y) = (x \cdot y) + x)$$

PA7.
$$(A(0) \land \forall x(A(x) \to A(s(x)))) \to \forall x(A(x)))$$

where $A \in \mathcal{L}_{PA}^{=}, x \in FV(A)$

An example

Prove the following in PA:
Prove the following in PA:

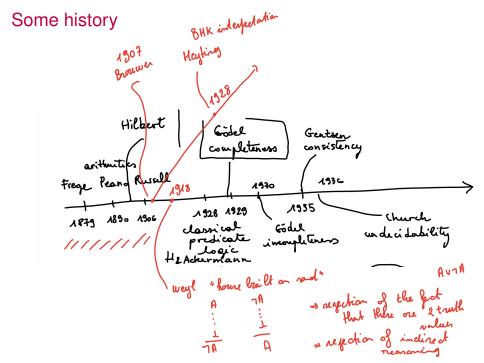
$$\forall x(x \neq s(x))$$

Set $A(x) := x \neq s(x)$
To prove: $A(0) \land \forall x(A(x) \rightarrow A(s(x)))$
Using (mp) and PA7. $(A(0) \land \forall x(A(x) \rightarrow A(s(x)))$
Using (mp) and PA7. $(A(0) \land \forall x(A(x) \rightarrow A(s(x)))) \rightarrow \forall x(A(x))$
conclude $\forall x(A(x))$
Proof of \forall $(A(\alpha) \rightarrow A(s(\alpha))) \Rightarrow$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\lambda(\alpha)))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\alpha))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha) \rightarrow \lambda(\alpha) \neq \lambda(\alpha))$
 $:= \forall \alpha (\alpha \neq \lambda(\alpha))$

First-order logic, Peano arithmetic

Intuitionistic logic

Natural deduction



Constructive proofs?

Theorem. There exist irrational numbers a, b s.t. a^{b} is rational. *Proof # 1.* Take $a = b = \sqrt{2}$. Then $\sqrt{2\sqrt{2}}$ is either rational or irrational. If it is rational, the statement is proved. If it is irrational, take $a = \sqrt{2}\sqrt{2}$ and $b = \sqrt{2}$. Then $(\sqrt{2}\sqrt{2})^{\sqrt{2}} = 2$, and the statement is proved.

Proof # 2. Take $a = \sqrt{2}$ and $b = log_2$ 9. Then $a^b = 3$.

An axiom system for intuitionistic propositional logic: \mathcal{H}_{ip}

Syntax of intuitionistic propositional logic: \mathcal{L}_p

▶
$$\operatorname{Var}_p = \{p, q, r, \dots\}$$

▶ $\bot, \land, \lor, \rightarrow$

A, B, C formulas of \mathcal{L}_p

PL1.
$$B \rightarrow (A \rightarrow B)$$

PL2. $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$
PL3. $(A \land B) \rightarrow A$
PL4. $(A \land B) \rightarrow B$
PL5. $A \rightarrow (B \rightarrow (A \land B))$
PL6. $A \rightarrow (A \lor B)$
PL7. $B \rightarrow (A \lor B)$
PL8. $(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))$
PL9. $\perp \rightarrow A$
PL10. $A \lor (A \rightarrow \bot)$

$$mp \frac{A \qquad A \to B}{B}$$

An axiom system for intuitionistic propositional logic: \mathcal{H}_{ip}

Syntax of intuitionistic propositional logic: \mathcal{L}_p

▶
$$\operatorname{Var}_{\rho} = \{p, q, r, \dots\}$$

▶ $\bot, \land, \lor, \rightarrow$

A, B, C formulas of \mathcal{L}_p

$$\begin{array}{ll} \mathsf{PL1.} & B \to (A \to B) \\ \mathsf{PL2.} & \left(A \to (B \to C)\right) \to \left((A \to B) \to (A \to C)\right) \\ \mathsf{PL3.} & \left(A \land B\right) \to A \\ \mathsf{PL4.} & \left(A \land B\right) \to B \\ \mathsf{PL5.} & A \to \left(B \to (A \land B)\right) \\ \mathsf{PL6.} & A \to \left(A \lor B\right) \\ \mathsf{PL7.} & B \to (A \lor B) \\ \mathsf{PL8.} & \left(A \to C\right) \to \left((B \to C) \to \left((A \lor B) \to C\right)\right) \\ \mathsf{PL9.} & \bot \to A \end{array}$$

