Introduction to Proof Theory

Lecture 4
 Cut-elimination

Marianna Girlando, Sonia Marin

Universtiy of Amsterdam, University of Birmingham

OPLSS 2023

Eugene, Oregon, June 26 - July 8, 2023

Outline

Introduction

Preliminary definitions and lemmas

The cut elimination theorem

Normalisation

From LJ to NJ and back

Today's goal

Theorem (Hauptsatz, Gentzen 1935)
Every theorem of LJ has a proof that does not use the cut rule.
Corollary (Analyticity)
Every theorem of $\mathbf{L J}$ has a proof that contains only subformulas of it.

Informal example

Let's eliminate the occurrence of cut marked by *

General strategy of the proof

LJ derivation \leadsto cut-free LJ derivation

\triangleright Apply the cut on smaller formulas, until they disappear!

- Push the cuts upwards in the proof, until they disappear!
- We need a "measure" on formulas and on derivations, to ensure that the cut-elimination procedure terminates.
... The cut-elimination proof is quite complex.
We are going to sketch the proof for LJ.

References

Several proofs of cut-elimination exist in the literature, using slightly different procedures and for slightly different systems:

- [Buss, 1998]. Handbook of Proof Theory.
- [Troelstra and Schwichtenberg, 1996]. Basic Proof Theory.
- [Negri and von Plato, 2001]. Structural Proof Theory.
\triangleright...

Introduction

Preliminary definitions and lemmas

The cut elimination theorem

Normalisation

From LJ to NJ and back

Measuring height

The height of $\mathcal{D}, \operatorname{ht}(\mathcal{D})$, is the length of its longest branch, minus one.

The level of a cut rule is the sum of heights of derivations of the two premisses of cut.

$m+m$

Measuring degree

The degree of a formula $A, \operatorname{deg}(A)$, is the number of logical connectives occurring in it.

$$
\begin{aligned}
& \operatorname{deg}(p):=0 \\
& \operatorname{deg}(\perp):=0 \\
& \operatorname{deg}(A \star B):=\operatorname{deg}(A)+\operatorname{deg}(B)+1 \\
& \text { for } \star \in\{\vee, \wedge, \rightarrow\}
\end{aligned}
$$

The rank of a cut rule is the degree of the cut formula A, plus 1 .

$$
\operatorname{cut} \frac{\Gamma \Rightarrow A \quad A, \Gamma \Rightarrow C}{\Gamma \Rightarrow C}
$$

The rank of $\mathcal{D}, \mathrm{rk}(\mathcal{D})$, is the maximumbf the cut formulas occurring in \mathcal{D}.
$\Gamma \Rightarrow{ }_{p}^{m} C$ means there is a derivation of $\Gamma \Rightarrow C$ of height at most
m and rank at most p.

Rank of derivations (more formally)

Height and rank can be inductively defined on the structure of \mathcal{D} :

$$
\mathcal{D}=\operatorname{init} \overline{\Gamma \Rightarrow C} \quad r k(\mathcal{D})=0
$$

$$
\operatorname{rk}(\mathcal{D})=\operatorname{rk}\left(\mathcal{D}_{1}\right)
$$

$$
\operatorname{rk}(\mathcal{D})=\max \left(\operatorname{rk}\left(\mathcal{D}_{1}\right), \operatorname{rk}\left(\mathcal{D}_{2}\right)\right)
$$

$\operatorname{rk}(\mathcal{D})=\max \left(\operatorname{rk}\left(\mathcal{D}_{1}\right), \operatorname{rk}\left(\mathcal{D}_{2}\right), \operatorname{deg}(\mathrm{A})+1\right)$

Some preliminary lemmas

$$
\begin{gathered}
\Gamma \Rightarrow c \\
\Gamma \quad \Gamma_{i}^{\prime} \Gamma \Rightarrow c \\
\text { weakening }
\end{gathered} \frac{\Gamma}{A_{1} \Gamma \Rightarrow c} \omega k
$$

1. Lemma: Closure under weakening
\triangleright If $\Gamma \Rightarrow \Rightarrow_{p}^{m} C$, then $\Gamma^{\prime}, \Gamma \Rightarrow{ }_{p}^{m} C$, for any Γ^{\prime}.
Proof. Easy induction on the height m, of the derivation.
2. Lemma: Closure under contraction
\triangleright If $A, A, \Gamma \Rightarrow_{\underline{p}}^{m}{ }^{C}$, then $A, \Gamma \Rightarrow_{\underline{p}}^{m} C$.
Proof. Induction on m, using weakening (and invertibility)
NB: all the above preserve height and rank of the derivation.

