
Verified compilation
An introduction to CompCert

Sandrine Blazy

OPLSS, Eugene, 2023-07-05

1

Deductive verification

2

SPECIFICATIONSOFTWARE CORRECT

LOGIC

in

PROOF

in the sense of

MATHEMATICAL
RIGOUR

conducted with

From early intuitions …

A. M. Turing.  
Checking a large routine.1949.

3

… to deductive-verification and automated tools

4

SPECIFICATIONSOFTWARE CORRECT

LANGUAGE

SEMANTICS

PROOF LOGIC

INVARIANTS

INTERPRETER

SOFTWARE
TOOL

MATHEMATICAL
RIGOUR

AUTOMATED INTERACTIVE
FUNCTIONAL
LANGUAGE

PROOF
CERTIFICATE

written in

defined by

e.g.

in the sense ofVERIFIED
SOFTWARE

inincluding

produces
conducted with

either or implemented in

enforces

Floyd 1967, Hoare 1969

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

5

majority = A

cpt_delta = 3

A A A C C B B C C C B C C

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

6

majority = A

cpt_delta = 3

A A A C C B B C C C B C C

A A A C C B B C C C B C C

majority = A

cpt_delta = 1

Part 1: summary

7

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SEMANTICS

PROOF

INVARIANTS

INTERPRETER

COQ PROOF
ASSISTANT

written in

defined by

e.g.

in the sense ofVERIFIED
COMPILER

including

conducted with
enforces

Lecture material

These slides  
(including some slides borrowed from by Xavier Leroy)

Reused Coq developments

8

https://people.irisa.fr/Sandrine.Blazy/2023-OPLSS

https://people.irisa.fr/Sandrine.Blazy/2023-OPLSS

Part 2:
early intuitions

9

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SEMANTICS

PROOF

INVARIANTS

INTERPRETER

COQ PROOF
ASSISTANT

written in

defined by

e.g.

in the sense of including

conducted with

enforces

VERIFIED
COMPILER

The miscompilation risk

Compilers still contain bugs!

[Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11]

10

We found and reported hundreds of previously unknown
bugs [...]. Many of the bugs we found cause a compiler to
emit incorrect code without any warning. 25 of the bugs we
reported against GCC were classified as release-blocking.

Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end
specification:

This specification becomes mathematically precise as soon as we have formal
semantics for the source language and the machine language.

Then, a formal verification of a compiler can be considered.

11

The generated code must behave as prescribed
by the semantics of the source program.

An old idea …

Mathematical Aspects of Computer Science, 1967

12

Machine Intelligence (7), 1972

Now taught as an exercise
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)

13

Definition state := string → nat.

Inductive sinstr := SPush(n:nat)| SLoad(x:string)| SPlus| SMinus| SMult.

Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat :=
 match (prog, stack) with
 | (nil, _) => stack
 | ...
 end.

semantics
(aeval,

s_execute)

compiler
(s_compile)

Fixpoint s_compile(e:aexp):
 list sinstr
 := ...

Inductive aexp := ANum(n:nat)| AId(x:string)| APlus(a1 a2:aexp)| ...

Fixpoint aeval(s:state)(e:aexp):nat := ...

com
pilation

3
6 9

SPlus
n

SPush n
4

SLoad x

s(x)=4

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Now taught as an exercise
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)

14

Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ...

semantics
(aeval,

s_execute)

compiler
(s_compile)

Fixpoint s_compile(e:aexp): list sinstr := ...

Fixpoint aeval(s:state)(e:aexp):nat := ...

Theorem s_compile_correct: ∀ s e,
 s_execute s [] (s_compile e) = [aeval s e].
Proof.

com
pilation interactive proof

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Now taught as an exercise
(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack_compiler_correct)

15

Fixpoint s_execute(s:state)(stack:list nat)(prog:list sinstr):list nat := ...

semantics
(aeval,

s_execute)

compiler
(s_compile)

Fixpoint s_compile(e:aexp): list sinstr := ...

Fixpoint aeval(s:state)(e:aexp):nat := ...

Theorem s_compile_correct: ∀ s e,
 s_execute s [] (s_compile e) = [aeval s e].
Proof.
 intros. apply s_compile_correct_aux.
Qed.

Extraction s_compile.

com
pilation

toy-compiler.ml

interactive proof

extraction

Theorem execute_app : ∀ st p1 p2 stack,
 s_execute st stack (p1 ++ p2) = s_execute st (s_execute st stack p1) p2.
Proof.
 (* … *)
Qed.

Theorem s_compile_correct_aux: ∀ s e stack,
 s_execute s stack (s_compile e) = aeval e :: stack.
Proof.
 induction e; (* … *)
Qed. proof by induction on

the structure of e

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Course outline

Formal verification in Coq of a non-optimizing compiler for a simple imperative
language (from IMP language to VM language)

Extension of these ideas to CompCert, a realistic C compiler

16

The CompCert formally verified compiler
(X.Leroy, S.Blazy et al.) https://compcert.org

A moderately optimizing C compiler

Targets several architectures (PowerPC, ARM, RISC-V and x86)

Programmed and verified using the Coq proof assistant

Shared infrastructure for ongoing research

Used in commercial settings (for emergency power generators and flight
control navigation algorithms) and for software certification - AbsInt company 
Improved performances of the generated code while providing proven
traceability information

ACM Software System award 2021 
ACM SIGPLAN Programming Languages Software award 2022

17

Part 3:
basics of
verified compilation

18

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

OPERATIONAL
SEMANTICS

PROOF

INVARIANTSCOQ PROOF
ASSISTANT

written in

defined by

in the sense ofVERIFIED
COMPILER including

conducted with

enforces

Compiling IMP instructions
Already seen in Imp.v

Denotational style for the semantics of IMP expressions

Big-step (operational) style for commands: relation c/s ⇒ s′

19

Fixpoint aeval(s:state)
(e:aexp): nat := ...

