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λ-calculus, untyped lambda calculus
Decision Problem - Background

◮ Gottfried Wilhelm Leibniz - Characteristica universalis

◮ David Hilbert and Wilhelm Ackerman (1928)
◮ Entscheidungsproblem, or Decision Problem:

”Given all the axioms of math,
is there an algorithm that can tell if a proposition is universally valid,

i.e. deducable from the axioms?”

◮ Negative answers (1935/36):
◮ Alonzo Church - λ-calculus (equality)
◮ Alan Turing - Turing Machines (halting problem)

◮ Kurt Gödel - Incompleteness theorems (1931)
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λ-calculus - 1930s

◮ Alonzo Church:
◮ theory of functions - formalisation of mathematics

(inconsistent)
◮ successful model for computable functions - λ-calculus
◮ simply typed λ-calculus

◮ Haskell Curry:
◮ elimination of variables in logic - Moses Schönfinkel (1921)
◮ successful model for computable functions - Combinatory

logic
◮ Combinatory logic with types

◮ Alan Turing :
◮ formalisation of the concepts of algorithm and computation
◮ Turing Machines
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λ-calculus - expressiveness

◮ Expressiveness - Effective computability (mid 1930s)

◮ (Curry) Equivalence of λ-calculus and Combinatory Logic

◮ (Kleene) Equivalence of λ-calculus and recursive functions

◮ (Turing) Equivalence of λ-calculus and Turing machines
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Syntax

M ::= x | c | (MM) | (λx .M)

x ranges over V , a countable set of variables
c ranges over C, a countable set of constants

Pure λ-calculus, if C = ∅

Conventions for minimizing the number of the parentheses:
◮ M1M2M3 stands for ((M1M2)M3) application associates to left
◮ λx .y .M stands for (λx .(λy .(M)) abstraction associates to right
◮ λx .M1M2 ≡ λx .(M1M2); application has priority over abstraction

7 / 37



Running example

xyzx

λx .zx

I ≡ λx .x combinator I

K ≡ λxy .x combinator K

S ≡ λxyz.xz(yz) combinator S

∆ ≡ λx .xx selfapplication

Y ≡ λf .(λx .f (xx))(λx .f (xx)) fixed point combinator

Ω ≡ ∆∆ ≡ (λx .xx)(λx .xx) higher-order function
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Free and bound variables

Definition
(i) The set FV (M) of free variables of M is defined inductively:

◮ FV (x) = {x}
◮ FV (MN) = FV (M) ∪ FV (N)
◮ FV (λx .M) = FV (M) \ {x}

(ii) A variable in M is bound if it is not free
◮ x is bound in M if it appears in a subterm of the form λx .N

(ii) M is a closed λ-term (or combinator) if FV (M) = ∅
Λo denotes the set of closed λ-terms.

Example

◮ In λx .zx , variable z is free, FV (M) = {z}
◮ Term λxy .xxy is closed, FV (M) = ∅
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Reduction rules - operational semantics

α-reduction:

λx .M −→α λy .M[x := y ], y /∈ FV (M)

β-reduction:
(λx .M)N −→β M[x := N]

η-reduction:

λx .(Mx) −→η M, x /∈ FV (M)
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α-conversion
Formalisation of the principal that the name of the bound variable is irrelevant

α-reduction:

λx .M −→α λy .M[x := y ], y /∈ FV (M)

In math, f (x) = x2 + 1 and f (y) = y2 + 1 same, f (5) = 26
λx .(x2 + 1) and λy .(y2 + 1) must be considered as equal

Proposition −→−→α is an equivalence relation, notation =α

Proof.
Symmetry, the interesting case
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β-reduction
Formalisation of function evaluation

(λx .M)N −→β M[x := N]

◮ M[x := N] represents an evaluation of the function M with
N being the value of the parameter x .

◮ (λx .M)N is a redex and M[x := N] is a contractum
◮ β-conversion is the symmetric closure of −→−→β is an

equivalence (with α-reduction), notation ≡β

◮ Barendregt’s variable convention: If a term contains a free variable which would
become bound after beta-reduction, that variable should be renamed.

◮ Renaming could be done also by using De Bruijn name free notation.

Example

(λx .x2 + 1)5 −→β 52 + 1 → 26
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η-conversion
Formalisation of extensionality

Definition
η-reduction:

λx .(Mx) −→η M, x /∈ FV (M)

◮ This rule identifies two functions that always produce equal results if taking equal

arguments.

