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Deductive verification 
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From early intuitions …

A. M. Turing.  
Checking a large routine.1949.
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… to deductive-verification and automated tools 
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Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any
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Another historical example

Boyer-Moore’s majority. 1980


Given N votes, determine the majority if any
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majority = A

cpt_delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

cpt_delta = 1



Part 1: summary
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Lecture material

These slides  
(including some slides borrowed from by Xavier Leroy)


Reused Coq developments
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https://people.irisa.fr/Sandrine.Blazy/2023-OPLSS

https://people.irisa.fr/Sandrine.Blazy/2023-OPLSS


Part 2:  
early intuitions
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The miscompilation risk

Compilers still contain bugs!


[Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11]
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We found and reported hundreds of previously unknown 
bugs [...]. Many of the bugs we found cause a compiler to 
emit incorrect code without any warning. 25 of the bugs we 
reported against GCC were classified as release-blocking.



Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end 
specification: 


This specification becomes mathematically precise as soon as we have formal 
semantics for the source language and the machine language. 


Then, a formal verification of a compiler can be considered.
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The generated code must behave as prescribed 
by the semantics of the source program. 



An old idea …

Mathematical Aspects of Computer Science, 1967
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Machine Intelligence (7), 1972



Now taught as an exercise 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)
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Definition state := string → nat.

Inductive sinstr := SPush(n:nat)| SLoad(x:string)| SPlus| SMinus| SMult.

Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := 
 match (prog, stack) with
  | (nil, _ ) => stack
  | ...
 end.

semantics 
(aeval, 

s_execute)

compiler 
(s_compile)

Fixpoint s_compile(e:aexp):
  list sinstr 
  := ...

Inductive aexp := ANum(n:nat)| AId(x:string)| APlus(a1 a2:aexp)| ...

Fixpoint aeval(s:state)(e:aexp):nat := ... 

com
pilation

3
6 9

SPlus
n

SPush n
4

SLoad x

s(x)=4

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state


Now taught as an exercise 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)
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Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ... 

semantics 
(aeval, 

s_execute)

compiler 
(s_compile)

Fixpoint s_compile(e:aexp): list sinstr := ...

Fixpoint aeval(s:state)(e:aexp):nat := ... 

Theorem s_compile_correct: ∀ s e,
 s_execute s [] (s_compile e) = [aeval s e].
Proof.
  

com
pilation interactive proof

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state


Now taught as an exercise 
(Mechanized semantics: when machines reason about their languages, X.Leroy)  
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)
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Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ... 

semantics 
(aeval, 

s_execute)

compiler 
(s_compile)

Fixpoint s_compile(e:aexp): list sinstr := ...

Fixpoint aeval(s:state)(e:aexp):nat := ... 

Theorem s_compile_correct: ∀ s e,
 s_execute s [] (s_compile e) = [aeval s e].
Proof.
   intros. apply s_compile_correct_aux. 
Qed.

Extraction s_compile.

com
pilation

toy-compiler.ml

interactive proof

extraction

Theorem execute_app : ∀ st p1 p2 stack,
    s_execute st stack (p1 ++ p2) = s_execute st (s_execute st stack p1) p2.
Proof.
 (* … *)
Qed.

Theorem s_compile_correct_aux: ∀ s e stack,
 s_execute s stack (s_compile e) = aeval e :: stack.
Proof.
   induction e; (* … *)
Qed. proof by induction on 

the structure of e

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state


Course outline

Formal verification in Coq of a non-optimizing compiler for a simple imperative 
language (from IMP language to VM language)


Extension of these ideas to CompCert, a realistic C compiler
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The CompCert formally verified compiler 
(X.Leroy, S.Blazy et al.)                                                            https://compcert.org

A moderately optimizing C compiler


Targets several architectures (PowerPC, ARM, RISC-V and x86)


Programmed and verified using the Coq proof assistant


Shared infrastructure for ongoing research 


Used in commercial settings (for emergency power generators and flight 
control navigation algorithms) and for software certification - AbsInt company 
Improved performances of the generated code while providing proven 
traceability information


ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022
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Part 3:  
basics of  
verified compilation 
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Compiling IMP instructions 
Already seen in Imp.v

Denotational style for the semantics of IMP expressions


Big-step (operational) style for commands: relation c/s ⇒ s′ 

19

Fixpoint aeval(s:state)   
(e:aexp): nat := ... 

Inductive com := 
  | CSkip
  | CAss (x: string) (a: aexp)
  | CSeq (c1 c2: com)
  | CIf (b: bexp) (c1 c2: com)
  | CWhile (b: bexp) (c: com).

Inductive ceval : com → state → state → Prop :=
  | E_Skip : ∀ st, st =[ skip ]=> st
  | E_WhileFalse : ∀ b st c, beval st b = false →
      st =[ while b do c end ]=> st
  | E_WhileTrue : ∀ st st' st'' b c, beval st b = true →
      st  =[ c ]=> st' →
      st' =[ while b do c end ]=> st'' →
      st  =[ while b do c end ]=> st’'
  |   … 

semantics 
(aeval, 
beval, 
ceval)

Definition example: com :=
<{ X := X + 1 }> .

