Introduction to Barendregt’s Lambda Cube
Silvia Ghilezan

University of Novi Sad
Mathematical Institute SASA, Serbia

Lecture 1

Oregon Programming Language Summer School
Eugene, June 2023

37

Aw \p,, » A Untyped Lambda

/ / calculus
> \— Simple types

A2 AP2
» A2 Polymorphic types
> w
Aw APw
/ / » \P Dependent types
A— AP » Lambda cube

Figure: Lambda cube > Logic cube

Roadmap

Lambda Calculus

A — - Simple types

2/37

Roadmap

Lambda Calculus

3/37

A-calculus, untyped lambda calculus

Decision Problem - Background

» Gottfried Wilhelm Leibniz - Characteristica universalis

» David Hilbert and Wilhelm Ackerman (1928)
» Entscheidungsproblem, or Decision Problem:

"Given all the axioms of math,
is there an algorithm that can tell if a proposition is universally vali
i.e. deducable from the axioms?”

» Negative answers (1935/36):

» Alonzo Church - A-calculus (equality)
» Alan Turing - Turing Machines (halting problem)

» Kurt Gdédel - Incompleteness theorems (1931)

A-calculus - 1930s

» Alonzo Church:
> theory of functions - formalisation of mathematics
(inconsistent)
» successful model for computable functions - A-calculus
> simply typed A-calculus

» Haskell Curry:
» elimination of variables in logic - Moses Schénfinkel (1921)
» successful model for computable functions - Combinatory
logic
» Combinatory logic with types

» Alan Turing :

» formalisation of the concepts of algorithm and computation
» Turing Machines

37

A-calculus - expressiveness

> Expressiveness - Effective computability (mid 1930s)

» (Curry) Equivalence of A-calculus and Combinatory Logic
» (Kleene) Equivalence of A-calculus and recursive functions
» (Turing) Equivalence of A-calculus and Turing machines

Syntax

M= x| c| (MM) |(Ax.M)

X ranges over V, a countable set of variables
c ranges over C, a countable set of constants

Pure \-calculus, if C =0

Conventions for minimizing the number of the parentheses:
> M; MMz stands for ((My M2)Ms) application associates to left
> Ax.y.M stands for (Ax.(Ay.(M)) abstraction associates to right
> Mx.MyM, = Xx.(M;M.); application has priority over abstraction

Running example

Xyzx
AX.zZX

I = Ax.x

K= \xy.x

S = \xyz.xz(yz)

A = AX.xx

Y = M.(Ax.f(xx))(Ax.f(xx))
Q= AA = (Ax.xx)(AX.xx)

combinator |
combinator K
combinator S
selfapplication

fixed point combinator

higher-order function

Free and bound variables

Definition
(i) The set FV(M) of free variables of M is defined inductively:

> FV(x) ={x}
> FV(MN) = FV(M)U FV(N)
> FV(\x.M) = FV(M)\ {x}
(i) A variable in M is bound if it is not free
> x is bound in M if it appears in a subterm of the form Ax.N

(i) Mis a closed A-term (or combinator) if FV(M) =0
A\° denotes the set of closed \-terms.
Example

> In Ax.zx, variable z is free, FV(M) = {z}
» Term Axy.xxy is closed, FV(M) = ()

Reduction rules - operational semantics

a-reduction:
MM —, Ay M[x:=y], y¢& FV(M)

B-reduction:
(AM.M)N — 5 Mx := N|

n-reduction:

AX.(Mx) —, M, x ¢ FV(M)

10/37

a-conversion

Formalisation of the principal that the name of the bound variable is irrelevant

a-reduction:

MM —, Ay.M[x:=y], y¢ FV(M)
In math, f(x) = x2 +1 and f(y) = y? + 1 same, f(5) = 26
Ax.(x2 4+ 1) and \y.(y? + 1) must be considered as equal

Proposition —», is an equivalence relation, notation =,

Proof.
Symmetry, the interesting case O

11/37

(S-reduction

Formalisation of function evaluation
(AM.M)N —5 Mx := N|

» M[x := N] represents an evaluation of the function M with
N being the value of the parameter x.

» (Ax.M)N is a redex and M[x := N] is a contractum

» [-conversion is the symmetric closure of —#4 is an
equivalence (with a-reduction), notation =4

» Barendregt’s variable convention: If a term contains a free variable which would
become bound after beta-reduction, that variable should be renamed.