Inductive com :=
 | CSkip
 | CAss (x: string) (a: aexp)
 | CSeq (c1 c2: com)
 | CIf (b: bexp) (c1 c2: com)
 | CWhile (b: bexp) (c: com).

Inductive ceval : com → state → state → Prop :=
 | E_Skip : ∀ st, st =[skip]=> st
 | E_WhileFalse : ∀ b st c, beval st b = false →
 st =[while b do c end]=> st
 | E_WhileTrue : ∀ st st' st'' b c, beval st b = true →
 st =[c]=> st' →
 st' =[while b do c end]=> st'' →
 st =[while b do c end]=> st’'
 | …

semantics
(aeval,
beval,
ceval)

Definition example: com :=
<{ X := X + 1 }> .

Definition same_example: com :=
 CAss X (APlus (AId X) (ANum 1)) .

boolean
expressions

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html

Extending the VM language: instruction set
compil.v

20

Inductive instr: Type :=
 | Iconst (n: Z). (* formerly SPush *)
 | Ivar (x: ident). (* formerly SLoad *)
 | Iadd.

 | Isetvar (x: ident) (* pop an integer and assign it to variable *)
 | Ibranch (d: Z). (* skip forward or backward d instructions *)
 | Iopp. (* pop one integer, push its opposite *)
 | Ibeq (d1 d0: Z) (* pop 2 integers, skip d1 instructions if =, d0 if ≠ *)
 | Ible (d1 d0: Z) (* pop 2 integers, skip d1 instructions if ≤, if > *)
 | Ihalt. (* stop execution *)

Definition code := list instr.

Definition ex_code1:code := Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil.
Definition ex_code2:code :=  
 Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: Ibranch (-5) :: nil. x := x + 1

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

VM semantics
compil.v

21

Definition stack := list Z.
Definition store := ident → Z.
Definition config := (Z * stack * store).

Inductive transition (C:code): config → config → Prop :=
 | trans_const: ∀ pc stack s n,
 instr_at C pc = Some(Iconst n) →
 transition C (pc, stack, s) (pc + 1, n :: stack, s)
 | trans_setvar: ∀ pc stack s x n,
 instr_at C pc = Some(Isetvar x) →
 transition C (pc, n :: stack, s) (pc + 1, stack , update x n s)
 | trans_branch: ∀ pc stack s d pc',
 instr_at C pc = Some(Ibranch d) →
 pc' = pc + 1 + d →
 transition C (pc, stack, s) (pc', stack, s)
 | …

Small-step semantics, given by a transition relation s → s′

branch instructions
increment by 1+d

increments pc by 1increments pc by 1

position of
the currently executing

instruction

formerly
called state

fixed list of
instructions

C i

pc

instr_at C pc = Some i

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html
http://coq.inria.fr/library/Coq.Init.Datatypes.html#list
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition
https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html#update
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition

Execution of VM programs

Small-step (operational) semantics

22

Definition transitions (C: code): config → config → Prop :=
 star (transition C).

Definition machine_terminates (C: code) (s_init s_final: store) :=
 ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
 ∧ instr_at C pc = Some Ihalt.

initial states final statesreflexive transitive closure

C Ihalt

pc0

nil nil

Sequences of transitions and their properties
Sequences.v

23

Lemma star_trans: ∀ a b, star a b → ∀ c, star b c → star a c.

Inductive plus: A → A → Prop :=
 | plus_left: ∀ a b c, R a b → star b c → plus a c.

Inductive star: A → A → Prop :=
 | star_refl: ∀ a, star a a
 | star_step: ∀ a b c, R a b → star b c → star a c.

Variable A: Type. (* type of states *)
Variable R: A → A → Prop. (* transition relation between states *)

Lemma star_one: ∀ a b, R a b → star a b.

Lemma plus_star_trans: ∀ a b c, plus a b → star b c → plus a c.

S + S′

S S′

S * S′

Definition irred (a:A): Prop := (* stuck states *)  
 ∀ b, ~(R a b).

https://xavierleroy.org/cdf-mech-sem/CDF.Sequences.html

Compilation of commands

24

code for (CIf b c1 c2)

code for (CWhile b c)

code for b code for c1 code for c2Ibranch

code for b code for c Ibranch

Compiler correctness
compil.v

25

Lemma compile_com_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 ∀ C pc stack,
 code_at C pc (compile_com c) →
 transitions C
 (pc, stack, s)
 (pc + codelen (compile_com c), stack, s').

Definition compile_program (p: com) : code :=
 compile_com p ++ Ihalt :: nil.

Theorem compile_program_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 machine_terminates (compile_program c) s s'.

proof by induction
on the derivation of

cexec s c s’

remember
s_compile_correct_aux!

ceval in Imp.v

Definition machine_terminates (C: code) (s_init s_final: store) :=
 ∃ pc, transitions C (0, nil, s_init) (pc, nil, s_final)
 ∧ instr_at C pc = Some Ihalt.

length of the list

C compile_com c

pc

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

Part 3: summary

This is not enough to conclude that the compiler is correct!
26

Theorem compile_program_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 machine_terminates (compile_program c) s s'.

one big step

one
or several small

steps

« The generated code must behave as prescribed by
the semantics of the source program. »

Theorem s_compile_correct: ∀ s e,
 s_execute s [] (s_compile e) = [aeval e].

