
Introduction to Barendregt’s Lambda Cube

Silvia Ghilezan

University of Novi Sad
Mathematical Institute SASA, Serbia

Lecture 1

Oregon Programming Language Summer School
Eugene, June 2023

1 / 37

λω λPω

λ2 λP2

λω λPω

λ→ λP

Figure: Lambda cube

◮ λ Untyped Lambda
calculus

◮ λ→ Simple types

◮ λ2 Polymorphic types

◮ λω

◮ λP Dependent types

◮ Lambda cube

◮ Logic cube

2 / 37

Roadmap

Lambda Calculus

λ → - Simple types

2 / 37

Roadmap

Lambda Calculus

λ → - Simple types

3 / 37

λ-calculus, untyped lambda calculus
Decision Problem - Background

◮ Gottfried Wilhelm Leibniz - Characteristica universalis

◮ David Hilbert and Wilhelm Ackerman (1928)
◮ Entscheidungsproblem, or Decision Problem:

”Given all the axioms of math,
is there an algorithm that can tell if a proposition is universally valid,

i.e. deducable from the axioms?”

◮ Negative answers (1935/36):
◮ Alonzo Church - λ-calculus (equality)
◮ Alan Turing - Turing Machines (halting problem)

◮ Kurt Gödel - Incompleteness theorems (1931)

4 / 37

λ-calculus - 1930s

◮ Alonzo Church:
◮ theory of functions - formalisation of mathematics

(inconsistent)
◮ successful model for computable functions - λ-calculus
◮ simply typed λ-calculus

◮ Haskell Curry:
◮ elimination of variables in logic - Moses Schönfinkel (1921)
◮ successful model for computable functions - Combinatory

logic
◮ Combinatory logic with types

◮ Alan Turing :
◮ formalisation of the concepts of algorithm and computation
◮ Turing Machines

5 / 37

λ-calculus - expressiveness

◮ Expressiveness - Effective computability (mid 1930s)

◮ (Curry) Equivalence of λ-calculus and Combinatory Logic

◮ (Kleene) Equivalence of λ-calculus and recursive functions

◮ (Turing) Equivalence of λ-calculus and Turing machines

6 / 37

Syntax

M ::= x | c | (MM) | (λx .M)

x ranges over V , a countable set of variables
c ranges over C, a countable set of constants

Pure λ-calculus, if C = ∅

Conventions for minimizing the number of the parentheses:
◮ M1M2M3 stands for ((M1M2)M3) application associates to left
◮ λx .y .M stands for (λx .(λy .(M)) abstraction associates to right
◮ λx .M1M2 ≡ λx .(M1M2); application has priority over abstraction

7 / 37

Running example

xyzx

λx .zx

I ≡ λx .x combinator I

K ≡ λxy .x combinator K

S ≡ λxyz.xz(yz) combinator S

∆ ≡ λx .xx selfapplication

Y ≡ λf .(λx .f (xx))(λx .f (xx)) fixed point combinator

Ω ≡ ∆∆ ≡ (λx .xx)(λx .xx) higher-order function

8 / 37

Free and bound variables

Definition
(i) The set FV (M) of free variables of M is defined inductively:

◮ FV (x) = {x}
◮ FV (MN) = FV (M) ∪ FV (N)
◮ FV (λx .M) = FV (M) \ {x}

(ii) A variable in M is bound if it is not free
◮ x is bound in M if it appears in a subterm of the form λx .N

(ii) M is a closed λ-term (or combinator) if FV (M) = ∅
Λo denotes the set of closed λ-terms.

Example

◮ In λx .zx , variable z is free, FV (M) = {z}
◮ Term λxy .xxy is closed, FV (M) = ∅

9 / 37

Reduction rules - operational semantics

α-reduction:

λx .M −→α λy .M[x := y], y /∈ FV (M)

β-reduction:
(λx .M)N −→β M[x := N]

η-reduction:

λx .(Mx) −→η M, x /∈ FV (M)

10 / 37

α-conversion
Formalisation of the principal that the name of the bound variable is irrelevant

α-reduction:

λx .M −→α λy .M[x := y], y /∈ FV (M)

In math, f (x) = x2 + 1 and f (y) = y2 + 1 same, f (5) = 26
λx .(x2 + 1) and λy .(y2 + 1) must be considered as equal

Proposition −→−→α is an equivalence relation, notation =α

Proof.
Symmetry, the interesting case

11 / 37

β-reduction
Formalisation of function evaluation

(λx .M)N −→β M[x := N]

◮ M[x := N] represents an evaluation of the function M with
N being the value of the parameter x .

◮ (λx .M)N is a redex and M[x := N] is a contractum
◮ β-conversion is the symmetric closure of −→−→β is an

equivalence (with α-reduction), notation ≡β

◮ Barendregt’s variable convention: If a term contains a free variable which would
become bound after beta-reduction, that variable should be renamed.

◮ Renaming could be done also by using De Bruijn name free notation.

