Verified compilation
An introduction to CompCert

Sandrine Blazy

N\ Université (‘) IRISA

7N\ de Rennes

OPLSS, Eugene, 2023-07-05

Deductive verification

SOFTWARE

CORRECT

in thejsense of

PROOIj
—

ith

conducted]

MATHEMATICAL
RIGOUR

SPECIFICATION

=

Sriday, 2Lth June, .

-

Checking a large routine. by Dr, A, Turing.

How can one check a routine in the sense of making sure that it is right?

In order that the man wiwo checks may not have too difficult a task the

| | |
FrOrr] early Intu ItIOnS . programaer should mske a number of definite assertions which cun be checked
individually, and from which the correctness of the whole programae casily

follows,

Conaider tho analogy of checking an addition. If it ias given as:

A. M. Turing.

Checking a large routine.1949.

—STOP

TESTr —nr——

1374
5906
6719
L337
7768

26104

ono_muat check the whole at cne aitting, because of the carrices,

u<+1
forr=0ton—1do
v =ut+v—s=s5+1 veu
for s=1 to r do
u<— u-+yv

r'=r414H

[EST s —r

... to deductive-verification and automated tools

Floyd 1967, Hoare 1969

SOFTWARE

written}in in thejsense of inclubing

LANGUAGE) PROOF/L
. ; — ~enferces

LOGIC
T | Bucted with
defined , by orgaCes 7\
PROOF SOFTWARE .
SEMANTICS) CERTIEI ATQ o 2 INVARIANTS
eifher or implemented In
MATHEMATICAL

RIGOUR) FUNCTIONAL

INTERPRETEFQ < AUTOMAT@ INTERACTIVE LANGUAGE
~— — — - 4

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

A

A

A|C|C|B|B|C|C

C

B

C

C

1

majority = A
cpt_delta =3

T ——

MJRTY—A Fast Majority
Vote Algorithm'

Robert S. Boyer and J Strother Moore

Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc.

1717 West Sixth Street, Suite 290
Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary
number of candidates has received a majority of the votes cast in an election.
The number of comparisons required is at most twice the number of votes.
Furthermore, the algorithm uses storage in a way that permits an efficient
use of magnetic tape. A Fortran version of the algorithm is exhibited. The
Fortran code has been proved correct by a mechanical verification system for
Fortran. The system and the proof are discussed.

Another historical example

Boyer-Moore’s majority. 1980

Given N votes, determine the majority if any

AlAlAlc|c|B|B|c|Cc|c|B|C|C]

1

majority = A
cpt_delta =3

T ——

A XK|X|ele]B|B|c|c|c|BC|C]

i

majority = A

cpt_delta = 1

T —

T ——

MJRTY—A Fast Majority
Vote Algorithm’

Robert S. Boyer and J Strother Moore

Computer Sciences Department
University of Texas at Austin
and
Computational Logic, Inc.
1717 West Sixth Street, Suite 290
Austin, Texas

Abstract

A new algorithm is presented for determining which, if any, of an arbitrary
number of candidates has received a majority of the votes cast in an election.
The number of comparisons required is at most twice the number of votes.
Furthermore, the algorithm uses storage in a way that permits an efficient
use of magnetic tape. A Fortran version of the algorithm is exhibited. The
Fortran code has been proved correct by a mechanical verification system for
Fortran. The system and the proof are discussed.

Part 1. summary

SOFTWARE) CORRECT) SPECIFICATION
-

"

writtenjin VERIFIED \ N thei sense of

COMPILER)
C LANGUAGE PROOF !
: < T enferces

defined by conducted with
COQ PROOF
SEMANTICS) ASSISTANT INVARIANTS
s {
e:

INTERPRETEF\j
<&

| ecture material

https://people.irisa.fr/Sandrine.Blazy/2023-0PLSS

I —

Mechanized semantics, second lecture

-I_-hese SI IdeS _ _ Traduttore, traditore:
(including some slides borrowed from by Xavier Leroy) formal verification of a compiler

Xavier Leroy
2019-12-12

H{e u Sed C O q d eve | O p m e n ts College de France, chair of software sciences

SOFTWARE Mechanized semantics: the Coq development

This repository contains the Coq sources for the course "Mechanized semantics" given by Xavier Leroy at Collége
de France in 2019-2020.

This is the English version of the Coq sources. La version commentée en frangais est disponible ici.
An HTML pretty-printing of the commented sources is also available:

1. The semantics of an imperative language

IMP
SIMPLE IMPERATIVE PROGRAMS o Library Sequences: definitions and properties of reduction sequences.

2. Formal verification of a compiler

o Module IMP: the imperative language IMP and its various semantics.

In this chapter, we take a more serious look at how to use Coq as a tool to study other things. Our case studyisa |

simple imperative programming language called Imp, embodying a tiny core fragment of conventional mainstream
languages such as C and Java. o Library Simulation: simulation diagrams between two transition systems.

o Module Compil: compiling IMP to a virtual machine.

https://people.irisa.fr/Sandrine.Blazy/2023-OPLSS

Part 2:
early intuitions

SOFTWARQ

3
writtenin

47

C LANGUAGE

defined by

SEMANTICS)

INTERPRETET)

CORRECT) SPECIFICATION
a a
In the sense of including
PROCT;lhhu
§ esnu.onforces

conducted with

4
- . 3
% o
S Wy 2
Al

COQ PROOF
ASSISTANT

INVARIANTS

The miscompilation risk

Compilers still contain bugs!

We found and reported hundreds of previously unknown
bugs [...]. Many of the bugs we found cause a compiler to
emit incorrect code without any warning. 25 of the bugs we
reported against GCC were classified as release-blocking.

4—

[Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11]

10

Verified compilation

Compilers are complicated programs, but have a rather simple end-to-end
specification:

The generated code must behave as prescribed
by the semantics of the source program.

B E—

This specification becomes mathematically precise as soon as we have formal
semantics for the source language and the machine language.

Then, a formal verification of a compiler can be considered.

11

An old Idea ...

John McCarthy
James Painter’

CORRECTNESS OF A COMPILER
FOR ARITHMETIC EXPRESSIONS’

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
language.

The definition of correctness, the formalism used to express the descrip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references [1], {2], (3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967

3

Proving Compiler Correctness
In a Mechanized Logic

R. Milﬁer and R. Weyhrauch

Computer Science Department
Stanford University

Abstract :

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ArLGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented enly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Machine Intelligence (7), 1972

12

Now taught as an exercise

(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack compiler correct)

Inductive aexp := ANum(n:nat)| AId(x:string)| APlus(al a2:aexp)| ... semantics compiler
(aeval, .
(s_compile)
C . S_execute)
Definition state := string - nat.
Fixpolnt aeval(s:state)(e:aexp):nat :=
B — Fixpoint s compile(e:aexp):
list sinstr
e ——

Inductive sinstr := SPush(n:nat)| SLoad(x:string)| SPlus| SMinus| SMult.

Fixpoint s execute(s:state)

match (prog,

(nil,

end.