Part 4:
semantic preservation
and
compiler verification

27

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

SMALL-STEP
SEMANTICS

PROOF

INVARIANTS:

SIMULATIONS

COQ PROOF
ASSISTANT

written in

defined by

in the sense ofVERIFIED
COMPILER including

conducted with

enforces

What should be preserved?
Observable behaviors

28

S * S′ S + S′ S ∞

observable behaviors

normal termination divergence

going wrong

x := 1;

IMP VM C

while true do skip end

impossible

Ihalt Ibranch (-1)

Iadd

return 0; for(;;) { }

x = 1/0 ;
finite sequence of

transitions to a state that
is stuck and not final

infinite
sequence of transitions

finite
sequence of

transitions to a
final state

Summary of yesterday’s lecture

29

compiler
correctness

theorem

behaviors

termination

big-step
semanticsabout

is
observe

IMP

VM

Expressions: big-step semantics

Commands: big-step semantics

Instructions:
small-step
semantics

com
piler

c/s ⇒ s′

Theorem compile_program_correct_terminating:
 ∀ s c s',
 cexec s c s' →
 machine_terminates (compile_program c) s s'.

about
is

Summary of yesterday’s lecture

30

compiler
correctness
theorem for
terminating
programs

behaviors

termination divergence

observe

IMP

VM

com
piler

small-step
semantics

What about
diverging programs?

S ∞S * S′ S + S′

Instructions:
small-step
semantics

Expressions: big-step semantics

Commands: small-step semantics

How do we compare the
behaviors of two programs?

We need to equip
IMP with a small-step

semantics

S S′

Should «going wrong» behaviors be preserved?

Compilers routinely optimize away going-wrong behaviors.

This program goes wrong.

However, the compiler eliminates x=1/0; as it is dead
code.

Thus, the generated code always terminates.

31

 #include <stdio.h>
 int main()
 {
 int x;
 x = 1 / 0;
 return 0;
 }

Justifications

• We know that the program does not go wrong (e.g. by static analysis).

• It is the programmer’s responsibility to avoid going-wrong behaviors  

(C standards).

Should «going wrong» behaviors be preserved?

This program goes wrong.

However, the code generated by the
compiler does not check the array bounds.

The generated code may crash but in
general it prints an arbitrary integer and
terminates normally.

 #include <stdio.h>
 int main()
 {
 int x[2] = { 12, 34 };
 printf("x[2] = %d\n", x[2]);
 return 0;
 }

This out-of-bound access is an example of an undefined behavior (according
to the ISO C standard).

Notions of semantic preservation: bisimulation

The source program S and the compiled program have exactly the same
behaviors.

• Every possible behavior of S is a possible behavior of C.

• Every possible behavior of C is a possible behavior of S.

Example for the IMP to VM compiler

• (compile_com c) terminates if and only if c terminates, with the same final

store

• (compile_com c) diverges if and only if c diverges

• (compile_com c) never goes wrong

Forward simulation

Forward simulation from a source program S to a compiled code C:  
every possible behavior of S is a possible behavior of C

Example:

• theorem compile_program_correct_terminating

• If C diverges, (compile_com C) diverges

This looks insufficient: what if C has more behaviors than S? For instance, if C
can terminate or go wrong?

34

Reducing non-determinism during compilation

A language is deterministic if every program has only one behavior.

The C language is not deterministic: the evaluation order is partially
unspecified.

The expression f()+g() can evaluate either to:

• 1 if f() is evaluated first (returning 1), then g() (returning 0);

• -1 if g() is evaluated first (returning 1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time. 
The compiled code therefore has fewer behaviors than the source program 
(1 instead of 2). Forward simulation and bisimulation fail.

35

int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }

Backward simulation

Backward simulation from a source program S to a compiled code C:  
every possible behavior of C is a possible behavior of S.  
However, C may have fewer behaviors than S.

If the target language is deterministic, forward simulation implies backward
simulation, and therefore bisimulation.

36

Simulations for safe programs

A program is safe when it either terminates or diverges.

Safe forward simulation: any behavior of the source program S other than
« going wrong » is a possible behavior of the compiled code C.

Safe backward simulation: for any behavior b of the compiled code C, the
source program S can either have behavior b or go wrong.

37

Simulation diagrams

Behaviors are defined in terms of sequences of transitions.

Forward simulation from a source program S to a compiled code C can be
proved as follows:

• show that every transition in S is simulated by some transitions in C

• while preserving an invariant ≈ between the states of S and C

Backward simulation is similar but simulates transitions of C by transitions of S.

38

Lock-step simulation

Every transition in the source S is simulated by exactly one transition in the
compiled code C

Further show that initial states are related:

and final states are related:

Sinit ≈ Cinit

S ≈ C ∧ S ∈ 𝙵𝚒𝚗𝚊𝚕 ⇒ C ∈ 𝙵𝚒𝚗𝚊𝚕

39

target 
state

source 
state

S1
≈ C1

C2≈S2

From lock-step simulation to forward simulation

Likewise if Sinit makes an infinity of transitions

40

≈ Cn-1Sn-1

Cn ∈ 𝙵𝚒𝚗𝚊𝚕≈Sn𝙵𝚒𝚗𝚊𝚕 ∋

Sinit
≈ Cinit

C1≈S1

Plus simulation

Example: compilation of X := X + 1 into  
 Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil  
(already seen on this slide)

Forward simulation still holds

41

target 
state

source 
state

S1
≈ C1

C2≈S2

+

Incorrect star simulation

Forward simulation is not guaranteed:

• terminating executions are preserved,

• but diverging executions may not be preserved

42

target 
state

source 
state

S1
≈ C1

C2≈S2

*

The problem of infinite stuttering

The source program diverges but the compiled code can terminate normally or
by going wrong.