Definition same_example: com :=
   CAss X (APlus (AId X) (ANum 1)) .

boolean 
expressions

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html


Extending the VM language: instruction set 
compil.v 
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Inductive instr: Type :=
 | Iconst (n: Z).                                (* formerly SPush *)
 | Ivar (x: ident).                    (* formerly SLoad *)
 | Iadd.   

 | Isetvar (x: ident) (* pop an integer and assign it to variable *)
 | Ibranch (d: Z).                              (* skip forward or backward d instructions *)
 | Iopp.                                                                                              (* pop one integer, push its opposite *)
 | Ibeq (d1 d0: Z)      (* pop 2 integers, skip d1 instructions if =, d0 if ≠ *)
 | Ible (d1 d0: Z) (* pop 2 integers, skip d1 instructions if ≤, if > *)
 | Ihalt.                                                                               (* stop execution *)

Definition code := list instr.

Definition ex_code1:code := Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil.
Definition ex_code2:code :=  
  Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: Ibranch (-5) :: nil. x := x + 1

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html


VM semantics 
compil.v 
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Definition stack := list Z.
Definition store := ident → Z.
Definition config := (Z * stack * store).

Inductive transition (C:code): config → config → Prop :=
  | trans_const: ∀ pc stack s n, 
      instr_at C pc = Some(Iconst n) →
      transition C (pc, stack, s) (pc + 1, n :: stack, s)
  | trans_setvar: ∀ pc stack s x n, 
      instr_at C pc = Some(Isetvar x) →
      transition C (pc, n :: stack, s) (pc + 1, stack , update x n s)
  | trans_branch: ∀ pc stack s d pc', 
      instr_at C pc = Some(Ibranch d) →
      pc' = pc + 1 + d →
      transition C (pc, stack, s) (pc', stack, s)
  | …

Small-step semantics, given by a transition relation s → s′ 

branch instructions 
increment by 1+d

increments pc by 1increments pc by 1

position of 
the currently executing 

instruction

formerly 
called state

fixed list of 
instructions

C i

pc

instr_at C pc = Some i

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html
http://coq.inria.fr/library/Coq.Init.Datatypes.html#list
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition
https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html#update
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition


Execution of VM programs

Small-step (operational) semantics
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Definition transitions (C: code): config → config → Prop :=
  star (transition C).

Definition machine_terminates (C: code) (s_init s_final: store) :=
  ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
          ∧ instr_at C pc = Some Ihalt.

initial states final statesreflexive transitive closure

C Ihalt

pc0

nil nil



Sequences of transitions and their properties 
Sequences.v 
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Lemma star_trans: ∀ a b, star a b → ∀ c, star b c → star a c.

Inductive plus: A → A → Prop :=
  | plus_left: ∀ a b c, R a b → star b c → plus a c.

Inductive star: A → A → Prop :=
  | star_refl: ∀ a, star a a
  | star_step: ∀ a b c, R a b → star b c → star a c.

Variable A: Type.               (* type of states *)
Variable R: A → A → Prop.       (* transition relation between states *)

Lemma star_one: ∀ a b, R a b → star a b.

Lemma plus_star_trans: ∀ a b c, plus a b → star b c → plus a c.

S + S′ 

S S′ 

S * S′ 

Definition irred (a:A): Prop :=   (* stuck states *)  
 ∀ b, ~(R a b).

https://xavierleroy.org/cdf-mech-sem/CDF.Sequences.html


Compilation of commands
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code for (CIf b c1 c2)

code for (CWhile b c)

code for b code for c1 code for c2Ibranch

code for b code for c Ibranch



Compiler correctness 
compil.v 
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Lemma compile_com_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  ∀ C pc stack,
  code_at C pc (compile_com c) →
  transitions C
      (pc, stack, s)
      (pc + codelen (compile_com c), stack, s').

Definition compile_program (p: com) : code :=
  compile_com p ++ Ihalt :: nil.

Theorem compile_program_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  machine_terminates (compile_program c) s s'.

proof by induction 
on the derivation of 

cexec s c s’

remember 
s_compile_correct_aux!

ceval in Imp.v

Definition machine_terminates (C: code) (s_init s_final: store) :=
  ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
          ∧ instr_at C pc = Some Ihalt.

length of the list

C compile_com c

pc

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html


Part 3: summary

This is not enough to conclude that the compiler is correct!
26

Theorem compile_program_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  machine_terminates (compile_program c) s s'.

one big step

one 
or several small 

steps

« The generated code must behave as prescribed by 
the semantics of the source program. »

Theorem s_compile_correct: ∀ s e,
 s_execute s [] (s_compile e) = [aeval e].