_)

stack) with
=> stack

(stack:1list nat) (prog:list sinstr):list nat :=

I Tl Y

13

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Now taught as an exercise

(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack compiler correct)

: : semantics .
Fixpoint aeval(s:state) (e:aexp):nat := ... (aeval compiler
’ (s_compile)
S_execute)
- ®e o o ' J ' J

Fixpoint s compile(e:aexp): list sinstr :=

uone|idwod

interactive proof

I
]

Fixpoint s execute(s:state) (stack:1list nat) (prog:list sinstr):1list nat

Theorem s compile correct: V s e,
s execute s [] (s compile e) [aeval s e].

Proof.

14

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Now taught as an exercise

(Mechanized semantics: when machines reason about their languages, X.Leroy)
(Software foundations, B.Pierce et al.: exercise stack compiler_correct) (@

Fixpolint aeval(s:state)(e:aexp):nat :=

Q
O
S

O,
Q
iy
O
D

B —————

Fixpoint s compile(e:aexp): list sinstr := ...

T ———————www—

Fixpolnt s execute(s:state)(stack:1list nat) (prog:list sinstr):list nat :=

B

Theorem execute app : V st pl p2 stack,

s execute st stack (pl ++ p2) = s execute st (s execute st stack pl) p2.

Proof. .
(* *) Theorem s compile correct aux: V s e stack,

0ed . s execute s stack (s compile e) = aeval e :: stack.

) Proof.

~TI— . . PR

induction e; (* .. *)
Qed. ~ proof by induction on

- @uctuw

Theorem s compile correct: V s e,

semantics
(aeval,
S_execute)

J

compiler

(s_compile)

;)

interactive proof

s execute s [] (s compile e) = [aeval s e].
Proof. Extraction s compile.
intros. apply s compile correct aux. — —
Oed.

D
X
—
=
Q
O
—
O
D)

7

toy—compiler.ml|

15

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html#state

Course outline

Formal verification in Coqg of a non-optimizing compiler for a simple imperative
language (from IMP language to VM language)

Extension of these ideas to CompCert, a realistic C compiler

16

The CompCert formally verified compiler
(X.Leroy, S.Blazy et al.) https://compcert.org

A moderately optimizing C compiler

Targets several architectures (PowerPC, ARM, RISC-V and x86)
Programmed and verified using the Coq proof assistant

Shared infrastructure for ongoing research

Used in commercial settings (for emergency power generators and flight
control navigation algorithms) and for software certification - Abslnt company

Improved performances of the generated code while providing proven
traceabillity information

ACM Software System award 2021
ACM SIGPLAN Programming Languages Software award 2022

17

Part 3:
basics of

veriflied compilation

SOFTWARQ

]

writtenin

C LANGUAG9

defined by

OPERATIONAL
SEMANTICS

CORRECT j SPECIFICATION
i i
In the sense of including
PROOU
; “eews.onforces

conducted with

291 PROOI) INVARIANTS

ASSISTANT

18

Compiling IMP instructions
Already seen in Imp.v &*

Fixpolint aeval(s:state)

nat

B

(ANum 1))

Se(ma”tl'cs Denotational style for the semantics of IMP expressions | (e:aexp):
aeval,
beval, |
ceval) y Big-step (operational) style for commands: relation ¢/s = s’
Inductive com := Definition example: com :
CSkip <{ X X + 1 }>
CAss (x: string) (a: aexp)
CSeq (cl c2: com) Definition same example: com :=
CIf (b: bexp) (cl c2: com) CAss X (APlus (AId X)
CWhile (b: bexp) (c: com).
boolean

expressions ,
| E _Skip

| E WhileFalse

Inductive ceval

V st, st =[skip]=> st

st =[while b do ¢ end]=> st

| E WhileTrue : V st st' st'' b ¢, beval st b

st
st'
st

c]=> st' -

" while b do ¢ end]=> st''
" while b do ¢ end]=> st''

V b st ¢, beval st b

com - state —-» state -» Prop

-

false -

= true -

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html

Mechanized semantics: the Coq development

This repository contains the Coq sources for the course "Mechanized semantics" given by Xavier Leroy at Collége

de France in 2019-2020.

This is the English version of the Coq sources. La version commentée en francais est disponible ici.

[| | |
L An HTML pretty-printing of the commented sources is also available:
B 1. The semantics of an imperative language
o Module IMP: the imperative language IMP and its various semantics.
; ; o Library Sequences: definitions and properties of reduction sequences.
]
< ; O I ' l D I | V 2. Formal verification of a compiler
]

o Module Compil: compiling IMP to a virtual machine.

o Library Simulation: simulation diagrams between two transition systems.

Inductive 1instr: Type :=

Iconst (n: Z) (* formerly SPush *)

Ivar (x: 1ident) (* formerly SLoad *)

Tadd

Isetvar (x: 1dent) (* pop an integer and assign it to variable *)
Ibranch (d: Z) (* skip forward or backward d instructions *)

Topp. (* pop one integer, push 1ts opposite *)

Ibeqg (dl dO: Z) (* pop 2 integers, skip dl instructions 1if =, d0 1f # *)
Ible (dl dO: Z) (* pop 2 integers, skip dl instructions 1f =, 1f > *)
Thalt. (* stop execution *)

Definition code := list instr.

Definition ex codel:code := Ivar "x" :: Iconst 1 :: Iadd :: Isetvar "x" :: nil.
Definition ex code2:code := S

Ivar "x" ¢:: Iconst 1 :: Iadd :: Isetvar "x" :: Ibranch (-5) :: nil. f:ijiij//)
N

20

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

VM semantics
compil.v OF

formerly | | N | |
e state> Small-step semantics, given by a transition relation s —

position of |
DeMn stack := list Z. - the currently ew

. . Definition store := ident - Z. Instruction
fixed list of

)\ Definition config := (Z * stack * store).

@ucti% instr_at C pc = Some |

Inductive transition (C:code): config - config - Prop :=

| trans const: V pc stack s n, C [:::::::]
instr at C pc = Some(Iconst n) -

transition C (pc, stack, s) (pc + 1, n :: stack, s) T
| trans setvar: V pc stack s x n,
instr at C pc = Some(Isetvar x) - PC
transition C (pc, n :: stack, s) (pc + 1, stack , update x n s)
| trans branch: V pc stack s d pc',
instr at C pc = Some(Ibranch d4d) - \\\\\\\\\\\

pc' = pc +1+d - increments pc byy
transition C (pc, stack, s) (pc', stack, s) \\\\\\\‘

. e

T — T

branch instructions

Increment byy o1

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html
http://coq.inria.fr/library/Coq.Init.Datatypes.html#list
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
http://coq.inria.fr/library/Coq.Numbers.BinNums.html#Z
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition
https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html#update
https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html#transition

Execution of VM programs

Small-step (operational) semantics

Definition transitions (C: code): config - config - Prop
star (transition C).

———

reflexive transitive closure . | . *
N initial states final states
\
Definition machine terminates (C: code) (s_1init s final: store) :=

1 pc, transitions C (0, nil, s init) (pc, nil, s _final)
A instr at C pc = Some Ihalt.