> Renaming could be done also by using De Bruijn name free notation.
Example
(Mx.x®+1)5 —5 52 +1 - 26

12/37

n-conversion

Formalisation of extensionality

Definition
n-reduction:
AX.(Mx) —, M, x ¢ FV(M)

» This rule identifies two functions that always produce equal results if taking equal
arguments.

Example

Ax.succx —, succ

(Ax.succx)2 —3 succ2 succ2

13/37

Properties

vVvVvYvyVvyVvyy

confluence

normal forms
normalisation

strong normalisation
fixed point theorem
expressiveness

14/37

Properties - Confluence

Theorem (Church-Rosser theorem)

IfM — N and M —s P, then there exists S such that
N— SandP — S

The proof is deep and involved.

Corollary

» IfM — Nand M — P, then N =P

» The order of the applied reductions is arbitrary and always
leads to the same result
» Reductions can be executed in parallel (parallel computing)

Proof.

15/37

Normal forms

» N e Ais anormal form (NF) if there is no S such that
N—S

» P e Ais normalising (has a normal form) if P —s N and N
is a normal form, then N is a NF of P

» P < Alis strongly normalising (SN) if all reductions of P are
finite

Notation: —» will denote —g U —,,

Theorem (uniqueness of NF)
Every lambda term has at most one normal form

Proof.
Exercise

16/37

Running example: 5-normal forms

Xyzx

= \x.x

K= \xy.x

S = \xyz.xz(yz)

KI(KII)

Q= AA = (Ax.xx)(Ax.xx)
KIQ

Y = M. (Ax.f(xx))(Ax.f(xx))

KI(KIl) — KII — 1
KI(KIl) — 1
Q-0 =00 =0 = ...

normal form NF

normal form NF

normal form NF

normal form NF
strongly normalizing SN
unsolvable

normalizing N

head normalizing HN (solvable)

17/37

Logic, conditionals, pairs

» Propositional logic in A-calculus:
T 1= AXy.X Li=Xxy.y S = AXXLT
A= Axy.xy L Vi= Xy XTy

Example

TVA — (AxyxTy)(A\zu.z)A — (Azu.z)TA — T

» Conditionals and pairs in A-calculus:

if Athen P else Q := APQ
fst := Ax.xT, snd := \x.x L, (P, Q) := \x.xPQ

Example

if T then Pelse Q=TPQ — (Axy.x)PQ — P

18/37

Arithmetic

» Church’s numerals (arithmetics on the Nat set):

0

1

n
add
mult
succ

exp
iszero

»addnm =5 n+m

>» multnm =g nxm

Exercise.

AX.x

Mx.fx

Mx.fx
Axypg.xp(ypq)
Axyz.x(yz)
AXyz.y(xyz)
AXY.yX
An.n(TL)T

19/37

Expressiveness

In the mid 1930s
> (Kleene) Equivalence of A-calculus and recursive functions
» (Turing) Equivalence of A-calculus and Turing machines
» (Curry) Equivalence of A-calculus and Combinatory Logic

20/37

References

@ H.P. Barendregt. ——=—
Lambda Calculus: Its syntax and Semantics.
North Holland, 1984.

[3 F Cardone, J. R. Hindley
History of Lambda-calculus and Combinatory Logic

Handbook of the History of Logic. Volume 5. Logic from Russell to Church Elsevier, 2009, pp.
723-817 (online 2006)

0

ﬁ H.P. Barendregt, G. Manzonetto /L

A Lambda Calculus Satellite
College Publications, 2022.

21/37

Roadmap

A — - Simple types

22/37

A — simple (functional) types

Motivation

> “Disadvantages” of the untyped A-calculus:
> infinite computation - there exist A-terms without a normal form
> meaningless applications - it is allowed to create terms like sin log

> Types are syntactical objects that can be assigned to
A-terms

> Reasoning with types was present in the early work of Church on untyped
lambda calculus

» two typing paradigms:
» & la Church - explicit type assignment
(typed lambda calculus).
» & la Curry - implicit type assignment
(lambda calculus with types)

23/37

A — syntax of types

o= al|(oc—o)
« ranges over TVar, a countable set of type variables

Conventions for minimising the number of the parentheses:
> oy — 09— 03 stands for (0'1 — (0'2 — 0'3))

24/37

A — - the language

M: o

Definition

>

>

Type assignment is an expression of the form M : o,
where M is a A-term and o is a type