This denotes an incorrect optimization of a diverging program,  
e.g. compiling (while true skip) into skip

43

Sn-1

S2

Sn

S1
≈ C
≈
≈

≈

Corrected star simulation

44

or

with 0 ≤ measure(S’) < measure(S)

S ≈ C

S’

≈

target 
state

source 
state

S1
≈ C1

C2≈S2

+

measure(S):nat from source states (could be to a well-founded set)

If the source program diverges, it must perform infinitely many non-stuttering
steps, so the compiled code executes infinitely many transitions.

Coq library for star simulations: from star simulation
to forward simulation Simulation.v

45

Variable C1: Type. (* the type of configurations for the source program *)
Variable step1: C1 → C1 → Prop. (* its transition relation *)

Variable C2: Type. (* the type of configurations for the transformed program *)
Variable step2: C2 → C2 → Prop. (* its transition relation *)

Variable inv: C1 → C2 → Prop. (* the invariant ≈ *)
Variable measure: C1 → nat. (* the measure that prevents infinite stuttering *)

Hypothesis simulation:
 ∀ c1 c1', step1 c1 c1' →
 ∀ c2, inv c1 c2 →
 ∃ c2', (plus step2 c2 c2' ∨ (star step2 c2 c2' ∧ measure c1' < measure c1))
 ∧ inv c1' c2'.

S1
≈ C1

C2
≈S2

+ with 0 ≤ measure(S’) < measure(S)

S ≈ C

S’

≈or

https://xavierleroy.org/cdf-mech-sem/CDF.Simulation.html

Part 4: summary

46

correctness
theorem

behaviors

termination divergence

small-step
semanticsabout

is

observe reasoning simulation
diagrams

using

is proved by

anti-stuttering
measure

strengthened
w

ithnot yet fully proved!

We need to equip
IMP with a small-step

semantics

S S′

Part 5:
small-step semantics
and
compiler verification

47

SPECIFICATIONSOFTWARE CORRECT

C LANGUAGE

OPERATIONAL
SEMANTICS

PROOF

INVARIANTS:

SIMULATIONS

COQ PROOF
ASSISTANT

written in

defined by

in the sense ofVERIFIED
COMPILER including

conducted with

enforces

SMALL-STEP
SEMANTICS

A small-step semantics for IMP

48

Relation

x := a / s → skip / x ↦(aeval a s); s

(c; skip) / s → c / s c1 / s1 → c2 / s2

 (c1 ; c) / s1 → (c2 ; c) / s2

 eval s b = true eval s b = false

(if b then c1 else c2) / s → c1 / s (if b then c1 else c2) / s → c2 / s

 eval s b = false eval s b = true

(while b do c end) / s → skip / s (while b do c end) / s → c; while b do c end / s

c / s → c’ / s’ big-step semantics for
expressions

notation
used in Imp.v

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html

Equivalence with big-step semantics
IMP.v

A classic result:

 if and only if

This proof is useful to build confidence in both semantics

c/s ⇒ s′ c/s * 𝚜𝚔𝚒𝚙/s′

49

https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html

Spontaneous generation of commands

50

(if b then c1 else c2); c / s → (c1; c) / s

Raises two issues when using simulation diagrams:

• impractical to reason on the execution relation

•difficult to define the measure

Some rules generate fresh commands that are not subterms of the source program.

Small-step semantics with continuations

Instead of rewriting whole commands:

rewrite pairs of (subcommand under focus, continuation):

Continuation

• remainder of command

• context in which it occurs (control stack)

Kstop nothing remains to be done

c ● k execution of a sequence of two commands

Kwhile b c k execution of a loop

51

c / k / s → c’ / k’ / s’

c / s → c’ / s’

Small-step semantics with continuations

 No generation of fresh commands: c’ is always a subterm of c

New kinds of rules for dealing with continuations

Focus (on the left of a sequence)

Resume (the remaining computations)

52

c / k / s → c’ / k’ / s’

(if b then c1 else c2) / k / s → c1 / k / s when eval s b = true

(c1;c2) / k / s → c1 / c2 ● k / s

skip / c ● k / s → c / k / s

A small-step semantics for IMP

53

x := a / k / s → skip / k / x ↦(aeval a s); s

(c1 ; c2) / k / s → c1 / c2 ● k / s

 eval s b = true eval s b = false

(if b then c1 else c2) / k / s → c1 / k / s (if b then c1 else c2) / k / s → c2 / k / s

 eval s b = false eval s b = true

(while b do c end) / k / s → skip / k / s (while b do c end) / k / s → c; while b do c end / Kwhile b c k / s

skip / c ● k / s → c / k / s

skip / Kwhile b c k / s → while b do c end / k / s

c / k / s → c’ / k’ / s’

Program execution

Termination

Divergence

Equivalence between small-step semantics

54

Definition kterminates (s: store) (c: com) (s': store) :=
 star step (c, Kstop, s) (SKIP, Kstop, s’).

Definition kdiverges (s: store) (c: com) :=
 infseq step (c, Kstop, s).

Theorem equiv_smallstep_terminates:
 ∀ s c s', terminates s c s' ↔ kterminates s c s'.

Theorem equiv_smallstep_diverges:
∀ s c, diverges s c ↔ kdiverges s c.

Full proof of compiler correctness
Simulation diagram

Difficulties

• find the invariant between source and target states

• find the measure from source states to a natural number

≈

55

or

with 0 ≤ measure(c2,k2) < measure(c1,k1)

C ⊢c2/k2/s2 ≈ (pc1, [],
s’1)

C ⊢c1/k1/s1 ≈ (pc1, [], s’1) c1/k1/s1

c2/k2/s2

VM 
state

IMP 
state

(pc1, [], s’1)

+
(pc2, [], s’2)

c1/k1/s1

c2/k2/s2

C ⊢c1/k1/s1 ≈ (pc1, [], s’1) (pc1, [], s’1)

C ⊢c2/k2/s2 ≈ (pc2, [], s’2)

Full proof of compiler correctness
The anti-stuttering measure

When do the source program stutter? When no VM instruction is executed.