Example

λx .succx −→η succ

(λx .succx)2 −→β succ2 succ2
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Properties

◮ confluence
◮ normal forms
◮ normalisation
◮ strong normalisation
◮ fixed point theorem
◮ expressiveness
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Properties - Confluence

Theorem (Church-Rosser theorem)
If M −→−→ N and M −→−→ P, then there exists S such that
N −→−→ S and P −→−→ S

The proof is deep and involved.

Corollary

◮ If M −→−→ N and M −→−→ P, then N = P
◮ The order of the applied reductions is arbitrary and always

leads to the same result
◮ Reductions can be executed in parallel (parallel computing)

Proof.
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Normal forms

◮ N ∈ Λ is a normal form (NF) if there is no S such that
N −→ S

◮ P ∈ Λ is normalising (has a normal form) if P −→−→ N and N
is a normal form, then N is a NF of P

◮ P ∈ Λ is strongly normalising (SN) if all reductions of P are
finite

Notation: −→−→ will denote −→−→β ∪ −→α

Theorem (uniqueness of NF)
Every lambda term has at most one normal form

Proof.
Exercise
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Running example: β-normal forms

xyzx normal form NF

I ≡ λx .x normal form NF

K ≡ λxy .x normal form NF

S ≡ λxyz.xz(yz) normal form NF

KI(KII) strongly normalizing SN

Ω ≡ ∆∆ ≡ (λx .xx)(λx .xx) unsolvable

KIΩ normalizing N

Y ≡ λf .(λx .f (xx))(λx .f (xx)) head normalizing HN (solvable)

KI(KII) → KII → I
KI(KII) → I
Ω → Ω → Ω → Ω → . . .
KIΩ → I
KIΩ → KIΩ → . . . → KIΩ → I stop
KIΩ → KIΩ → . . . → KIΩ → . . . infinite loop
Y → λf .f ((λx .f (xx))(λx .f (xx)))

→ λf .ff ((λx .f (xx))(λx .f (xx)))

17 / 37



Logic, conditionals, pairs
◮ Propositional logic in λ-calculus:

⊤ := λxy .x ⊥ := λxy .y ¬ := λx .x⊥⊤
∧ := λxy .xy⊥ ∨ := λxy .x⊤y

Example

⊤ ∨ A −→ (λxy .x⊤y)(λzu.z)A −→ (λzu.z)⊤A −→ ⊤

◮ Conditionals and pairs in λ-calculus:
if A then P else Q := APQ

fst := λx .x⊤, snd := λx .x⊥, (P,Q) := λx .xPQ

Example

if ⊤ then P else Q ≡ ⊤PQ → (λxy .x)PQ → P
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Arithmetic

◮ Church’s numerals (arithmetics on the Nat set):

0 := λfx .x
1 := λfx .fx
n := λfx .f nx
add := λxypg.xp(ypq)
mult := λxyz.x(yz)
succ := λxyz.y(xyz)
exp := λxy .yx
iszero := λn.n(⊤⊥)⊤

◮ add n m =β n + m
◮ mult n m =β n × m

Exercise.

19 / 37



Expressiveness

In the mid 1930s
◮ (Kleene) Equivalence of λ-calculus and recursive functions
◮ (Turing) Equivalence of λ-calculus and Turing machines
◮ (Curry) Equivalence of λ-calculus and Combinatory Logic
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λ → simple (functional) types
Motivation

◮ “Disadvantages" of the untyped λ-calculus:
◮ infinite computation - there exist λ-terms without a normal form
◮ meaningless applications - it is allowed to create terms like sin log

◮ Types are syntactical objects that can be assigned to
λ-terms

◮ Reasoning with types was present in the early work of Church on untyped
lambda calculus

◮ two typing paradigms:
◮ à la Church - explicit type assignment

(typed lambda calculus).
◮ à la Curry - implicit type assignment

(lambda calculus with types)
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λ → syntax of types

σ ::= α | (σ → σ)

α ranges over TVar, a countable set of type variables

Conventions for minimising the number of the parentheses:
◮ σ1 → σ2 → σ3 stands for (σ1 → (σ2 → σ3))
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λ → - the language