Nil Nil

:
g T

PC

22

Sequences of transitions and their properties
SEequeNCces. V. F

G, Variable A: Type. (* type of states *)
Variable R: A - A - Prop. (* transition relation between states *)
PI———
00— e

Inductive star: A - A - Prop :=

ok /
5—*5 | star refl: V a, star a a
- - | star step: V abc, Rab - star b ¢ » star a c.
0 — B ———————
Lemma star one: V a b, R a b » star a b.
S — D
Lemma star trans: V a b, star a b - V ¢, star b ¢ - star a c.
30— R EE—————————————=—===w__,.
¢t Inductive plus: A - A - Prop :=
— | plus left: V a bc, Rab - star b ¢ » plus a c.
PI——

T T e T O O O O O R i T EEE————————=====wwmmm_—

Lemma plus star trans: V a b ¢, plus a b » star b ¢ -» plus a c.

T — E———

Definition irred (a:A): Prop := (* stuck states *)
V b, ~(R a b). 23

e — B—

https://xavierleroy.org/cdf-mech-sem/CDF.Sequences.html

Compilation of commands

code for (CIf b cl c2)

s

—

code for b

code for cl

Ibranch

code for c2

U

code for (CWhile b c¢)

N

-

—

code for b

code for c

Ibranch

ARV

7

Compiler correctness
compil.v OF

Lemma compille com correct terminating:
Vs cs',
cexec s ¢ s' =
V C pc stack,

code at C pc (compile com c) - C compile_com c
transitions C

ceval in Imp.v

(pc, stack, s) T
(pc + codelen (compile com c¢), stack, s'). DC
remember
S compile CorreCt auX! . ——————————— .
Definition machine terminates (C: code) (s_1init = final: store) := ~
1 pc, transitions C (0, nil, s_init) (pc, nipgth dfithe list proof by induction

A instr at C pc = Some Ihalt. on the derivation of

S — e ——— CEXeC SC S’
Definition compile program (p: com) : code :=
compile com p ++ Thalt :: nil.

Theorem compile program correct terminating:
V s c s',
cexec s ¢ s' =
machine terminates (compile program c) s s'.

25

T —— EEEEE—

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

Part 3: summary

« The generated code must behave as prescribed by
the semantics of the source program. »

S — T EEE———————==========TH:HE

Theorem s compile correct: V s e,
s execute s [] (s compile e) = [aeval e].

T — e —

. Theorem complle program correct terminating:
one big step\ Vses'
4

/\\
cexec s ¢ s' -

one - machine terminates (compile program c) s s'.

~ or several small L — —
. steps

This is not enough to conclude that the compiler is correct!

26

Part 4
semantic preservation

anad
compiler verification

SOFTWARIQ

3
writtenin

C LANGUAGQ

defined by

SMALL-STEP
SEMANTICS

CORRECT j SPECIFICATION
i i
In the sense of including

PROOU
i oy enforces

conducted with J |
INVARIANTS:
SIMULATIONS

COQ PROOF
ASSISTANT

27

What should be preserved?
Observable behaviors

S *S S ts S3

X = 1;

Thalt

return O0;

observable behaviors

L

Impossible | going wrong

Tadd

x = 1/0 ; |

normal termination = /7divergence while true do skip end

Ibranch (-1)

for(;;) { }

28

Summary of yesterday’s lecture

IMP Expressions: big-step semantics

Commands: big-step semantics compiler is . big-step
correctness B 2hout ©1 semantics

theorem

Theorem complile program correct terminating:
Vs cs',

. cexec s s - 1
machine_terminates (compile program c) s s'.
behaviors |

> Ja[1dwod

10O
1 N
§ D
!
I <
@D

L B ————

Instructions:

small-step :
semantics \i/
termination |
cls = s’

29

Summary of yesterday’s lecture

IMP Expressions: big-step semantics compiler
Commands: small-step semantics correctness |
theorem for B~ -
terminating semantics

programs

™ Jo|1dwod

» 9AI9SQO

behaviors |

Instructions:
small-step \
semantics / . W
termination | divergence |

S > *Yy ST S3

30

Should «going wrong» behaviors be preserved”?

Compilers routinely optimize away going-wrong behaviors.

#include <stdio.h>

int main() This program goes wrong.

{
int x;
x =1/ 0; However, the compiler eliminates x=1/0; as it is dead
return 0; code.

}

Thus, the generated code always terminates.

Justifications

- We know that the program does not go wrong (e.g. by static analysis).

* |t Is the programmer’s responsibility to avoid going-wrong behaviors
(C standards).

31

Should «going wrong» behaviors be preserved”?

This program goes wrong.

include <stdio.h
#include <stdio.h> However, the code generated by the

int main() .
{ compiler does not check the array bounds.
int x[2] = { 12, 34 };
printf("x[2] = %d\n", x[2]);

The generated code may crash but in
general it prints an arbitrary integer and

terminates normally.

return O0O;

This out-of-bound access is an example of an undefined behavior (according
to the ISO C standard).

Notions of semantic preservation: bisimulation

The source program S and the compiled program have exactly the same
behaviors.

 Every possible behavior of S is a possible behavior of C.

 Every possible behavior of C is a possible behavior of S.

Example for the IMP to VM compiler

» (compile_com c) terminates if and only if ¢ terminates, with the same final
store

» (compile_com c) diverges if and only if ¢ diverges
» (compile_com c) never goes wrong

Forward simulation

Forward simulation from a source program S to a compiled code C:
every possible behavior of S is a possible behavior of C

Example:

» theorem compile_program_correct_terminating
- If C diverges, (compile_com C) diverges

This looks insufficient: what if C has more behaviors than S? For instance, if C
can terminate or go wrong?

34

Reducing non-determinism during compilation

A language is deterministic if every program has only one behavior.

The C language is not deterministic: the evaluation order is partially

unspecified.
int x = 0;

int £(void) { x
int g(void) { x

X + 1; return x; }
X - 1; return x; }

The expression £ ()+g() can evaluate either to:

e 1if £() is evaluated first (returning 1), then g () (returning 0);
» -1 1if g () is evaluated first (returning 1), then £ () (returning 0).

Every C compiler chooses one evaluation order at compile-time.
The compiled code therefore has fewer behaviors than the source program
(1 instead of 2). Forward simulation and bisimulation falil.

35

Backward simulation

Backward simulation from a source program S to a compiled code C:
every possible behavior of C is a possible behavior of S.
However, C may have fewer behaviors than S.

If the target language is deterministic, forward simulation implies backward
simulation, and therefore bisimulation.

36

Simulations for safe programs

A program is safe when it either terminates or diverges.

Safe forward simulation: any behavior of the source program S other than
« going wrong » is a possible behavior of the compiled code C.

Safe backward simulation: for any behavior b of the compiled code C, the
source program S can either have behavior b or go wrong.

37

Simulation diagrams

Behaviors are defined in terms of sequences of transitions.

Forward simulation from a source program S to a compiled code C can be
proved as follows:

e show that every transition in S is simulated by some transitions in C

e while preserving an invariant = between the states of S and C

Backward simulation is similar but simulates transitions of C by transitions of S.