Part 4:  
semantic preservation 
and 
compiler verification 
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What should be preserved? 
Observable behaviors

28

S * S′ S + S′ S ∞

observable behaviors

normal termination divergence

going wrong

x := 1;

IMP VM C

while true do skip end

impossible

Ihalt Ibranch (-1)

Iadd

return 0; for(;;) { }

x = 1/0 ;
finite sequence of 

transitions to a state that 
is stuck and not final

infinite 
sequence of transitions

finite 
sequence of 

transitions to a 
final state



Summary of yesterday’s lecture
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compiler 
correctness 

theorem

behaviors

termination

big-step 
semanticsabout

is
observe

IMP

VM

Expressions: big-step semantics

Commands: big-step semantics

Instructions: 
small-step 
semantics

com
piler

c/s ⇒ s′ 

Theorem compile_program_correct_terminating:
  ∀ s c s',
  cexec s c s' →
  machine_terminates (compile_program c) s s'.



about
is

Summary of yesterday’s lecture
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compiler 
correctness 
theorem for 
terminating 
programs

behaviors

termination divergence

observe

IMP

VM

com
piler

small-step 
semantics

What about 
diverging programs?

S ∞S * S′ S + S′ 

Instructions: 
small-step 
semantics

Expressions: big-step semantics

Commands: small-step semantics

How do we compare the 
behaviors of two programs?

We need to equip 
IMP with a small-step 

semantics 

S S′ 



Should «going wrong» behaviors be preserved?

Compilers routinely optimize away going-wrong behaviors.


This program goes wrong.


However, the compiler eliminates x=1/0; as it is dead 
code.


Thus, the generated code always terminates.
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 #include <stdio.h>
 int main()
 {
    int x;
    x = 1 / 0;
    return 0;
 }

Justifications

• We know that the program does not go wrong (e.g. by static analysis).

• It is the programmer’s responsibility to avoid going-wrong behaviors  

(C standards).



Should «going wrong» behaviors be preserved?

This program goes wrong.


However, the code generated by the 
compiler does not check the array bounds.


The generated code may crash but in 
general it prints an arbitrary integer and 
terminates normally.

 #include <stdio.h>
 int main()
 {
    int x[2] = { 12, 34 };
    printf("x[2] = %d\n", x[2]);
    return 0;
 }

This out-of-bound access is an example of an undefined behavior (according 
to the ISO C standard).



Notions of semantic preservation: bisimulation

The source program S and the compiled program have exactly the same 
behaviors.

• Every possible behavior of S is a possible behavior of C.

• Every possible behavior of C is a possible behavior of S.


Example for the IMP to VM compiler

• (compile_com c) terminates if and only if c terminates, with the same final 

store

• (compile_com c) diverges if and only if c diverges

• (compile_com c) never goes wrong




Forward simulation

Forward simulation from a source program S to a compiled code C:  
every possible behavior of S is a possible behavior of C


Example:

• theorem compile_program_correct_terminating

• If C diverges, (compile_com C) diverges


This looks insufficient: what if C has more behaviors than S? For instance, if C 
can terminate or go wrong?


34



Reducing non-determinism during compilation

A language is deterministic if every program has only one behavior. 


The C language is not deterministic: the evaluation order is partially 
unspecified.


The expression f()+g() can evaluate either to:


• 1 if f() is evaluated first (returning 1), then g() (returning 0);

• -1 if g() is evaluated first (returning 1), then f() (returning 0).


Every C compiler chooses one evaluation order at compile-time. 
The compiled code therefore has fewer behaviors than the source program 
(1 instead of 2). Forward simulation and bisimulation fail.

35

int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }



Backward simulation

Backward simulation from a source program S to a compiled code C:  
every possible behavior of C is a possible behavior of S.  
However, C may have fewer behaviors than S.


If the target language is deterministic, forward simulation implies backward 
simulation, and therefore bisimulation.

36



Simulations for safe programs

A program is safe when it either terminates or diverges.


Safe forward simulation: any behavior of the source program S other than 
« going wrong » is a possible behavior of the compiled code C.


Safe backward simulation: for any behavior b of the compiled code C, the 
source program S can either have behavior b or go wrong.


37



Simulation diagrams

Behaviors are defined in terms of sequences of transitions.


Forward simulation from a source program S to a compiled code C can be 
proved as follows:


• show that every transition in S is simulated by some transitions in C


• while preserving an invariant ≈ between the states of S and C


Backward simulation is similar but simulates transitions of C by transitions of S.

38



Lock-step simulation

Every transition in the source S is simulated by exactly one transition in the 
compiled code C


Further show that initial states are related: 


and final states are related: 

Sinit ≈ Cinit

S ≈ C ∧ S ∈ 𝙵𝚒𝚗𝚊𝚕 ⇒ C ∈ 𝙵𝚒𝚗𝚊𝚕

39

target 
state

source 
state

S1
≈ C1

C2≈S2



From lock-step simulation to forward simulation

Likewise if Sinit makes an infinity of transitions

40

≈ Cn-1Sn-1

Cn ∈ 𝙵𝚒𝚗𝚊𝚕≈Sn𝙵𝚒𝚗𝚊𝚕 ∋

Sinit
≈ Cinit

C1≈S1



Plus simulation

Example: compilation of X := X + 1 into  
                Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil  
(already seen on this slide)


Forward simulation still holds

41

target 
state

source 
state

S1
≈ C1

C2≈S2

+



Incorrect star simulation

Forward simulation is not guaranteed:


• terminating executions are preserved,

• but diverging executions may not be preserved

42

target 
state

source 
state

S1
≈ C1

C2≈S2

*



The problem of infinite stuttering

The source program diverges but the compiled code can terminate normally or 
by going wrong.