Declaration x : ¢ is a type assignment in which the term is
a variable

Basis (context, environment) [= {xq : 01,..., Xy : on} IS
a set of declarations in which all term variables are different
Statement (sequent) x; : 01,..., Xp:op - M: 0o
(re=M:o)

25/37

A — - the type system

ala Church and a la Curry

> Axiom
A -
(Ax) Nx:cFbXx:0
> Rules
(< oiim) r-=M:oc—r rN-N:o
elim F-MN:r
Mx:cb-M:7 Mx:cFM:7
(_>im‘r)
FrEXx:0oM:0o— 71 FrEXXxXM:0—71

ala Church ala Curry

26/37

Running example: types

M Type

Xyz X:0=>T—=py:0,Z:THEXYZ:p
AX.zZX Z:o—>pkEXXzX:0—p

I = Ax.x o—0

K= \xy.x c—=p—0

S = \xyz.xz(yz)

A = AXx.xx

Y = M.(Ax.f(xx))(Ax.f(xx))
Q= AA = (Ax.xx)(Ax.xx)

o—=p—=>17—=(0—=71)= (0 —p)
NO
NO
NO

27/37

I. A\ = Fundamental properties

» Uniqueness of types
fr-=M:candlfr'=M:r,thenoc =171

» Church-Rosser property holds in A —

» Subject reduction, type preservation under reduction
fM— Pand M : o, then P : 0.

» Broader context: evaluation of terms (expressions,
programs, processes) does not cause the type change.

> type soundness
> type safety = progress and preservation

28/37

Il. A — Strong normalisation

» Strong normalization
If M : o, then M is strongly normalizing.

> Tait 1967

» reducibility method (reducibility candidates, logical
relations)

» arithmetic proofs

29/37

lll. A — expressiveness
Selfapplication is not typable t Ax.xx : o

Numerals are typeable
n=MM.f"x: (o - a) > a— o (exercise)
n= MM a — (o« - a) = o (exercise)
Definition (Extended polynomials)
The smallest class of functions over N

» constant functions 0 and 1

» projections

> addition

» multiplication

» ifzero(n,m, p) := if n=0 then m else p
closed under composition
Theorem
M is typeable in A — if and only if M is an extended polynomial

30/37

A — and logic

Intuitionistic logic (minimal) - Natural deduction, Gentzen 1930s

> Axiom
(Ax) Moto
> Rules
(<o) l~oc—71 Mo
elim re -
LokFT
(_>intr)

lFo— 7

31/37

A — and logic

Intuitionistic logic (minimal) - Natural deduction, Gentzen 1930s

> Axiom
(Ax) TxoFxo
> Rules
(<o) r-=M:c—r r'=N:o
elim M= MN 7
Mx:obM:T
(= intr)

Fr=XXxM:oc—= T

32/37

IV. A — Curry-Howard correspondence
Intuitionistic logic vs computation

Fo s FM:o
A formula is provable in minimal intuitionistic logic
if and only if it is inhabited in A —.

» 1950s Curry
> 1968 (1980) Howard formulae-as-types

> 1970s Lambek - CCC Cartesian Closed Categories
1970s de Bruijn AUTOMATH

» 1970s Martin-L6f Type Theory

v

formulae (propositions) —as— types
proofs —as— terms
proofs —as— programs
proof normalisation —as— term reduction

> BHK - Brouwer, Heyting, Kolmogorov interpretation of logical connectives is
formalized by the Curry-Howard correspondence

33/37

3 Type?

Type checking: given M and o
(M :o0)?
Type inference (typability, type synthesis): given M
M :?
Type inhabitation (term, program synthesis) : given o

70

34/37

A — 3 Type?

Theorem
In\—

» Type checking ((M : 0)?) is decidable
» Type inference (M :?) is decidable
» Type inhabitation (? : o) is decidable

35/37

A — sum up

Advantages
» All terms are SN
» Typability, inhabitation, type checking decidable
» Types exactly all extended polynomials

Shortcomings
» no self-application
no recursion
no factorial
no total functions

>
>
>
» not Turing complete

36/37

References

ﬁ H.P. Barendregt .

Lambda calculi with types
Handbook of Logic in Computer Science, Oxford University Press, 1993

ﬁ H.P. Barendregt, W. Dekkers, R. Statman !

Lambda Calculus with Types
Cambridge University Press 2013

Type Theory

ﬁ R. Nederpelt, H. Geuvers
Type Theory and Formal Proof
Cambridge University Press 2014

ﬁ B. C. Pierece E
Types and programming languages
MIT Press 2002

37/37