38

Lock-step simulation

Every transition in the source S is simulated by exactly one transition in the
compiled code C

U

source St C1 = target
State State
S2 ~ Co
Further show that initial states are related: Sl-m-t A~ Cim-t

and final states arerelated: S ~ C A S € Final = C € Final

39

From lock-step simulation to forward simulation

Sinit

~~)
~~)

U

U

Final 3 Sh

U

Cinit

|

C+

Likewise if Sint makes an infinity of transitions

Cn-1

|

Ch € Final

40

Plus simulation

source S+
Sstate

So

Example: compilation of X :=

Ivar X
(already seen on this slide)

Forward simulation still holds

U

U

X + 1 into

Tconst 1 :: Iadd ::

Cr= target

state

Isetvar

X

nil

41

INncorrect star simulation

U

C‘I\

source S+
Sstate

So

U

Forward simulation is not guaranteed:

e terminating executions are preserved,
e but diverging executions may not be preserved

target
state

42

The problem of infinite stuttering

The source program diverges but the compiled code can terminate normally or
by going wrong.

This denotes an incorrect optimization of a diverging program,
e.g. compiling (while true skip) Into skip

43

Corrected star simulation

source St C1 =L target S C
state state
@
+ or
So Co S’"with O < measure(S’) < measure(S)

U

measure(S) :nat from source states (could be to a well-founded set)

If the source program diverges, it must perform infinitely many non-stuttering
steps, so the compiled code executes infinitely many transitions.

44

Coq library for star simulations: from star simulation
to forward simulation Simulation.v ®*

Variable Cl: Type. (* the type of configurations for the source program *)
Variable stepl: Cl -» Cl -» Prop. (* 1ts transition relation *)

Variable C2: Type. (* the type of configurations for the transformed program *)
Variable step2: C2 -» C2 - Prop. (* 1ts transition relation *)

Variable inv: Cl - C2 - Prop. (* the invariant = *)

Variable measure: Cl - nat. (* the measure that prevents infinite stuttering *)

Hypothesis simulation:
V ¢l cl1', stepl cl cl' -
V ¢2, inv cl c2 -
1 c2', (plus step2 c2 c2' V (star step2 c2 c2' A measure cl' < measure cl))
A 1nv cl' c2'.

U
U

S1 C+ S

| o ,,
+

. - . with O < measure(S’) < measure(S)

U

45

https://xavierleroy.org/cdf-mech-sem/CDF.Simulation.html

Part 4: summary

correctness Qg _ |
theorem

Is proved by

’ semantics

behaviors |

W \'

termination | divergence |

reasoNing e

simulation
| diagrams

> peusyibuens

anti-stuttering
measure

46

Part 5:
small-step semantics

anad
compiler verification

SOFTWARIJ

3
writtenin

C LANGUAGO

defined by

SMALL-STEP
SEMANTICS

SPECIFICATION

CORRECT j

a a

In the sense of including

PRO(D
g “eews.onforces

conducted with

CcOQ PROOF) INVARIANTS:

ASSISTANT SIMULATIONS

47

A small-step semantics for IMP

Relationl ¢/s— ¢’ /s big-step semantics for
N expressioy

X:=a/s — skip/ xw~(aeval as); s

(c; skip)/s = c/s \ cl/s1 —=>c2/s2

\usggtiiﬁlf: py (c1:c)/s1 = (c2;c)/s2
eval s b = true eval s b = false
(ifbthenclelsec2)/s —cl1/s (if bthenclelsec2)/s —>c2/s

eval s b = false eval s b = true

(while bdocend)/s — skip/s (whilebdocend)/s — c;whilebdocend/s

48

https://softwarefoundations.cis.upenn.edu/lf-current/Imp.html

Equivalence with big-step semantics
MPy $*

A classic result:

cls = s’ if and only if c/s - * skip/s’

This proof is useful to build confidence in both semantics

49

https://xavierleroy.org/cdf-mech-sem/CDF.IMP.html

Spontaneous generation of commands

Some rules generate fresh commands that are not subterms of the source program.

(if bthenclelsec?2);c/s—(c1;c)/s

Raises two issues when using simulation diagrams:
 Impractical to reason on the execution relation

e difficult to define the measure

50

Small-step semantics with continuations

Instead of rewriting whole commands:| € /s —=>C /S

T —

rewrite pairs of (subcommand under focus, continuation):

Continuation

e remainder of command
e context in which it occurs (control stack)
Kstop nothing remains to be done
c ® k execution of a sequence of two commands

Kwhile b ¢ k execution of a loop

c/k/s—=>c/k'/¢g’

S

51

Small-step semantics with continuations

c/k/s—=>c’/k'/¢g’ No generation of fresh commands: ¢’ is always a subterm of c

1 — —

(if bthenclelsec2)/k/s—=>cl1/k/s when eval s b = true

I —

New kinds of rules for dealing with continuations

(c1;c2)/k/s = cl1/c2eKk/s | Focus (on the left of a sequence)

I ——————— ————————

skip/cek/s—=c/k/s | Resume (the remaining computations)

T — B

52

A small-step semantics for IMP c/k/is—=c/K/s

T —

X:=a/k/s —skip/k/xw~(aeval as); s

(cl1;c2)/k/s—=cl/c2ek/s

eval s b = true eval s b = false
(ifbthenclelsec2)/k/s—cl1/k/s (if bthenclelsec?2)/k/s—=c2/k/s
eval s b = false eval s b = true
(whilebdocend)/k/s—skip/k/s (whilebdocend)/k/s — c; whilebdocend/Kwhilebck/s

skip/cek/s—-c/k/s

skip/ Kwhilebck/s =+ whilebdocend/k/s

53

Program execution

Termination Definition kterminates (s: store) (c: com) (s':
star step (¢, Kstop, s) (SKIP, Kstop, s’').

Definition kdiverges (s: store) (c: com) :=

Divergence |
infseq step (¢, Kstop, s).

T —

Equivalence between small-step semantics

Theorem equiv_smallstep terminates:
YV s ¢ s', terminates s ¢ s' <> kterminates s c s'.

Theorem equiv_smallstep diverges:
V s ¢, diverges s ¢ <> kdiverges s c.

T —— e

store)

54

Full proot of compiler correctness
Simulation diagram

C +ci/ki/s1 = (pC1, [], 3’1) (pC1, [], 3’1) — M c1/k1/s1

”V”:) C1/k‘| /S1
state J/ state

T or
(pcz, [], s'2) co/ko/so

CZ/kZ/SQ C |_02/k2/82 ~ (pCQ, [], S 2)

With O < measure(cz,k2) < measure(ci,ki)

Difficulties

- find the Invariant &~ between source and target states

* find the measure from source states to a natural number

55

Full proot of compiler correctness
The anti-stuttering measure

When do the source program stutter? When no VM instruction is executed.