$$mp \frac{A \qquad A \to B}{B}$$

Some examples

Formulas that are **not** provable in \mathcal{H}_{ip} :

 $\triangleright A \lor \neg A \quad (\text{Excluded middle})$

$$\triangleright \neg \neg A \rightarrow A \quad (Double negation)$$

▷
$$((A \rightarrow B) \rightarrow A) \rightarrow A$$
 (Pierce's Law)

$$\triangleright (A \to B) \to (\neg A \lor B)$$

Formulas that are provable in \mathcal{H}_{ip} :

$$(\neg A \lor B) \to (\neg A \lor B) A \neg b$$
$$(A \lor B) \to \neg (\neg A \land \neg B)$$

Proofs in \mathcal{H}_{ip}

For A formula of \mathcal{L}_p , Γ set of formulas of \mathcal{L}_p :

A \mathcal{H}_{ip} derivation of A from assumptions in Γ is a list of \mathcal{L}_p formulas

where $A_n = A$ and for each A_i , for $i \le n$, we have that either:

- A_i is an axiom of \mathcal{H}_{cp} ;
- ▶ $A_i \in \Gamma$;

► A_i is obtained by applying (mp) to formulas in A_1, \ldots, A_{i-1} . We write $\Gamma \vdash_{\mathcal{H}_{ip}} A$ if there is a derivation of A from formulas in Γ .

A proof of *A* is a derivation of *A* from \emptyset . We write $\vdash_{\mathcal{H}_{ip}} A$ if there is a proof of *A*.

Intuitionistic propositional logic IPL is defined as $\{A \mid \vdash_{\mathcal{H}_{ip}} A\}$.

Outline

First-order logic, Peano arithmetic

Intuitionistic logic

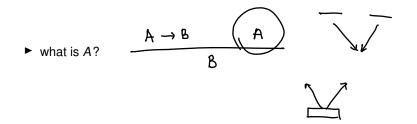
Natural deduction

Pros and cons axioms

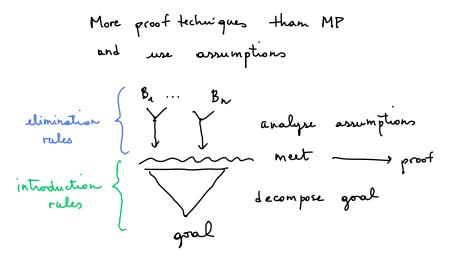
- Pro: make precise how connectives interact and the principles of mathematical reasoning
- Con: searching for a proof is painful because we can use only modus ponens

Pros and cons axioms

- Pro: make precise how connectives interact and the principles of mathematical reasoning
- Con: searching for a proof is painful because we can use only modus ponens
 - what about other common proof techniques?

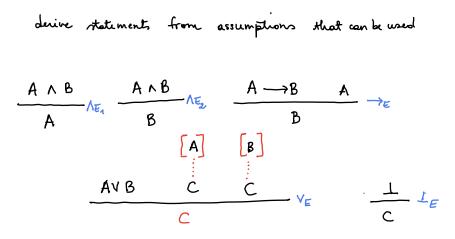


Natural deduction - informally



Introduction rules

Elimination rules



A derivation of formula <u>A</u> from <u>set</u> of assumptions (formulas) Γ is a tree of formulas in which each formula is

- either an assumption in Γ
- ► or the conclusion of a correct application of an inference rule.

If every assumption is discharged, it is a proof of A.