56

(c1 ; c2) / k / s → c1 / c2 ● k / s

skip / c ● k / s → c / k / s

(if true then c1 else c2) / k / s → c1 / k / s

(while true do c end) / k / s → c; while b do c end / Kwhile b c k / s

measure(c,k): sum of the sizes of c and all the commands appearing in k

length of the list

Full proof of compiler correctness
The simulation invariant

Remember this slide:

C ⊢c/k/s ≈ (pc, stack, s’) is defined as:

• s = s’

• stack = []

• code_at C pc (compile_com c)

• C contains compiled code matching k at pc + codelen(compile_com c)

57

Lemma compile_com_correct_terminating:
 ∀ s c s', ceval s c s' →
 ∀ C pc stack,
 code_at C pc (compile_com c) →
 transitions C (pc, stack, s)
 (pc + codelen(compile_com c), stack, s').

C compile_com c

pc

Compiler correctness: wrapping up
compil.v

58

Theorem compile_program_correct_terminating:
 ∀ s c s',
 ceval s c s' →
 machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_terminating_2:
 ∀ s c s',
 star step (c, Kstop, s) (SKIP, Kstop, s') →
 machine_terminates (compile_program c) s s'.

Theorem compile_program_correct_diverging:
 ∀ c s,
 infseq step (c, Kstop, s) →
 machine_diverges (compile_program c) s.

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

Part 5: summary

59

correctness
theorem for
terminating

and diverging
programs

behaviors

termination divergence

small-
step

semanticsabout
is

observe traces

belong to

emit

reasoning simulation
diagrams

using

continuations

rel
y o

n

is proved by

fac
ilita

te

anti-stuttering
measure

strengthened
w

ith

alternate proof for
terminating programs

Part 6
How to turn CompCert
from a prototype in a lab
into a real-world compiler?

CompCert compiler: 11 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

Mach

type elimination

spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

ASM code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

(instruction scheduling)

61

no side-effect

determinization

CompCertC

ASM

Multiplicity of source behaviors
Reducing non-determinism during compilation

The C language is not deterministic: the evaluation order is partially
unspecified.

The expression f()+g() can evaluate either to:

• 1 if f() is evaluated first (returning 1), then g() (returning 0);

• -1 if g() is evaluated first (returning 1), then f() (returning 0).

Every C compiler chooses one evaluation order at compile-time. 
The compiled code therefore has fewer behaviors than the source program 
(1 instead of 2). Forward simulation fails.

62

int x = 0;
int f(void) { x = x + 1; return x; }
int g(void) { x = x - 1; return x; }

Back to simulations

S: source program C: compiled program

Backward simulation: every possible behavior of C is a possible behavior of S

Safe backward simulation: for any behavior b of C, S can have either
behavior b or go wrong

If the target language is deterministic, forward simulation implies backward
simulation (and therefore bisimulation)

63

Handling multiple compilation passes

64

CompCertC

Clight

C#minor

Cminor

ASM

CminorSel

RTL

LTL

Mach

Linear

LTLin

forward simulation proof

backward simulation proof

compiler pass

Theorem transf_c_program_correct:
 ∀ p tp,
 transf_c_program p = OK tp →
 backward_simulation (Csem.semantics p)  
 (Asm.semantics tp).

Compiler.v

https://compcert.org/doc/html/compcert.driver.Compiler.html

Verification patterns

Verified validator

• Less to prove (if validator simpler than transformation)

• Validator reusable for several variants of an optimization

• Can be efficient (cheap enough to be invoked on every compiler run)

Example: register allocation with advanced spilling and splitting

65

Verified transformation
transformation transformation

validator

Verified translation validation

= formally verified
= not verified

CompCert compiler: 11 languages, 18 passes

Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

Mach

type elimination

spilling, reloading

calling conventions

stack allocation

of «&»variables

instruction

selection

register

allocation (IRC)

linearisation

of the CFG

layout of

stack frames

ASM code

generation

CFG construction

expr. decomp.

Optimisations: constant prop., CSE, tail calls,
(LCM), (software pipelining) 

(instruction scheduling)

66

no side-effect

determinization

CompCertC

ASM

CompCert compiler: 11 languages, 18 passes

C#minor

CminorCminorSelRTL

Linear

MachASM

67

Clight

LTLin

CompCertC

LTL

S t S′

S t * S′ S t n S′ S t + S′ S t ∞

Behaviors

termination divergence

going wrong

Small-step semantics

execL P b

Smallstep.v
library

Observable behaviors
Behaviors.v and Events.v

trace = list of I/O events

traceinf = infinite list of I/O events

I/O event

• call to an external function (e.g. printf)

• memory accesses to global volatile variables (hardware devices)

68

Inductive program_behavior :=
 | Terminates (t: trace) (n: int)
 | Diverges (t: trace)
 | Reacts (tinf: traceinf)
 | Goes_wrong (t: trace).

https://compcert.org/doc/html/compcert.common.Behaviors.html
https://compcert.org/doc/html/compcert.common.Events.html

General form of small-step semantics
Smallstep.v

 maps:

• each name of a function or global variable to a memory address

• each function pointer to a function definition

Semantic states include a memory state, mapping addresses to values

G

S
69

initial_state()SG ⊢ S t S′

does not change
during transitions

observed events

final_state(,n)S

return value

https://compcert.org/doc/html/compcert.common.Smallstep.html

The CompCert memory model
Memory.v

Shared by all the languages of the compiler

An abstract view of memory refined into a concrete memory layout

In the semantics:

Memory operations (load, store, alloc, free) over values  
(machine integers, pointers, floating-point numbers)

Memory safety preserved by CompCert (good variable properties)

Generic memory injections and memory extensions

70

int(5)

int(7)

int(0)

int(128)

b2

ptr(b2, 2)
b1

int(5)
b3m: mem

https://compcert.org/doc/html/compcert.common.Memory.html

Semantic states

71

return statestatecall state internal
function

return
instr.

other instr.

external function

program

starts

program

ends

Exemple: Clight

Inductive state :=
 | State (f: function)(s: statement)(k: cont)(e: env)(le: temp_env)(m: mem)
 | Callstate (fd: fundef)(args: list val)(k: cont)(m: mem)
 | Returnstate (res: val)(k: cont)(m: mem).

Exception: assembly languages, where a state is a pair of a memory and a mapping from
processor registers to values

CompCert C source language
(see chapter 4 of the user’s manual)

Expressions are annotated with their type

Overloading and implicit conversions between types

Expressions have side-effects

‣Assignments are expressions

Non-deterministic evaluation of expressions (e.g., see this slide)

Numerous semantic rules in small-step style

Commands
All C constructs: loops, switch, goto, break, continue, return

Numerous semantic rules in small-step style

72

Eval(int(5), Tint(I32,Signed)): expr

https://compcert.org/man/manual004.html
https://compcert.org/man/

Clight language
Clight.v

Expressions are annotated with their type

No overloading and explicit conversions between types and arithmetic operators

Expressions are pure

Temporary variables do not reside in memory

19 semantic rules in big-step style

Commands
Assignments are commands

Single syntax for loops, continue command

‣ C loops are derived forms

25 semantic rules in small-step style

+ numerous rules for unary and binary operators, memory loads and stores

73

& v

Sloop s1 s2

Econst_int(int(5), Tint(I32,Signed)): expr

https://compcert.org/doc/html/compcert.cfrontend.Clight.html

The CompCert C reference interpreter
Cexec.v

Outcome:

• normal termination or aborting on an undefined behavior

• observable effects (I/O events: printf, malloc, free)

Faithful to the formal semantics of CompCert C; the interpreter displays all
the behaviors according to the semantics

reference
interpreter.c outcome

Compcert C

74

step: state → trace → state → Prop do_step: world → state → list (trace * state)

external world:
uniquely determines the
results of external calls

predicate function

https://compcert.org/doc/html/compcert.cfrontend.Cexec.html

Using the reference interpreter:
exhaustive exploration

75

S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4

Time 0:

Time 1:

Time 2:

Time 3:

Time 4:

Using the reference interpreter:
randomized exploration

76

RandomizedFirst choice

S0

S3

S7

Sb

Sa

S0

S1

S4

S0

S1 S2 S3

S6 S7 S8S5

S9

Sb

Sa

S4

Using the reference interpreter
A first example

int main(void)
{ int x[2] = { 12, 34 };
 printf("x[2] = %d\n", x[2]);
 return 0; }

Stuck state: in function main, expression
 <printf>(<ptr __stringlit_1>, <loc x+8>)
Stuck subexpression: <loc x+8>
ERROR: Undefined behavior

reference interpreter

Using the reference interpreter
A second example: randomized exploration

State 45.9: returning 3
State 45.10: returning 2
State 45.11: returning 1

State 55.1: returning 0
Time 55: program terminated (exit code = 0)

int a() { printf("a "); return 1; }
int b() { printf("b "); return 2; }
int c() { printf("c "); return 3; }

int main () { printf("%d\n", a() + (b() + c())); return 0; }

reference interpreter

9

6

3

RTL language
RTL.v

Each function is represented by its CFG

Instructions only

Unlimited supply of pseudo-registers

79

Iop(int(5), args, dest, succ): instruction

list of
pseudo-regs

register to
store the result

successor
node

0 x := 1

1 i := 1

4

x<9

5 x := x+2

7

x>50

8

x := x+1 x := 2*x

return x

i := i+1

2 i<n

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
 if (x < 9) x = x + 2;
 else if (x > 50) x = x + 1;
 else x = 2 * x;
 return x; }

https://compcert.org/doc/html/compcert.backend.RTL.html

Part 6: summary

Proving a compiler pass mainly amounts to proving a simulation diagram

Many reusable libraries:

• simulations, memory model, C semantics, Clight and RTL languages

• machine integers, dataflow solver

Some compilation options

• using the CompCert C interpreter: -interp (-trace, -all, -random)

• tracing options: -dc, -dclight, -drtl, …

• show the time spent in compiler passes: -timing

80

Part 7: Compiling critical embedded
software with CompCert

81

Fly-by-wire softwareExecute pilot's commands

Flight assistance: keep aircraft within safe flight envelope

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%&G%HE%&&%EI

1J59K$?$@:%L%-M6:N?$%L

!"#$%&'($#

)(*+,*+-'./+
0$1&"#/.