(cl1;c2)/k/s—=>cl/c2ek/s
skip/cek/s—=>c/k/s
(if true thenclelsec?2)/k/s—=>cl1/k/s

(while truedocend)/k/s — c; whilebdocend/Kwhilebck/s

measure(c,k): sum of the sizes of ¢ and all the commands appearing in k

length of the list

56

Full proot of compiler correctness
The simulation invariant

_ . Lemma complle com correct terminating:
Remember this slide:] v s ¢ s', ceval s ¢ s' -

V C pc stack,
code at C pc (compile com c) = C Compile_com C
transitions C (pc, stack, s)

(pc + codelen(compile com c), stack, s'). T

PC

C c/k/s = (pc, stack, s’) is defined as:
*S =S¢
- stack =[]
* code at C pc (compile com c)

 C contains compiled code matching k at pc + codelen(compile com c)

57

Compiler correctness: wrapping up
compil.v OF

Theorem complile program correct terminating:
V s cs',
ceval s ¢ s' =
machine terminates (compile program c) s s

Theorem compilile program correct terminating 2:

V s cs',
star step (¢, Kstop, s) (SKIP, Kstop, s') -

machine terminates (compile program c) s s'.

T ——————— R

Theorem complle program correct divergling:
V ¢ s,
infseq step (¢, Kstop, s) -
machine diverges (compile program c) s.

T — ————

58

https://xavierleroy.org/cdf-mech-sem/CDF.Compil.html

Part 5: summary

correctness
theorem for
terminating
and diverging
programs

__Is proved by

small-
step
semantics

traces |

\/ \'
termination | divergence |

conﬁnuaﬁons|-'“"“

reasoning e

simulation
diagrams

UM
“pauayibuais

anti-stuttering
measure

59

optimizations

memory model
Part 6 1ntermedlate language ..
How to turn CompCert | Verlf ledéalﬁbllé?%ﬁgﬁstep
from a prototype in a lab abstract syntax - observable events
_ formal semantics

iINto a real-world compiler?
P dataf low solver

CompCert compiler: 11 languages, 18 passes

ide-effect . t liminati .
CompCertC o S|de.e. e(,: Clight l__»ypeelmma on C#minor J
determinization

Optimisations: constant prop., CSE, tail calls, stack bllocation
Q (LCM), (software pipelining) of «&jvariables
CFG c(:jonstruction instruction
expr. decomp. . i .
RTL J<L—p CminorSel selection Cminor J
lregister (instruction scheduling)
allocation (IRC) <)
; linearisation | sphl!ing, reIoadJi[ng
LTL F_Mf the CFG LTLin |———>Ca N9 convermions Linear J
layout] of

stack [frames

ASM code |

61

Multiplicity of source behaviors
Reducing non-determinism during compilation

The C language is not deterministic: the evaluation order is partially
unspecified.

int x = 0;
int f(void) { x
int g(void) { X

X + 1; return x; }
X — 1; return x; }

The expression £ ()+g () can evaluate either to:

e 11if £() is evaluated first (returning 1), then g () (returning 0);
» -1 1if g() is evaluated first (returning 1), then £ () (returning 0).

Every C compiler chooses one evaluation order at compile-time.
The compiled code therefore has fewer behaviors than the source program
(1 instead of 2). Forward simulation fails.

62

Back to simulations

S: source program C: compiled program

Backward simulation: every possible behavior of C is a possible behavior of S

Safe backward simulation: for any behavior b of C, S can have either
behavior b or go wrong

If the target language is deterministic, forward simulation implies backward
simulation (and therefore bisimulation)

63

Handling multiple compilation passes

CompCertQ

.. o . .»“ C#minor %
. - CminorSeli

RTL 2‘

Theorem transf ¢ program correct:
V p tp,
transf ¢ program p = OK tp -
backward simulation (Csem.semantics p)
(Asm.semantics tp).

e ——

Compiler.v F

\ compiler pass

forward simulation proof

backward simulation proof

https://compcert.org/doc/html/compcert.driver.Compiler.html

Verification patterns

Verified transformation Verified translation validation
transformation transformation

— — B - ormally verified

_)|- \ ; % 7 B - ot verified

validator

Verified validator

 Less to prove (if validator simpler than transformation)

» Validator reusable for several variants of an optimization

» Can be efficient (cheap enough to be invoked on every compiler run)

Example: register allocation with advanced spilling and splitting

CompCert compiler: 11 languages, 18 passes

ide-effect . t liminati .
CompCertC o S|de.e. e(,: Clight l__»ypeelmma on C#minor J
determinization

Optimisations: constant prop., CSE, tail calls, stack bllocation
Q (LCM), (software pipelining) of «&jvariables
CFG c(:jonstruction instruction
expr. decomp. . i .
RTL J<L—p CminorSel selection Cminor J
lregister (instruction scheduling)
allocation (IRC) <)
; linearisation | sphl!ing, reIoadJi[ng
LTL F_Mf the CFG LTLin |———>Ca N9 convermions Linear J
layout] of

stack [frames

ASM code |

66

CompCert compiler: 11 languages, 18 passes

C#minor

CompCertC Clight

Small-step semantics

sL s
shxg | ghte | shng S
h;
termination = | /7divergence
N
Behaviors

execL P Db

P ——

67

Observable behaviors
Sehaviors.v WF and Events.v W

Inductive program behavior :=
Terminates (t: trace) (n: int)
Diverges (t: trace)

Reacts (tinf: traceinf)

Goes wrong (t: trace).

trace = list of I/O events

traceinf = infinite list of I/O events

/O event

e call to an external function (e.g. printf)
e memory accesses to global volatile variables (hardware devices)

https://compcert.org/doc/html/compcert.common.Behaviors.html
https://compcert.org/doc/html/compcert.common.Events.html

General form of small-step semantics
Smallstep.v OF

observed events
o

GFSSS initial state(J) final state(S,n)

'ﬁ — - — ——— — ﬂr

does not change ~\
during transw ;

(G maps:
e cach name of a function or global variable to a memory address
e ecach function pointer to a function definition

Semantic states S include a memory state, mapping addresses to values

69

https://compcert.org/doc/html/compcert.common.Smallstep.html

The CompCert memory model
I\/Iemory.vsQ

Shared by all the languages of the compiler

An abstract view of memory refined into a concrete memory layout

In the semantics: m: mem

——

Memory operations (load, store, alloc, free) over values
(machine integers, pointers, floating-point numbers)

Memory safety preserved by CompCert (good variable properties)

Generic memory injections and memory extensions

4
4
L 4
4

4
4
L 4
4

70

https://compcert.org/doc/html/compcert.common.Memory.html

Semantic states

external function

other Instr.

rogram internal N\ return rogram
Prog —> call state : state .e - return state progra
starts . function - instr. a ends

Exemple: Clight

Inductive state :=

State (f: function)(s: statement)(k: cont)(e: env)(le: temp env) (m: mem)
Callstate (fd: fundef) (args: list val)(k: cont) (m: mem)

Returnstate (res: val)(k: cont) (m: mem).