This denotes an incorrect optimization of a diverging program,  
e.g. compiling (while true skip) into skip 

43

Sn-1

S2

Sn

S1
≈ C
≈
≈

≈



Corrected star simulation

44

or

with 0 ≤ measure(S’) < measure(S)

S ≈ C

S’

≈

target 
state

source 
state

S1
≈ C1

C2≈S2

+

measure(S):nat from source states (could be to a well-founded set)


If the source program diverges, it must perform infinitely many non-stuttering 
steps, so the compiled code executes infinitely many transitions.



Coq library for star simulations: from star simulation 
to forward simulation                              Simulation.v 

45

Variable C1: Type.              (* the type of configurations for the source program *)
Variable step1: C1 → C1 → Prop.  (* its transition relation *)

Variable C2: Type.              (* the type of configurations for the transformed program *)
Variable step2: C2 → C2 → Prop.  (* its transition relation *)

Variable inv: C1 → C2 → Prop.    (* the invariant ≈ *)
Variable measure: C1 → nat.      (* the measure that prevents infinite stuttering *)

Hypothesis simulation:
  ∀ c1 c1', step1 c1 c1' →
  ∀ c2, inv c1 c2 →
  ∃ c2', (plus step2 c2 c2' ∨ (star step2 c2 c2' ∧ measure c1' < measure c1))
         ∧ inv c1' c2'.

S1
≈ C1

C2
≈S2

+ with 0 ≤ measure(S’) < measure(S)

S ≈ C

S’

≈or

https://xavierleroy.org/cdf-mech-sem/CDF.Simulation.html


Part 4: summary
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correctness 
theorem 

behaviors

termination divergence

small-step 
semanticsabout

is

observe reasoning simulation 
diagrams

using

is proved by

anti-stuttering 
measure

strengthened
w

ithnot yet fully proved!

We need to equip 
IMP with a small-step 

semantics 

S S′ 



Part 5:  
small-step semantics 
and 
compiler verification 
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A small-step semantics for IMP

48

Relation 


x := a / s → skip / x ↦(aeval a s); s 


(c; skip) / s → c / s                                                                                       c1 / s1 → c2 / s2

                                                                                                           (c1 ; c) / s1 → (c2 ; c) / s2      


             eval s b = true                                                                             eval s b = false

(if b then c1 else c2) / s → c1 / s                                             (if b then c1 else c2) / s → c2 / s


          eval s b = false                                                     eval s b = true

(while b do c end) / s → skip / s                        (while b do c end) / s → c; while b do c end / s 

c / s → c’ / s’ big-step  semantics for 
expressions

notation 
used in Imp.v 

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html


Equivalence with big-step semantics 
IMP.v 

A classic result:


         if and only if         


This proof is useful to build confidence in both semantics

c/s ⇒ s′ c/s * 𝚜𝚔𝚒𝚙/s′ 

49

https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html


Spontaneous generation of commands

50

(if b then c1 else c2); c / s → (c1; c) / s        

Raises two issues when using simulation diagrams:

• impractical to reason on the execution relation 

•difficult to define the measure

Some rules generate fresh commands that are not subterms of the source program.



Small-step semantics with continuations 

Instead of rewriting whole commands:


rewrite pairs of (subcommand under focus, continuation):


Continuation


• remainder of command

• context in which it occurs (control stack)


Kstop nothing remains to be done

c ● k execution of a sequence of two commands

Kwhile b c k execution of a loop


51

c / k / s → c’ / k’ / s’ 

c / s → c’ / s’ 



Small-step semantics with continuations 

                           No generation of fresh commands: c’ is always a subterm of c


New kinds of rules for dealing with continuations


Focus (on the left of a sequence)


Resume (the remaining computations)

52

c / k / s → c’ / k’ / s’ 

(if b then c1 else c2) / k / s → c1 / k / s          when eval s b = true

(c1;c2) / k / s → c1 / c2 ● k / s 

skip / c ● k / s → c / k / s 



A small-step semantics for IMP

53

x := a / k / s → skip / k / x ↦(aeval a s); s                          


(c1 ; c2) / k / s → c1 / c2 ● k / s                                                                                                                                                                                                                                                     


             eval s b = true                                                                             eval s b = false

(if b then c1 else c2) / k / s → c1 / k / s                             (if b then c1 else c2) / k / s → c2 / k / s


          eval s b = false                                                     eval s b = true

(while b do c end) / k / s → skip / k / s          (while b do c end) / k / s → c; while b do c end / Kwhile b c k / s 


skip / c ● k / s → c / k / s


skip / Kwhile b c k / s → while b do c end / k / s

c / k / s → c’ / k’ / s’ 



Program execution

Termination


Divergence


Equivalence between small-step semantics

54

Definition kterminates (s: store) (c: com) (s': store) :=
 star step (c, Kstop, s) (SKIP, Kstop, s’).