!'.2.34#
1$5/

!67+7'($#

789:;+:.</.
0$=#.$(+>".432/
&$>'#'$=

Mostly control-command code (Scade) +  
a minimalistic OS (C) 

100k - 1M LOC code, but mostly generated from
block diagrams (Simulink, Scade)

Fly-by-wire software

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%''%F%GH%I'%GG%'J

495:7:K@$%L9:A?:L$

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%FF%G%HI%JF%HH%F'

K"%=<9:B:?";:5A

L K$%?M"N:;9$%C$%NC67%:@N59;"A;%86%>OPIQR,S2>PI&,
!$A%=5C6@$%T%IF%N"#$7%8$%8$7?9:N;:5A%U%V%G%N"#$7%N569%C$7%"6;9$7W
!$A%?M"9#$%8$%;9"=":C%:A86:;$%U)FR'%T%X%C:#A$7%8$%;$7;%N569%I%C:#A$%8$%?58$%
$@E"9Y6<ZW

The qualification
process (DO-178)

Rigorous validation: review (qualitative), analysis
(quantitative), testing (huge amounts)

Conducted at multiple levels, from design to final product

Meticulous development process; extensive documentation

From block diagrams
to assembly

code
generator compiler

output
outputinput

observation
point

variable stored
in RAM

delay symbol

delay macro

delay symbol

delay symbol
delay
macro

; annotation: Begin of a loop  
...  
addi r3, 0, 1  
; annotation: Here x is at r3  
...  
; annotation: End of a loop

Program annotations

A mechanism to attach annotations to program points

• Mark specific program points

• Provide information about the location of C variables

• Ensure that some variables are preserved (e.g. x must be kept in a register)

Annotations are preserved during compilation.

• Each annotation generates an observable event

• The correctness theorem ensures preservation of the sequencing of 1)

symbols, and 2) of accesses to hardware devices (volatile variables)

_annot("Begin of a loop");  
...  
x = 1;  
_annot("Here x is at %1",x);  
...  
_annot("End of a loop");

compiler

A formally verified compiler gives traceability guarantees.

Simplified example

• The semantics preservation theorem ensures preservation of:

• the sequencing of symbols,

• the sequencing of accesses to hardware devices (volatile variables).

Remember the main theorem: If the source program can not go wrong, then
the behavior of the generated assembly code is exactly one of the behaviors of
the source program.

Conformance to the qualification process

87

How good is the
compiled code ?

Trade-off between

• traceability guarantees

• and efficiency of the generated
code

Low-level verifications

• reviews of the assembly

• computation of a WCET
estimation

88

Compiling critical embedded software
Improved performances of the generated code,  
while providing proven traceability guarantees thanks to annotations

FCGU A380: 3600 files, 3.96 MB of assembly code

• Estimated WCET for each file

• Average improvement per file: 13,5%

• Compiled with CompCert 1.10, 2012

89

Overall assessment

The improvement mainly comes from the register allocation pass.

• From: no register allocation

• To: sharing of local variables among available registers

Traceability guarantees

• From: tracking of all program variables

• To: tracking of meaningful variables (used in block diagrams)

90

Part 8:
CompCert, a shared infrastructure
for ongoing research

The Verasco abstract interpreter
[Jourdan, Laporte, Blazy, Leory, Pichardie, POPL’15] [Blazy, Laporte, Pichardie, ICFP’16]

A holistic effect with compiler verification

Theorem csharpminor_compiler_correct_alt:
 ∀ p tp b,
 transf_c_program p = OK tp →
 execC p b →
 execASM tp b.

Theorem analyzer_is_correct:
 ∀ p b,
 static_analyzer p = Success →
 execC p b.

CompCert compiler

Verasco abstract interpreter

forward simulation

p can not go wrong

Theorem csharp_compiler_correct_stronger:
 ∀ p tp b,
 transf_c_program p = OK tp →
 execASM tp b.

Verasco architecture

statesState abstraction

control flowAbstract interpreterAlarms

CompCert compilerC#minorClightCompCert C ...

93

integer and

floating-point

arithmetic

CongruencesIntervals Polyhedra OctagonsSymbolic

equalities
Linearization

Numerical abstraction

Communication
channels

requires reasoning on
double-precision floating-point

numbers (IEEE754)

crucial to analyze the safety
of memory accesses 
 (memory alignement)

conjunctions of linear
inequalities ±x ±y ≤ c

symbolic conditional
expressions

(improve precision of  
assume commands)

conjunctions of linear
inequalities ∑ai xi ≤ c

Turning CompCert into a secure compiler
CT-CompCert [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL’20]

Cryptographic constant-time (CCT) programming discipline

94

unsigned nok-function (unsigned x, unsigned y, bool secret)
{ if (secret) return y; else return x; }

unsigned ok-function (unsigned x, unsigned y, bool secret)
{ return x ^ ((y ^ x) & (-(unsigned)secret)); }

Theorem compiler-preserves-CCT:
 ∀ S C,
 compiler S = OK C →  
 isCCT S →
 isCCT C.

Theorem compiler-correct:
 ∀ S C b,
 compiler S = OK C →  
 execCompCertC S b →  
 execASM C b.

How to turn CompCert into a formally-verified secure compiler?

Which proof technique for the isCCT policy?

95

Difficulty: tricky proofs!

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

Theorem compiler-preserves-CCT:
 ∀ S C,
 compiler S = OK C →  
 isCCT S →
 isCCT C.

S1
ℓ S2

S′ 1
ℓ′ S′ 2

with φ(S1, S′ 1) implies ℓ = ℓ′

isCCT S

Observational non-interference: observing program leakage (boolean guards and memory
accesses) during execution does not reveal any information about secrets

Indistinguishability property : share public values, but may differ on secret valuesφ(Si, S′ i)

Proving CCT preservation:
back to simulation diagrams

96

must predict the
number of steps

at target level

Proof-engineering: leverage the existing proof scripts as much as possible

t’=t

or (t’ and t is leak only)= ε

S1
≈ C1

C2≈S2

t’t
S’1 ≈ C’1

C’2≈S’2

t’t
n1

n2

S1
≈n C1

C2
≈n’S2

t’t
n

Verifying just-in-time (JIT) compilation [Barrière’s PhD 12/2022]
[Barrière, Blazy, Flückiger, Pichardie, Vitek, POPL’21] and [Barrière, Blazy, Pichardie, POPL’23]

A JIT compiler interleaves the execution of a program with its optimizations

Dynamic speculation: specializes functions, requires deoptimization

 
Non-deterministic semantics: either deoptimize to the source program or
continue to the next instruction in the optimized program

97

IR interpreter native exec.optimization

speculation

backend

monitor

profilerprofiler

source
program

… 
f();  
… 

g();

new
program

interpretation
interpretation

com
pilation
of f()

com
pilation
of g()

dynamic
optim.

dynamic
optim.