B —

Exception: assembly languages, where a state is a pair of a memory and a mapping from
processor registers to values

/1

CompCert C source language
(see chapter 4 of the user’s manual)

Expressions are annotated with their type

Eval(int(5), Tint(I32,Signed)):

expr

T ——

Overloading and implicit conversions between types
Expressions have side-effects

> Assignments are expressions

Non-deterministic evaluation of expressions (e.g., see this slide)
Numerous semantic rules in small-step style

Commands
All C constructs: loops, switch, goto, break, continue, return
Numerous semantic rules in small-step style

72

https://compcert.org/man/manual004.html
https://compcert.org/man/

Clight language
Clight.v @*

EXxpressions are annotated with their type

Econst int(int(5), Tint(I32,Signed)):

expr

S — B

No overloading and explicit conversions between types and arithmetic operators
EXxpressions are pure

Temporary variables do not reside in memory
19 semantic rules in big-step style

Commands
Assignments are commands
Single syntax for loops, continue command Sloop s1 s2

> C loops are derived forms
25 semantic rules in small-step style

+ numerous rules for unary and binary operators, memory loads and stores

/3

https://compcert.org/doc/html/compcert.cfrontend.Clight.html

The CompCert C reference interpreter

Cexec.v OF
.C | .reference outcome
Interpreter
Compcert CJ
Outcome:

» normal termination or aborting on an undefined behavior
« observable effects (I/O events: printf, malloc, free)

Faithful to the formal semantics of CompCert C; the interpreter displays all
the behaviors according to the semantics

step: state - trace -» state - Prop do step: world - state - list (trace * state)

———

predicate function

external world:
unigquely determines the
results of external calls

I ——

B

https://compcert.org/doc/html/compcert.cfrontend.Cexec.html

Using the reference interpreter:
exhaustive exploration

) \ @
©

Time 3: @
Time 4:

Using the reference interpreter:
randomized exploration

First choice Randomized

R

»
& @

/6

Using the reference interpreter
A first example

int main(void)

{ int x[2] = { 12, 34 };
printf("x[2] = %d\n", x[2]);
return 0; }

reference interpreter *

—

Stuck state: in function main, expression
<printf>(<ptr stringlit 1>, <loc x+8>)

Stuck subexpression: <loc x+8>

ERROR: Undefined behavior

Using the reference interpreter
A second example: randomized exploration

int a() { printf("a "); return 1; }
int b() { printf("b "); return 2; }
int c¢() { printf("c "); return 3; }

int main () { printf("%d\n", a() + (b() + c())); return 0; }

reference interpreter/

—

State 45.9: returning 3
State 45.10: returning 2
State 45.11: returning 1

State 55.1: returning 0
Time 55: program terminated (exit code = 0)

RTL language
RTLy OF

Each function is represented by its CFG
Instructions only
Unlimited supply of pseudo-registers

'
Q- list of
v

int £(int n) {
int x = 1;
for (int 1

Qreturn X

Iop(int(5), args, dest, succ): instruction

/ <

successor
~ pseudo-regs | \ node

register to
store the result
\

79

https://compcert.org/doc/html/compcert.backend.RTL.html

Part 6: summary

Proving a compiler pass mainly amounts to proving a simulation diagram

Many reusable libraries:

e simulations, memory model, C semantics, Clight and RTL languages
¢ machine integers, dataflow solver

Some compilation options
e using the CompCert C interpreter: —interp (-trace, —all, —-random)
e tracing options: -dc, -dclight, -drtl, ..
e show the time spent in compiler passes: -timing

80

Part 7: Compiling critical embedded
software with CompCert

81

@ AIRBUS

Execute pilot's commands F\y- by-Wire software

Flight assistance: keep aircraft within safe flight envelope

Primary Flight Controls

Slats and Flaps
Rudders
Ailerons
L
Spoilers ‘ Elevators
Auto-pilot < l Fl
aps
H AJP Pilot — Slats
iy By W | v X .- =y |
N oo s D-' AI:Z;T QD """" Trimmable Horizontal
PILOT Order position | 7 \ e g Stabilizer
..................... > “\
g : ———
----- = o~ amn = & =
tmgs) ot T E - 4
0 S Ry
Mostly control-command code (Scade) +
a minimalistic OS (C) Fly-by-wire software

100k - 1M LOC code, but mostly generated from
block diagrams (Simulink, Scade)

:: I'..i-f-'.' ::-"'.- rl. -
) _ — - peri—_
Tl Kot i, el bl 0 i s TR Wb (117 %0 P82 208
sl 8 T, s V0 T i el 4 1Y
Y \

AIRBUS

B CERTIFICATION

Rigorous validation: review (qualitative), analysis The qualification
(quantitative), testing (huge amounts) DrOCESS (DO-1 78)

Conducted at multiple levels, from design to final product

Meticulous development process; extensive documentation

SHEET NUMBER: 1EEEE?

AN

generator

delay
macro /

’

_PIEEEETZF |~ nq | PIEEEETZ |DELAY P1EEEETZ2
4 I 00 false
SENSORDATA VA 3¢
input
POINT_PIQ
— delay symbol |
/*Sheet Number: 1EEEE7*/ ////
#include "other_includes.h"
#include "delay.mac"
#include "cos.mac" delay Macro
COde #include "pigq_x.mac"

-

variable stored
in RAM

m_START_NUM_INPUT_ZONE
m_INPUT (SENSORDATA ,NUM)
m_END_NUM_INPUT_ZONE

m_START_NUM_OUTPUT_ZONE
m_OUTPUT (ACTUATORINPUT , NUM)
m_END_NUM_OUTPUT_ZONE

m_START_NUM_OBS_ZONE
m_0BS_NUM(POINT_PIQ)
m_END_NUM_OBS_ZONE

m_START_CST_INPUT_ZONE
m_CST(c_DELAY_P3_2_N1EEEE7 ,ENT, 1)
m_END_CST_INPUT_ZONE

m_START_STATIC_ARRAY_ZONE
m_STATIC_ARRAY(t_DELAY_2_N1EEEE7,
m_END_STATIC_ARRAY_ZONE

1,NUM)

m_START_SHEET (1E,EE,E7)

m_CONNECTION (P1EEEE7Z2_N1EEEE7 ,NUM)
m_CONNECTION(loc_c_DELAY_P3_2_N1EEEET7 ,ENT)
m_CONNECTION (P1EEEE7ZF_N1EEEE7 ,NUM)
m_CONNECTION (P1EEEE7ZI_N1EEEE7 ,NUM)

m_VtS (SENSORDATA ,P1EEEE7ZF_N1EEEE7)
m_CtS(c_DELAY_P3_2_N1EEEE7 ,loc_c_DELAY_P3_2_N1EEEE7)

COS (0 _N1EEEE7 ,P1EEEE7ZF_N1EEEE7 ,P1EEEE7ZI_N1EEEE7)
PIQ_X(1_N1EEEE7 ,P1EEEE7ZI_N1EEEE7 ,POINT_PIQ)

DELAY (2_N1EEEE7 ,P1EEEE7ZI_N1EEEE7 ,\

loc_c_DELAY_P3_2_N1EEEE7 ,P1EEEE7Z2_N1EEEE7 ,t_DELAY_2_N1EEEET7)

m_StV(P1EEEE7Z2_N1EEEE7 , ACTUATORINPUT)
m_END_SHEET

ACTUATORINPUT

to assembly

output

output Y

observation
point

iler

From block diagrams

delay symbol/

I A -

inputs: f3, r31 and one static

100 addis ri2, 0, (_DELAY_2_N1EEEE7_R2)@ha

104 lwz r4d, (_DELAY_2_N1EEEE7_R2)@1l(ri2)
; annotation: Variable to search: loc_c_DELAY_P3_2_N1EEEE7
; annotation: DELAY; i1s entered with 7v4 = from 0 to