Definition kdiverges (s: store) (c: com) :=
 infseq step (c, Kstop, s).

Theorem equiv_smallstep_terminates:
 ∀ s c s', terminates s c s' ↔ kterminates s c s'.

Theorem equiv_smallstep_diverges:
∀ s c, diverges s c ↔ kdiverges s c.



Full proof of compiler correctness 
Simulation diagram

Difficulties


• find the invariant  between source and target states


• find the measure from source states to a natural number

≈
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or

with 0 ≤ measure(c2,k2) < measure(c1,k1)

C ⊢c2/k2/s2 ≈ (pc1, [ ], 
s’1) 

C ⊢c1/k1/s1 ≈ (pc1, [ ], s’1) c1/k1/s1

c2/k2/s2

VM 
state

IMP 
state

(pc1, [ ], s’1) 

+
(pc2, [ ], s’2) 

c1/k1/s1

c2/k2/s2

C ⊢c1/k1/s1 ≈ (pc1, [ ], s’1) (pc1, [ ], s’1) 

C ⊢c2/k2/s2 ≈ (pc2, [ ], s’2) 



Full proof of compiler correctness 
The anti-stuttering measure

When do the source program stutter? When no VM instruction is executed.
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(c1 ; c2) / k / s → c1 / c2 ● k / s         

skip / c ● k / s → c / k / s

(if true then c1 else c2) / k / s → c1 / k / s         

(while true do c end) / k / s → c; while b do c end / Kwhile b c k / s

measure(c,k):  sum of the sizes of c and all the commands appearing in k


length of the list



Full proof of compiler correctness 
The simulation invariant

Remember this slide: 


C ⊢c/k/s ≈ (pc, stack, s’) is defined as:

• s = s’

• stack = [ ]

• code_at C pc (compile_com c)

• C contains compiled code matching k at pc + codelen(compile_com c) 
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Lemma compile_com_correct_terminating:
  ∀ s c s', ceval s c s' →
  ∀ C pc stack,
  code_at C pc (compile_com c) →
  transitions C (pc, stack, s)
    (pc + codelen(compile_com c), stack, s').

C compile_com c

pc



Compiler correctness: wrapping up 
compil.v 
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Theorem compile_program_correct_terminating:
  ∀ s c s',
  ceval s c s' →
  machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_terminating_2:
  ∀ s c s',
  star step (c, Kstop, s) (SKIP, Kstop, s') →
  machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_diverging:
  ∀ c s,
  infseq step (c, Kstop, s) →
  machine_diverges (compile_program c) s.

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html


Part 5: summary
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correctness 
theorem for 
terminating 

and diverging 
programs 

behaviors

termination divergence

small-
step 

semanticsabout
is

observe traces

belong to

emit

reasoning simulation 
diagrams

using

continuations

rel
y o

n

is proved by

fac
ilita

te

anti-stuttering 
measure

strengthened
w

ith

alternate proof for 
terminating programs



Part 6 
How to turn CompCert  
from a prototype in a lab  
into a real-world compiler?



CompCert compiler: 11 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

Mach

type elimination


spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

ASM code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

(instruction scheduling)

61

no side-effect

determinization


CompCertC

ASM



Multiplicity of source behaviors 
Reducing non-determinism during compilation

The C language is not deterministic: the evaluation order is partially 
unspecified.


The expression f()+g() can evaluate either to:


• 1 if f() is evaluated first (returning 1), then g() (returning 0);

• -1 if g() is evaluated first (returning 1), then f() (returning 0).


Every C compiler chooses one evaluation order at compile-time. 
The compiled code therefore has fewer behaviors than the source program 
(1 instead of 2). Forward simulation fails.
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int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }



Back to simulations

S: source program      C: compiled program


Backward simulation: every possible behavior of C is a possible behavior of S


Safe backward simulation: for any behavior b of C, S can have either 
behavior b or go wrong


If the target language is deterministic, forward simulation implies backward 
simulation (and therefore bisimulation)

63



Handling multiple compilation passes
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CompCertC

Clight

C#minor

Cminor

ASM

CminorSel

RTL

LTL

Mach

Linear

LTLin

forward simulation proof

backward simulation proof

compiler pass

Theorem transf_c_program_correct:
  ∀ p tp,
  transf_c_program p = OK tp →
  backward_simulation (Csem.semantics p)  
                      (Asm.semantics tp).