Proving semantics preservation:
the simulation approach

98

C4≈S4

JIT
program 

P0

source 
program

P0

S1
≈ C1

C2≈S2

Both the program and the execution
state are evolving

C3≈S3

JIT
program 

P2

JIT
program 

P1

dynamic
optim.

dynamic
optim.

Nested simulations for JIT verification

99

C4≈JIT
S4

JIT
program 

P0

source 
program

P0

S1
≈JIT C1

C2≈JIT
S2

Invariant ≈JIT: at any point during JIT
execution

• the current state Ci corresponds
to a source state Si

• the curent JIT program Pi is
equivalent to the source
program P0

Nested simulation: this equivalence
is expressed with another simulation

C3

≈JIT

S3

JIT
program 

P2

JIT
program 

P1

dynamic
optim.

dynamic
optim.

C2

C3 P2

P0

P0

P1

P1

P2

≈JIT

≈JIT

Both the program and the execution
state are evolving

Work in progress 🏗

100

Clight C#minor Cminor CminorSel RTL

LTLLTLinLinearMach

CompCertC

ASM

Catala

FPGA

SSA

GSA

new
 font-end

new
 back-end

new optimizations

new target

Gated SSA (static single assignment) intermediate
representation

101

4 x<9

3 i<n

0 x0 := 1

1 i0 := 1

4 x1<9

5 x2 := x1+2 7 x1>50

8 x3 := x1+1 10x4 := 2*x1

12 i2 := i1+1

3 i1<n

15 return x1

i1 := ɸ(i0,i2)

x1 := ɸ(x0,x2)

x5 := ɸ(x2,x3,x4)

Program in SSA form

4 x<9

3 i<n

Path predicates

𝒫2: x1<9

𝒫3: x1≥9 ∧ x1>50

𝒫4: x1≥9 ∧ x1≤50

0 x0 := 1

1 i0 := 1

4 x1<9

5 x2 := x1+2 7 x1>50

8 x3 := x1+1 10x4 := 2*x1

12 i2 := i1+1

3 i1<n

x5 := ɣ((𝒫2,x2), (𝒫3,x3), (𝒫4,x4))

i1 := μ(i0,i2)

x1 := μ(x0,x2)

15 return x1

x5 := η(i1≥n, x1)

Program in GSA form

int f(int n) {
 int x = 1;
 for (int i = 1; i < n; i++)
 if (x < 9) x = x + 2;
 else if (x > 50) x = x + 1;
 else x = 2 * x;
 return x;
}

C program

Conclusion and perspectives

CompCert is a shared infrastructure for ongoing research

•compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China),
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB),
CompCert-KVX (Verimag, Fr)

•program logics: VST (Princeton, USA), Gillian (Imperial College, GB),  
VeriFast (KUL, Be)

•static analysis : Verasco (Inria, Fr)

Opens the way to the trust of development tools

From early intuitions to fundamental formalisms … 
 verification tools that automate these ideas … 
 actual use in the critical software industry

102

 Questions?

103

Bibliography
• Boyer, R. S., Moore, J S. MJRTY - A Fast Majority Vote Algorithm. Essays in Honor of Woody Bledsoe. 1991.

• Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11.

• Leroy. Formal verification of a realistic compiler. Communications of the ACM 52(7), 2009.

• Leroy. A formally verified compiler back-end. JAR 43(4), 2009.

• Appel, Blazy. Separation logic for small-step Cminor. TPHOLs’07.

• Blazy, Leroy. Mechanized semantics for the Clight subset of the C language. JAR 43(3), 2009.

• Leroy, Appel, Blazy, Stewart. The CompCert memory model. 2014. Program Logics for Certified Compilers.

• Leroy, Blazy, Kästner, Schommer, Pister, Ferdinand. CompCert - A formally verified optimizing compiler. ERTS2’16.

• Kumar, Myreen, Norrish, Owens. CakeML: a verified implementation of ML. POPL’14.

• Jourdan, Laporte, Blazy, Leroy, Pichardie. A formally-verified static analyzer. POPL’15.

• Blazy, Laporte, Pichardie. An Abstract Memory Functor for Verified C Static Analyzers. ICFP’16.

• Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu. Formal verification of a constant-time preserving C

compiler. POPL’20.

• Barrière, Blazy, Flückiger, Pichardie, Vitek. Formally verified speculation and deoptimization in a JIT compiler. POPL’21.

• Barrière, Blazy, Pichardie. Formally verified native code generation in an effectful JIT - or: Turning the CompCert

backend into a formally verified JIT compiler. POPL’23.

• Barthe, Demange, Pichardie. Formal Verification of an SSA-based middle-end for CompCert. TOPLAS’14.

• Herklotz, Demange, Blazy. Mechanised semantics for gated static single assignment. CPP’23.

• Merigoux, Chataing, Protzenko. Catala: a programming language for the law. Proc. ICFP’21.

104

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA131702
https://xavierleroy.org/publi/compcert-CACM.pdf
https://xavierleroy.org/publi/compcert-backend.pdf
http://dx.doi.org/10.1007/s10817-009-9148-3