108 mr r7, r4d

10c addis ri2, 0, (t_DELAY_2_N1EEEE7)@ha

110 addi r8, ri12, (t_DELAY_2_N1EEEE7)el

114 rlwinm ri0, r7, 3, 0, 28 ; Ozfffffffé8

118 add ri0, r8, rio0

11c 1fd f2, 0(r10)
; annotation: Vartable to search: loc_c_DELAY_ P3_2_N1EEEE?7
; annotation: DELAY; 41s entered with 74 = from 0 to

120 mr r8, r4d

124 addis ri2, 0, (t_DELAY_2_N1EEEE7)@ha

128 addi r6, ri2, (t_DELAY_2_N1EEEE7)e@l

12¢c rlwinm r5, r8, 3, 0, 28 ; Ozffffffré8

130 add r9, r6, rb

134 stfd £3, 0(r9)

138 addi rd, r4, 1

13c cmpw crO0, r4, r3i (jEBIEi)/ ES)/TT]t)()I |

140 bt 0, .L101 ’//////////

144 addi rd, 0, O -
.L101:

148 addis ri2, 0, f Y_2_N1EEEE7_R2)@ha

14c stw r4, (_DELAY_ 2 _w1EEEE7_R2)@1(ri2)

Nm_1EEEE7:
; annotation: Symbol DELAY number 2_N1EEEE7 ,\

;, annotation: End of DELAY number 2_NI1EEEE7 ,

r

r

output: f2

Program annotations

A mechanism to attach annotations to program points

- Mark specific program points

« Provide information about the location of C variables

» Ensure that some variables are preserved (e.g. X must be kept in a register)

Annotations are preserved during compilation.

- Each annotation generates an observable event

» The correctness theorem ensures preservation of the sequencing of 1)
symbols, and 2) of accesses to hardware devices (volatile variables)

_annot("Begin of a loop"); ; annotation: Begin of a loop
x = 1; M addi r3, 0, 1
annot("Here x 1is at %1",x); ffﬁfif); annotation: Here x 1s at r3

_annot("End of a loop"); ; annotation: End of a loop

T — ——— T — ————————

Conformance to the qualification process

A formally verified compiler gives traceability guarantees.

Simplified example

» The semantics preservation theorem ensures preservation of:

» the sequencing of symbols,
» the sequencing of accesses to hardware devices (volatile variables).

Remember the main theorem: If the source program can not go wrong, then
the behavior of the generated assembly code is exactly one of the behaviors of
the source program.

87

3| AbsInt Advanced Analyzer, for MPC55xx: C:/Programme/Absint/Advanced Analyzer/mpc55xx/b124612/examples/diabdata/07_benchmarks/dry2_1... Q
Project File Mode Edit View Folding Window Help

e e e mEms 8

EEO® Heo= B
: o : Tt L NN N
a3 MPC55xx [0 Analyses - aiT results for aiT_analysis
ﬁo Welcome _‘ l 1 Y l 1
Configuration Funct [tremp_x
Files

s 1
max t:63
Y

- MPCSSxx

e
7 Analyses

&
H Reqisters

Source files

Visualization

§ ¢ Configurations
bl 0324 <Func3>

|
Analyses
O W O O I e f(X) Create counter+=9" stremp_x L1 (loop)
> Ibz 112, H0(r3)
Sl
B S
' T arceeh
3 l.. Stackanalyzer_analysis
I [! TimingExplorer _analysis
| | Messages
Project m. —
Editors Out= ldentd _ bz 12, -32723(r13)
/) drv2_L.ais addi 112, 112, +1

Information

Tc Symbols
. Sections

st r12, +0(14)

Wz 111, -32728(13)
addir1, 111, +43
st 11, -32728(113)

0

bz 10, +1(r)

bz 111, +1(r3)

addirz, r2,+83

_cmp er0,0, 1, r10

st r12, -32728(r13)
bt cr0.eq, x4t <07 4>

Trade-off between
* traceability guarantees
» and efficiency of the generated

COd e Project File Mode Edit View Folding Window Help - -
CEHO® Wo=0 9% . eee p@ms
G

a3 MPC55xx 3 Analyses - aiT results for aiT_analysis
P Welcome

cmpi ¢0,0, 5, +2

bt erD.gt, 0:3f0.f <30 >

Configuration

H Files

Low-level verifications @
. |] registers
* reviews of the assembly st

Visualization

¢ ¢ Configurations Computed Worst-Case Execution Time: 20128 cycles = 44.732 ps

- computation of a WCET

flx) Create

" " -‘\ Qverview main
estimation 9 @ ot st
—— Source files
Execution time 'O ait Graph Procd
A =3 ll Stackanalyzer_analysis
= ! TimingExplorer _analysis
Messages
- Project v ‘ ‘ vl y y v
Estimated WCET _
Editors Func2 |Pr0c4| |Pr0c2| strepy _x Imalloc_xl |Proc8| |Proc§|

/ dry2_1.ais
WC ET Information
y ‘ L A
Proc3 |memcpy_x| Prock | Funci I | stremp_x I
Proc? | Func3

n Symbols
//_\ & sections

88 =
Input data

Compiling critical embedded software

Improved performances of the generated code,
while providing proven traceability guarantees thanks to annotations

FCGU A380: 3600 files, 3.96 MB of assembly code

- Estimated WCET for each file
* Average improvement per file: 13,5%

« Compiled with CompCert 1.10, 2012

— WCET (Default) — WCET (CompCert) j

20000

2000

200

Execution time

4

Estimated WCET

Input data

89

Overall assessment

The improvement mainly comes from the register allocation pass.

* From: no register allocation
» To: sharing of local variables among available registers

Traceability guarantees

» From: tracking of all program variables
- To: tracking of meaningful variables (used in block diagrams)

90

optimizations

- memory model
(P;a t 3 C o hared i intermediate language ...
Omp cr , a Share INTrastruCtlure control flow ¢ 1dph Commsﬁlgﬁss .
| D
for ongoing research Veflfled Comp1]1e17

abstract syntax
formal semantics
dataf low solver

The Verasco abstract interpreter
[Jourdan, Laporte, Blazy, Leory, Pichardie, POPL’15] [Blazy, Laporte, Pichardie, ICFP’16]

A holistic effect with compiler verification

CompCert compiler

Theorem csharpminor compiler correct alt:
V p tp b,
transf ¢ program p = OK tp - forward simulation
execC p b -
execASM tp b.

Theorem csharp compiler correct stronger:

. V. p tp b,
Verasco abstract interpreter transf c program p = OK tp -
Theorem analyzer is correct: execASM tp b.
V p b,
static analyzer p = Success - T —
execC p b.