Example

(λx .x2 + 1)5 −→β 52 + 1 → 26

12 / 37

η-conversion
Formalisation of extensionality

Definition
η-reduction:

λx .(Mx) −→η M, x /∈ FV (M)

◮ This rule identifies two functions that always produce equal results if taking equal

arguments.

Example

λx .succx −→η succ

(λx .succx)2 −→β succ2 succ2

13 / 37

Properties

◮ confluence
◮ normal forms
◮ normalisation
◮ strong normalisation
◮ fixed point theorem
◮ expressiveness

14 / 37

Properties - Confluence

Theorem (Church-Rosser theorem)
If M −→−→ N and M −→−→ P, then there exists S such that
N −→−→ S and P −→−→ S

The proof is deep and involved.

Corollary

◮ If M −→−→ N and M −→−→ P, then N = P
◮ The order of the applied reductions is arbitrary and always

leads to the same result
◮ Reductions can be executed in parallel (parallel computing)

Proof.

15 / 37

Normal forms

◮ N ∈ Λ is a normal form (NF) if there is no S such that
N −→ S

◮ P ∈ Λ is normalising (has a normal form) if P −→−→ N and N
is a normal form, then N is a NF of P

◮ P ∈ Λ is strongly normalising (SN) if all reductions of P are
finite

Notation: −→−→ will denote −→−→β ∪ −→α

Theorem (uniqueness of NF)
Every lambda term has at most one normal form

Proof.
Exercise

16 / 37

Running example: β-normal forms

xyzx normal form NF

I ≡ λx .x normal form NF

K ≡ λxy .x normal form NF

S ≡ λxyz.xz(yz) normal form NF

KI(KII) strongly normalizing SN

Ω ≡ ∆∆ ≡ (λx .xx)(λx .xx) unsolvable

KIΩ normalizing N

Y ≡ λf .(λx .f (xx))(λx .f (xx)) head normalizing HN (solvable)

KI(KII) → KII → I
KI(KII) → I
Ω → Ω → Ω → Ω → . . .
KIΩ → I
KIΩ → KIΩ → . . . → KIΩ → I stop
KIΩ → KIΩ → . . . → KIΩ → . . . infinite loop
Y → λf .f ((λx .f (xx))(λx .f (xx)))

→ λf .ff ((λx .f (xx))(λx .f (xx)))

17 / 37

Logic, conditionals, pairs
◮ Propositional logic in λ-calculus:

⊤ := λxy .x ⊥ := λxy .y ¬ := λx .x⊥⊤
∧ := λxy .xy⊥ ∨ := λxy .x⊤y

Example

⊤ ∨ A −→ (λxy .x⊤y)(λzu.z)A −→ (λzu.z)⊤A −→ ⊤

◮ Conditionals and pairs in λ-calculus:
if A then P else Q := APQ

fst := λx .x⊤, snd := λx .x⊥, (P,Q) := λx .xPQ

Example

if ⊤ then P else Q ≡ ⊤PQ → (λxy .x)PQ → P

18 / 37

Arithmetic

◮ Church’s numerals (arithmetics on the Nat set):

0 := λfx .x
1 := λfx .fx
n := λfx .f nx
add := λxypg.xp(ypq)
mult := λxyz.x(yz)
succ := λxyz.y(xyz)
exp := λxy .yx
iszero := λn.n(⊤⊥)⊤

◮ add n m =β n + m
◮ mult n m =β n × m

Exercise.

19 / 37

Expressiveness

In the mid 1930s
◮ (Kleene) Equivalence of λ-calculus and recursive functions
◮ (Turing) Equivalence of λ-calculus and Turing machines
◮ (Curry) Equivalence of λ-calculus and Combinatory Logic

20 / 37

References

H.P. Barendregt.
Lambda Calculus: Its syntax and Semantics.
North Holland, 1984.

F. Cardone, J. R. Hindley
History of Lambda-calculus and Combinatory Logic
Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp.
723-817 (online 2006)

H.P. Barendregt, G. Manzonetto
A Lambda Calculus Satellite
College Publications, 2022.

21 / 37

Roadmap

Lambda Calculus

λ → - Simple types

22 / 37

λ → simple (functional) types
Motivation

◮ “Disadvantages" of the untyped λ-calculus:
◮ infinite computation - there exist λ-terms without a normal form
◮ meaningless applications - it is allowed to create terms like sin log

◮ Types are syntactical objects that can be assigned to
λ-terms

◮ Reasoning with types was present in the early work of Church on untyped
lambda calculus

◮ two typing paradigms:
◮ à la Church - explicit type assignment

(typed lambda calculus).
◮ à la Curry - implicit type assignment

(lambda calculus with types)

23 / 37

λ → syntax of types

σ ::= α | (σ → σ)

α ranges over TVar, a countable set of type variables

Conventions for minimising the number of the parentheses:
◮ σ1 → σ2 → σ3 stands for (σ1 → (σ2 → σ3))

24 / 37

λ → - the language

M : σ
Definition
◮ Type assignment is an expression of the form M : σ,

where M is a λ-term and σ is a type
◮ Declaration x : σ is a type assignment in which the term is

a variable
◮ Basis (context, environment) Γ = {x1 : σ1, . . . , xn : σn} is

a set of declarations in which all term variables are different
◮ Statement (sequent) x1 : σ1, . . . , xn : σn ⊢ M : σ