Compiler.v 

https://compcert.org/doc/html/compcert.driver.Compiler.html


Verification patterns 

Verified validator


• Less to prove (if validator simpler than transformation)


• Validator reusable for several variants of an optimization


• Can be efficient (cheap enough to be invoked on every compiler run)


Example: register allocation with advanced spilling and splitting
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Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified



CompCert compiler: 11 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

Mach

type elimination


spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

ASM code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls, 
(LCM), (software pipelining) 

(instruction scheduling)
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no side-effect

determinization


CompCertC

ASM



CompCert compiler: 11 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

MachASM
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Clight

LTLin

CompCertC

LTL

S t S′ 

S t * S′ S t n S′ S t + S′ S t ∞

Behaviors

termination divergence

going wrong

Small-step semantics

execL P b

Smallstep.v 
library



Observable behaviors 
Behaviors.v  and Events.v 

trace = list of I/O events 

traceinf = infinite list of I/O events 


I/O event


• call to an external function (e.g. printf)


• memory accesses to global volatile variables (hardware devices)
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Inductive program_behavior :=
  | Terminates (t: trace) (n: int)
  | Diverges (t: trace)
  | Reacts (tinf: traceinf)
  | Goes_wrong (t: trace).

https://compcert.org/doc/html/compcert.common.Behaviors.html
https://compcert.org/doc/html/compcert.common.Events.html


General form of small-step semantics 
Smallstep.v 

 maps:


• each name of a function or global variable to a memory address

• each function pointer to a function definition


Semantic states  include a memory state, mapping addresses to values

G

S
69

initial_state( )SG ⊢ S t S′ 

does not change 
during transitions

observed events

final_state( ,n)S

return value

https://compcert.org/doc/html/compcert.common.Smallstep.html


The CompCert memory model 
Memory.v 

Shared by all the languages of the compiler


An abstract view of memory refined into a concrete memory layout


In the semantics:


Memory operations (load, store, alloc, free) over values  
(machine integers, pointers, floating-point numbers)


Memory safety preserved by CompCert (good variable properties)


Generic memory injections and memory extensions
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int(5)

int(7)

int(0)

int(128)

b2

ptr(b2, 2)
b1

int(5)
b3m: mem

https://compcert.org/doc/html/compcert.common.Memory.html


Semantic states 
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return statestatecall state internal
function

return
instr.

other instr.

external function

program 

starts

program 

ends

Exemple: Clight


Inductive state :=
  | State (f: function)(s: statement)(k: cont)(e: env)(le: temp_env)(m: mem)
  | Callstate (fd: fundef)(args: list val)(k: cont)(m: mem)
  | Returnstate (res: val)(k: cont)(m: mem).

Exception: assembly languages, where a state is a pair of a memory and a mapping from 
processor registers to values




CompCert C source language 
(see chapter 4 of the user’s manual)

Expressions are annotated with their type

Overloading and implicit conversions between types

Expressions have side-effects

‣Assignments are expressions

Non-deterministic evaluation of expressions (e.g., see this slide)

Numerous semantic rules in small-step style


Commands 
All C constructs: loops, switch, goto, break, continue, return

Numerous semantic rules in small-step style
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Eval(int(5), Tint(I32,Signed)): expr

https://compcert.org/man/manual004.html
https://compcert.org/man/


Clight language 
Clight.v 

Expressions are annotated with their type

No overloading and explicit conversions between types and arithmetic operators

Expressions are pure

Temporary variables do not reside in memory

19 semantic rules in big-step style


Commands 
Assignments are commands

Single syntax for loops, continue command

‣ C loops are derived forms

25 semantic rules in small-step style

+ numerous rules for unary and binary operators, memory loads and stores
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& v

Sloop s1 s2

Econst_int(int(5), Tint(I32,Signed)): expr

https://compcert.org/doc/html/compcert.cfrontend.Clight.html


The CompCert C reference interpreter 
Cexec.v 

Outcome:

• normal termination or aborting on an undefined behavior


• observable effects (I/O events: printf, malloc, free)


Faithful to the formal semantics of CompCert C; the interpreter displays all 
the behaviors according to the semantics

reference 
interpreter.c outcome

Compcert C
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step: state → trace → state → Prop do_step: world → state → list (trace * state)

external world: 
uniquely determines the 
results of external calls

predicate function

https://compcert.org/doc/html/compcert.cfrontend.Cexec.html


Using the reference interpreter:  
exhaustive exploration
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S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4

Time 0: 

Time 1: 

Time 2: 

Time 3: 

Time 4:



Using the reference interpreter:  
randomized exploration
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RandomizedFirst choice

S0

S3

S7

Sb

Sa

S0

S1

S4

S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4



Using the reference interpreter 
A first example

int main(void)
{  int x[2] = { 12, 34 };
  printf("x[2] = %d\n", x[2]);
  return 0;  }