M : σ
Definition
◮ Type assignment is an expression of the form M : σ,

where M is a λ-term and σ is a type
◮ Declaration x : σ is a type assignment in which the term is

a variable
◮ Basis (context, environment) Γ = {x1 : σ1, . . . , xn : σn} is

a set of declarations in which all term variables are different
◮ Statement (sequent) x1 : σ1, . . . , xn : σn ⊢ M : σ

(Γ ⊢ M : σ)
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λ → - the type system
à la Church and à la Curry

◮ Axiom

(Ax)
Γ, x : σ ⊢ x : σ

◮ Rules

(→elim)
Γ ⊢ M : σ → τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x : σ ⊢ M : τ
(→intr )

Γ ⊢ λx : σ.M : σ → τ

Γ, x : σ ⊢ M : τ

Γ ⊢ λx .M : σ → τ

à la Church à la Curry
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Running example: types

M Type

xyz x : σ → τ → ρ, y : σ, z : τ ⊢ xyz : ρ

λx .zx z : σ → ρ ⊢ λx .zx : σ → ρ

I ≡ λx .x σ → σ

K ≡ λxy .x σ → ρ → σ

S ≡ λxyz.xz(yz) σ → ρ → τ → (σ → τ) → (σ → ρ)

∆ ≡ λx .xx NO

Y ≡ λf .(λx .f (xx))(λx .f (xx)) NO

Ω ≡ ∆∆ ≡ (λx .xx)(λx .xx) NO
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I. λ → Fundamental properties

◮ Uniqueness of types
If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ = τ

◮ Church-Rosser property holds in λ →

◮ Subject reduction, type preservation under reduction
If M −→ P and M : σ, then P : σ.

◮ Broader context: evaluation of terms (expressions,
programs, processes) does not cause the type change.

◮ type soundness
◮ type safety = progress and preservation
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II. λ → Strong normalisation

◮ Strong normalization
If M : σ, then M is strongly normalizing.

◮ Tait 1967
◮ reducibility method (reducibility candidates, logical

relations)
◮ arithmetic proofs
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III. λ → expressiveness
Selfapplication is not typable ∕⊢ λx .xx : σ

Numerals are typeable
n ≡ λf .λx .f nx : (α → α) → α → α (exercise)
n ≡ λx .λf .f nx : α → (α → α) → α (exercise)

Definition (Extended polynomials)
The smallest class of functions over N
◮ constant functions 0 and 1
◮ projections
◮ addition
◮ multiplication
◮ ifzero(n,m, p) := if n = 0 then m else p

closed under composition

Theorem
M is typeable in λ → if and only if M is an extended polynomial
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λ → and logic

Intuitionistic logic (minimal) - Natural deduction, Gentzen 1930s

◮ Axiom

(Ax)
Γ,σ ⊢ σ

◮ Rules

(→elim)
Γ ⊢ σ → τ Γ ⊢ σ

Γ ⊢ τ

(→intr )
Γ,σ ⊢ τ

Γ ⊢ σ → τ
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IV. λ → Curry-Howard correspondence
Intuitionistic logic vs computation

⊢ σ ⇔ ⊢ M : σ

A formula is provable in minimal intuitionistic logic
if and only if it is inhabited in λ →.

◮ 1950s Curry
◮ 1968 (1980) Howard formulae-as-types

◮ 1970s Lambek - CCC Cartesian Closed Categories
◮ 1970s de Bruijn AUTOMATH

◮ 1970s Martin-Löf Type Theory

formulae (propositions) –as– types
proofs – as – terms
proofs –as– programs

proof normalisation –as– term reduction

◮ BHK - Brouwer, Heyting, Kolmogorov interpretation of logical connectives is

formalized by the Curry-Howard correspondence

33 / 37



3 Type?

Type checking: given M and σ

(M : σ)?

Type inference (typability, type synthesis): given M

M :?

Type inhabitation (term, program synthesis) : given σ

? : σ
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λ → 3 Type?

Theorem
In λ →
◮ Type checking ((M : σ)?) is decidable
◮ Type inference (M :?) is decidable
◮ Type inhabitation (? : σ) is decidable
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λ → sum up

Advantages
◮ All terms are SN
◮ Typability, inhabitation, type checking decidable
◮ Types exactly all extended polynomials

Shortcomings
◮ no self-application
◮ no recursion
◮ no factorial
◮ no total functions
◮ not Turing complete
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