(Γ ⊢ M : σ)

25 / 37

λ → - the type system
à la Church and à la Curry

◮ Axiom

(Ax)
Γ, x : σ ⊢ x : σ

◮ Rules

(→elim)
Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x : σ ⊢ M : τ
(→intr)

Γ ⊢ λx : σ.M : σ → τ

Γ, x : σ ⊢ M : τ

Γ ⊢ λx .M : σ → τ

à la Church à la Curry

26 / 37

Running example: types

M Type

xyz x : σ → τ → ρ, y : σ, z : τ ⊢ xyz : ρ

λx .zx z : σ → ρ ⊢ λx .zx : σ → ρ

I ≡ λx .x σ → σ

K ≡ λxy .x σ → ρ → σ

S ≡ λxyz.xz(yz) σ → ρ → τ → (σ → τ) → (σ → ρ)

∆ ≡ λx .xx NO

Y ≡ λf .(λx .f (xx))(λx .f (xx)) NO

Ω ≡ ∆∆ ≡ (λx .xx)(λx .xx) NO

27 / 37

I. λ → Fundamental properties

◮ Uniqueness of types
If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ = τ

◮ Church-Rosser property holds in λ →

◮ Subject reduction, type preservation under reduction
If M −→ P and M : σ, then P : σ.

◮ Broader context: evaluation of terms (expressions,
programs, processes) does not cause the type change.

◮ type soundness
◮ type safety = progress and preservation

28 / 37

II. λ → Strong normalisation

◮ Strong normalization
If M : σ, then M is strongly normalizing.

◮ Tait 1967
◮ reducibility method (reducibility candidates, logical

relations)
◮ arithmetic proofs

29 / 37

III. λ → expressiveness
Selfapplication is not typable ∕⊢ λx .xx : σ

Numerals are typeable
n ≡ λf .λx .f nx : (α → α) → α → α (exercise)
n ≡ λx .λf .f nx : α → (α → α) → α (exercise)

Definition (Extended polynomials)
The smallest class of functions over N
◮ constant functions 0 and 1
◮ projections
◮ addition
◮ multiplication
◮ ifzero(n,m, p) := if n = 0 then m else p

closed under composition

Theorem
M is typeable in λ → if and only if M is an extended polynomial

30 / 37

λ → and logic

Intuitionistic logic (minimal) - Natural deduction, Gentzen 1930s

◮ Axiom

(Ax)
Γ,σ ⊢ σ

◮ Rules

(→elim)
Γ ⊢ σ → τ Γ ⊢ σ

Γ ⊢ τ

(→intr)
Γ,σ ⊢ τ

Γ ⊢ σ → τ

31 / 37

λ → and logic

Intuitionistic logic (minimal) - Natural deduction, Gentzen 1930s

◮ Axiom

(Ax)
Γ, x :σ ⊢ x :σ

◮ Rules

(→elim)
Γ ⊢ M :σ → τ Γ ⊢ N :σ

Γ ⊢ MN :τ

(→intr)
Γ, x :σ ⊢ M :τ

Γ ⊢ λx .M :σ → τ

32 / 37

IV. λ → Curry-Howard correspondence
Intuitionistic logic vs computation

⊢ σ ⇔ ⊢ M : σ

A formula is provable in minimal intuitionistic logic
if and only if it is inhabited in λ →.

◮ 1950s Curry
◮ 1968 (1980) Howard formulae-as-types

◮ 1970s Lambek - CCC Cartesian Closed Categories
◮ 1970s de Bruijn AUTOMATH

◮ 1970s Martin-Löf Type Theory

formulae (propositions) –as– types
proofs – as – terms
proofs –as– programs

proof normalisation –as– term reduction

◮ BHK - Brouwer, Heyting, Kolmogorov interpretation of logical connectives is

formalized by the Curry-Howard correspondence

33 / 37

3 Type?

Type checking: given M and σ

(M : σ)?

Type inference (typability, type synthesis): given M

M :?

Type inhabitation (term, program synthesis) : given σ

? : σ

34 / 37

λ → 3 Type?

Theorem
In λ →
◮ Type checking ((M : σ)?) is decidable
◮ Type inference (M :?) is decidable
◮ Type inhabitation (? : σ) is decidable

35 / 37

λ → sum up

Advantages
◮ All terms are SN
◮ Typability, inhabitation, type checking decidable
◮ Types exactly all extended polynomials

Shortcomings
◮ no self-application
◮ no recursion
◮ no factorial
◮ no total functions
◮ not Turing complete

36 / 37

References

H.P. Barendregt
Lambda calculi with types
Handbook of Logic in Computer Science, Oxford University Press, 1993

H.P. Barendregt, W. Dekkers, R. Statman
Lambda Calculus with Types
Cambridge University Press 2013

R. Nederpelt, H. Geuvers
Type Theory and Formal Proof
Cambridge University Press 2014

B. C. Pierece
Types and programming languages
MIT Press 2002

37 / 37