Stuck state: in function main, expression
  <printf>(<ptr __stringlit_1>, <loc x+8>)
Stuck subexpression: <loc x+8>
ERROR: Undefined behavior

reference interpreter



Using the reference interpreter 
A second example: randomized exploration

State 45.9:  returning 3
State 45.10: returning 2
State 45.11: returning 1

State 55.1:  returning 0
Time 55: program terminated (exit code = 0)

int a() { printf("a "); return 1; }
int b() { printf("b "); return 2; }
int c() { printf("c "); return 3; }

int main () { printf("%d\n", a() + (b() + c())); return 0;  }

reference interpreter



9 

6 

3 

RTL language 
RTL.v 

Each function is represented by its CFG

Instructions only

Unlimited supply of pseudo-registers

79

Iop(int(5), args, dest, succ): instruction

list of 
pseudo-regs

register to 
store the result

successor 
node

0 x := 1

1 i := 1

4 

x<9

5 x := x+2

7 

x>50

8 

x := x+1 x := 2*x

return x

i := i+1

2 i<n

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
   if (x < 9) x = x + 2;
   else if (x > 50) x = x + 1;
   else x = 2 * x;
 return x;  }

https://compcert.org/doc/html/compcert.backend.RTL.html


Part 6: summary

Proving a compiler pass mainly amounts to proving a simulation diagram


Many reusable libraries: 


• simulations, memory model, C semantics, Clight and RTL languages

• machine integers, dataflow solver


Some compilation options


• using the CompCert C interpreter: -interp (-trace, -all, -random)


• tracing options: -dc, -dclight, -drtl, …

• show the time spent in compiler passes: -timing
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Part 7: Compiling critical embedded 
software with CompCert

81



Fly-by-wire softwareExecute pilot's commands


Flight assistance: keep aircraft within safe flight envelope 
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The qualification 
process (DO-178)

Rigorous validation: review (qualitative), analysis 
(quantitative), testing (huge amounts)


Conducted at multiple levels, from design to final product


Meticulous development process; extensive documentation



From block diagrams 
to assembly 

code 
generator compiler

output
outputinput

observation 
point

variable stored 
in RAM

delay symbol

delay macro

delay symbol

delay symbol
delay 
macro



; annotation: Begin of a loop  
...                                                                                    
addi r3, 0, 1  
; annotation: Here x is at r3  
...    
; annotation: End of a loop

Program annotations

A mechanism to attach annotations to program points

• Mark specific program points

• Provide information about the location of C variables

• Ensure that some variables are preserved (e.g. x must be kept in a register)


Annotations are preserved during compilation.

• Each annotation generates an observable event

• The correctness theorem ensures preservation of the sequencing of 1) 

symbols, and 2) of accesses to hardware devices (volatile variables)

_annot("Begin of a loop");  
...                                                                                
x = 1;                                                              
_annot("Here x is at %1",x);  
...    
_annot("End of a loop");      

compiler



A formally verified compiler gives traceability guarantees.


Simplified example

• The semantics preservation theorem ensures preservation of:

• the sequencing of symbols,

• the sequencing of accesses to hardware devices (volatile variables).


Remember the main theorem: If the source program can not go wrong, then 
the behavior of the generated assembly code is exactly one of the behaviors of 
the source program.


Conformance to the qualification process

87



How good is the 
compiled code ?

Trade-off between

• traceability guarantees

• and efficiency of the generated 
code


Low-level verifications

• reviews of the assembly 

• computation of a WCET 
estimation 
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Compiling critical embedded software
Improved performances of the generated code,  
while providing proven traceability guarantees thanks to annotations


FCGU A380: 3600 files, 3.96 MB of assembly code


• Estimated WCET for each file

• Average improvement per file: 13,5% 

• Compiled with CompCert 1.10, 2012
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Overall assessment

The improvement mainly comes from the register allocation pass.

• From: no register allocation

• To: sharing of local variables among available registers


Traceability guarantees

• From: tracking of all program variables

• To: tracking of meaningful variables (used in block diagrams)
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Part 8: 
CompCert, a shared infrastructure 
for ongoing research



The Verasco abstract interpreter  
[Jourdan, Laporte, Blazy, Leory, Pichardie, POPL’15] [Blazy, Laporte, Pichardie, ICFP’16]

A holistic effect with compiler verification

Theorem csharpminor_compiler_correct_alt:
  ∀ p tp b,
  transf_c_program p = OK tp →
  execC p b →
  execASM tp b.

Theorem analyzer_is_correct:
  ∀ p b,
  static_analyzer p = Success →
  execC p b.

CompCert compiler

Verasco abstract interpreter

forward simulation

p can not go wrong

Theorem csharp_compiler_correct_stronger:
  ∀ p tp b,
  transf_c_program p = OK tp →
  execASM tp b.



Verasco architecture

statesState abstraction

control flowAbstract interpreterAlarms

CompCert compilerC#minorClightCompCert C ...
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integer and 

floating-point


arithmetic

CongruencesIntervals Polyhedra OctagonsSymbolic 

equalities
Linearization

Numerical abstraction

Communication 
channels

requires reasoning on 
double-precision floating-point 

numbers (IEEE754)

crucial to analyze the safety 
of memory accesses 
 (memory alignement)

conjunctions of linear 
inequalities ±x ±y ≤ c

symbolic conditional 
expressions


(improve precision of  
assume commands)

conjunctions of linear 
inequalities ∑ai xi ≤ c



Turning CompCert into a secure compiler  
CT-CompCert     [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline
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unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

Theorem compiler-correct: 
  ∀ S C b, 
  compiler S = OK C →  
  execCompCertC S b →  
  execASM C b.