Introduction

Preliminary definitions and lemmas

The cut elimination theorem

Normalisation

From LJ to NJ and back

The plan

LJ derivation \sim cut-free LJ derivation

- We show how to simulate instances of cut.

- We show how to eliminate all cuts occurring in a derivation, starting with topmost cuts having maximal rank.

Lemma (closure under cut)

If $\Gamma \Rightarrow{ }_{0}^{m} A$ and $A, \Gamma \Rightarrow{ }_{0}^{n} C$

then we can construct the following derivation \mathcal{D}^{*} :

Proof. Induction on $(\operatorname{deg}(\mathrm{A}), m+n)$. We distinguish cases:

1. R_{1} is init
(R_{2} is init)
2. A is principal in both R_{1} and R_{2}
3. A is not principal in R_{1}

$$
\mathcal{D}_{1}=\text { init } \frac{\underbrace{A, \Gamma^{\prime}}_{\Gamma} \Rightarrow_{p}^{m}-}{\Gamma_{1}}
$$

with $\Gamma=A, \Gamma^{\prime}$. We construct the following derivation \mathcal{D} of $\Gamma \Rightarrow_{p} \Delta$:

A is principal in both R_{1} and R_{2}

R_{1} is \rightarrow_{R} and R_{2} is \rightarrow_{L}

with $n 1, n 2<n$. We construct the following derivation \mathcal{D} of $\Gamma \Rightarrow_{p} \Delta$:

Cases for the other rules ...

A is not principal in R_{1}

R_{1} is a one-premiss rule

We construct the following derivation \mathcal{D} of $\Gamma \Rightarrow_{p} \Delta$:

R_{1} is a two-premisses rule
End of the proof

Eliminating cut

Cut-elimination Theorem If we have a derivation \mathcal{D} of $\Gamma \Rightarrow_{p} C$, we can construct a derivation \mathcal{D}^{*} of $\Gamma \Rightarrow{ }_{0} C$, that is, a derivation where cut does not occur.

Proof. We apply the proof transformation detailed in the Lemma to the cuts occurring in \mathcal{D}, starting with topmost cuts of maximal rank. The Lemma ensures us that after every proof transformation one instance of cut is eliminated.
Therefore, in finitely many steps, we obtain a derivation \mathcal{D}^{*} of
$\Gamma \Rightarrow{ }_{0} C$, where the cut rule does not occur.
How many steps? $\Gamma \Rightarrow{ }_{p}^{m} C \leadsto \Gamma \Rightarrow 0_{0}^{4_{p}\left(m^{m}\right.} C$

$$
4_{p}\left(\frac{m}{(n)}\right)=\underbrace{4^{4^{4^{m m}}}}_{p}
$$

Why all this work?

- analiticity
- $H_{H_{G}} A$ as $H_{L J} \Rightarrow A$ completeven
= all the axioms of Hilbert system ore derivable in 29
- MP can be simulated in LJ

Outline

Introduction

Preliminary definitions and lemmas

The cut elimination theorem

Normalisation

From LJ to NJ and back

Detours
In NJ a detour is a gadget formed by an intro. rule followed by $\frac{\text { an slim. rule }}{\text { L. ts }}$
its major premiss is the conclusion of the intro
β-reduction
eliminating detours in derivations in NJ
\longleftrightarrow normalizing λ-terms (weak)

$$
\left(\lambda_{x} \cdot M\right) N \leadsto M[x / N]
$$

$$
\xrightarrow{\left.\left(\lambda_{x} . M\right) N\right): B}
$$

$$
\pi\left\{\begin{array}{ccc}
A & \cdots & A \\
\vdots & & \\
\vdots & & \\
1[x / N]] ; B &
\end{array}\right.
$$

$$
\begin{aligned}
& \pi \sqrt{\frac{x:[A]}{\vdots}} \\
& \begin{array}{l}
\left(\lambda_{x} . M\right): A \rightarrow B \quad N: A \\
\left(\lambda_{x} . M\right) N: B
\end{array} \rightarrow_{E}
\end{aligned}
$$