P can not go wrong

Verasco architecture

CompCert C)—) Clight)—) C#minor)—) |) CompCert compiler

l

Alarms)‘— Abstract interpreter control flow

‘ y
symbolic conditional

~ expressions bstraction states
(improve precision of

assume commands)

requires reasoning on conjunctions of linear
double-precision floating-point Numeric. inequalities Yai xi < c ,
numbers (IEEE754) integer and

floating-point
| | | I arithmetic

Intervals) Congruences Symbolic J Polyhedra) Llnearlzatlonj Octagons j

equalities

crucial to analyze the safety L
of memory accesses Communication

| conjunctions of linear
(memory alignement) channels |

iInequalities +x xy < C

Turning CompCert into a secure compiler
CT-CompCert [Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu, POPL'20]

Cryptographic constant-time (CC

unsigned nok-function (unsigne

{ 1f (secret) return y; else
e e

ramming discipline

, unsigned y, bool secret)
n

pr

X; }
e ——RRT

unsigned ok-function (unsigned X, unsigned y, bool secret)
{ return x © ((y ~ X) & (-(unsigned)secret)); }

e e EEE——_—_——

How to turn CompCert into a formally-verified secure compiler?

Theorem compiller-correct: Theorem compiller-preserves-CCT:
V S C b, V s C,
compiler S = OK C - compiler S = OK C -
execCompCertC S b - 1sCCT S -
execASM C b. 1sCCT C.

94

Which proof technique for the isCCT policy”?

Observational non-interference: observing program leakage (boolean guards and memory
accesses) during execution does not reveal any information about secrets

Theorem compiler-preserves-CCT: q —Lﬂ)S 1sCCT S
V s C, l 2 : / : - /
compiler S = OK C - - = | with (p(Sl,Sl) implies Z = ¢
1sCCT S -
1sCCT C.

T —

Difficulty: tricky proofs!

R e S

95

Proving CCT preservation:
pback to simulation diagrams

Proof-engineering: leverage the existing proof scripts as much as possible

must predict the
number of steps
at target level

96

Verifying just-in-time (JIT) compilation sarriere's Php 12/2022)
[Barriere, Blazy, Fluckiger, Pichardie, Vitek, POPL'21] and [Barriere, Blazy, Pichardie, POPL’ 23]

source § monitor
' ﬁ
f(); P ; ;
o0 E IR interpreterj optimization native exec. J
¢
3
optim. T}z o | o L
U \l7 A JIT compiler interleaves the execution of a program with its optimizations
:f-c . . " . . " . " "
new % Dynamic speculation: specializes functions, requires deoptimization
program | =
W, -%
dynamic § Non-deterministic semantics: either deoptimize to the source program or
optim. 5 continue to the next instruction in the optimized program
J T i{o

Proving semantics preservation:
the simulation approach

source
program
Po

S+

So

~~)
~~)

U

U

U

C+

|

Co

JIT
program
Po

dynamic
optim.

JIT
program
P+

optim.

JIT
program
P2

dynamicJ

Both the program and the execution
state are evolving

98

Nested simulations for JIT veritication

source
program
Po

S+

~JIT

"~~)
~JIT

C+

3

JIT
program
Po

4)

dynamic

optim.

JIT
program
P+

4)

dynamic

optim.
~—

JIT
program
P2

Both the program and the execution
state are evolving

Invariant =,r: at any point during JIT
execution

» the current state C; corresponds
to a source state S;

» the curent JIT program P is
equivalent to the source
program Po

Nested simulation: this equivalence
IS expressed with another simulation

99

|-

Work in progress

new optimizations

J
!
J -
| s
Clight J—» C#minor J—> Cminor)-—p CminorSeIJ—} FIL J—> STA J
Je— lnear f— Uln e—

PUS-1UO} MaU

Mach LTL J GSA J é
| o

Q

J O

- n

new target l @

o

(E)—

100

int £(int n) {

Gated SSA (static single assignment) intermediate

representation

int x = 1;

for (int 1 = 1; 1 < n; 1++)
1f (x < 9) x = x + 2;
else 1f (x > 50) x = x + 1;
else x = 2 * X;

return X;

}

C program

Program in SSA form

11 = p(io,iz)
X1 = H(Xo,X2)

X5 := Nn(i1=n, x1)

Greturn X1

= X1+1 @X4 = 2*X1

2 = i1+1| Path predicates
Po: X1<9

P3: Xx1=9 A x1>50
Pa: X129 A X150

\\/1 / X5 1= Y((P2,X2), (P3,X3), (P4,X4))

Program in GSA form

101

Conclusion and perspectives

CompCert is a shared infrastructure for ongoing research

- compilation : ProbCompCert (Boston College, USA), L2C (Tsinghua, China),
Velus (DIENS, Fr), CompCertO (Yale, USA), VeriCert (Imperial College, GB),
CompCert-KVX (Verimag, Fr)

e program logics: VST (Princeton, USA), Gillian (Imperial College, GB),
VeriFast (KUL, Be)

- static analysis : Verasco (Inria, Fr)

Opens the way to the trust of development tools

From early intuitions to fundamental formalisms ...
verification tools that automate these ideas ...
actual use in the critical software industry

102

Questions?

103

Bibliography

- Boyer, R. S., Moore, d S. MJRTY - A Fast Majority Vote Algorithm. Essays in Honor of Woody Bledsoe. 1991.
» Yang, Chen, Eide, Regehr. Finding and understanding bugs in C compilers. PLDI’11.

 Leroy. Formal verification of a realistic compiler. Communications of the ACM 52(7), 20009.

» Leroy. A formally verified compiler back-end. JAR 43(4), 2009.

- Appel, Blazy. Separation logic for small-step Cminor. TPHOLSs’07.

- Blazy, Leroy. Mechanized semantics for the Clight subset of the C language. JAR 43(3), 2009.

_eroy, Appel, Blazy, Stewart. The CompCert memory model. 2014. Program Logics for Certified Compilers.
- Leroy, Blazy, Kastner, Schommer, Pister, Ferdinand. CompCert - A formally verified optimizing compiler. ERTS2’16.
« Kumar, Myreen, Norrish, Owens. CakeML.: a verified implementation of ML. POPL’14.

- Jourdan, Laporte, Blazy, Leroy, Pichardie. A formally-verified static analyzer. POPL’'15.

- Blazy, Laporte, Pichardie. An Abstract Memory Functor for Verified C Static Analyzers. ICFP’16.

- Barthe, Blazy, Grégoire, Hutin, Laporte, Pichardie, Trieu. Formal verification of a constant-time preserving C
compiler. POPL’20.

- Barriere, Blazy, Fliickiger, Pichardie, Vitek. Formally verified speculation and deoptimization in a JIT compiler. POPL’21.

- Barriere, Blazy, Pichardie. Formally verified native code generation in an effectful JIT - or: Turning the CompCert
backend into a formally verified JIT compiler. POPL’'23.

- Barthe, Demange, Pichardie. Formal Verification of an SSA-based middle-end for CompCert. TOPLAS’14.
- Herklotz, Demange, Blazy. Mechanised semantics for gated static single assignment. CPP’23.
» Merigoux, Chataing, Protzenko. Catala: a programming language for the law. Proc. ICFP’21.

104

http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA131702
https://xavierleroy.org/publi/compcert-CACM.pdf
https://xavierleroy.org/publi/compcert-backend.pdf
http://dx.doi.org/10.1007/s10817-009-9148-3