How to turn CompCert into a formally-verified secure compiler?



Which proof technique for the isCCT policy? 
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Difficulty: tricky proofs!

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

Theorem compiler-preserves-CCT: 
  ∀ S C, 
  compiler S = OK C →  
  isCCT S → 
  isCCT C.

S1
ℓ S2

S′ 1
ℓ′ S′ 2

with φ(S1, S′ 1) implies ℓ = ℓ′ 

isCCT S

Observational non-interference: observing program leakage (boolean guards and memory 
accesses) during execution does not reveal any information about secrets

Indistinguishability property : share public values, but may differ on secret valuesφ(Si, S′ i)



Proving CCT preservation:  
back to simulation diagrams

96

must predict the 
number of steps 

at target level

Proof-engineering: leverage the existing proof scripts as much as possible


t’=t

or (t’  and t is leak only)= ε

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

S1
≈n C1

C2
≈n’S2

t’t
n



Verifying just-in-time (JIT) compilation [Barrière’s PhD 12/2022] 
[Barrière, Blazy, Flückiger, Pichardie, Vitek, POPL’21] and  [Barrière, Blazy, Pichardie, POPL’23]

A JIT compiler interleaves the execution of a program with its optimizations


Dynamic speculation: specializes functions, requires deoptimization


 
Non-deterministic semantics: either deoptimize to the source program or 
continue to the next instruction in the optimized program
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IR interpreter native exec.optimization

speculation

backend

monitor

profilerprofiler

source 
program

… 
f( );  
… 

g( );

new 
program

interpretation
interpretation

com
pilation
of f()

com
pilation
of g()

dynamic 
optim.

dynamic 
optim.



Proving semantics preservation:  
the simulation approach
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C4≈S4

JIT 
program 

P0

source 
program


P0

S1
≈ C1

C2≈S2

Both the program and the execution 
state are evolving

C3≈S3

JIT 
program 

P2

JIT 
program 

P1

dynamic 
optim.

dynamic 
optim.



Nested simulations for JIT verification
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C4≈JIT
S4

JIT 
program 

P0

source 
program


P0

S1
≈JIT C1

C2≈JIT
S2

Invariant ≈JIT: at any point during JIT 
execution


• the current state Ci corresponds 
to a source state Si


• the curent JIT program Pi is 
equivalent to the source 
program P0 


Nested simulation: this equivalence 
is expressed with another simulation

C3

≈JIT

S3

JIT 
program 

P2

JIT 
program 

P1

dynamic 
optim.

dynamic 
optim.

C2

C3 P2

P0

P0

P1

P1

P2

≈JIT

≈JIT

Both the program and the execution 
state are evolving



Work in progress    🏗 

100

Clight C#minor Cminor CminorSel RTL

LTLLTLinLinearMach

CompCertC

ASM

Catala

FPGA

SSA

GSA

new
 font-end

new
 back-end

new optimizations

new target



Gated SSA (static single assignment) intermediate 
representation
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4 x<9

3 i<n

0 x0 := 1

1 i0 := 1

4 x1<9

5 x2 := x1+2 7 x1>50

8 x3 := x1+1 10x4 := 2*x1

12 i2 := i1+1

3 i1<n

15 return x1

i1 := ɸ(i0,i2)

x1 := ɸ(x0,x2)

x5 := ɸ(x2,x3,x4)

Program in SSA form

4 x<9

3 i<n

Path predicates

𝒫2: x1<9 


𝒫3: x1≥9 ∧ x1>50

𝒫4: x1≥9 ∧ x1≤50

0 x0 := 1

1 i0 := 1

4 x1<9

5 x2 := x1+2 7 x1>50

8 x3 := x1+1 10x4 := 2*x1

12 i2 := i1+1

3 i1<n

x5 := ɣ((𝒫2,x2), (𝒫3,x3), (𝒫4,x4))

i1 := μ(i0,i2)

x1 := μ(x0,x2)

15 return x1

x5 := η(i1≥n, x1)

Program in GSA form

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
   if (x < 9) x = x + 2;
   else if (x > 50) x = x + 1;
   else x = 2 * x;
 return x; 
}

C program



Conclusion and perspectives

CompCert is a shared infrastructure for ongoing research 

•compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China), 
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB), 
CompCert-KVX (Verimag, Fr)

•program logics: VST (Princeton, USA), Gillian (Imperial College, GB),  
VeriFast (KUL, Be)

•static analysis : Verasco (Inria, Fr) 


Opens the way to the trust of development tools 


From early intuitions to fundamental formalisms … 
                                      verification tools that automate these ideas … 
                                      actual use in the critical software industry
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                                                             Questions?
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