Lambda Cube Part 2

Lambda Cube Crew

June 28, 2023

Contents

1	Poly	ymorphic types, $\lambda 2$	1
	1.1	Properties of $\lambda 2$	2
	1.2	Expressiveness of $\lambda 2$	2
		1.2.1 Natural numbers	2
	1.3	Curry-Howard correspondence	3
	1.4	Type checking, inference and inhabitation	3
2	$\lambda \underline{w}$		4
	2.1	Formal definition	5
	2.2	Properties of $\lambda \underline{\omega}$	$\overline{7}$
	2.3	Expressiveness of $\lambda \underline{\omega}$	7

1 Polymorphic types, $\lambda 2$

The expressiveness of $\lambda \rightarrow$ is limited since a function is always bound to its type. I.e. we cannot reuse e.g. the identity function integers for other types.

 $\lambda 2$ adds parametric polymorphism to increase expressibility and allow reuse of functions over multiple types.

We add the following constructs to our language:

We add a new rule for β -reduction

 $(\lambda \alpha. M) \tau \rightarrow_{\beta} M[\tau/\alpha]$

We also need typing rules for the new terms.

$$\begin{aligned} \frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \lambda \alpha. M : \forall \alpha. \sigma} \\ \frac{\Gamma \vdash M : \forall \alpha. \sigma}{\Gamma \vdash M \tau : \sigma[\tau/\alpha]} \end{aligned}$$

As an example we can now type self application as

$$\lambda x : (\forall \alpha. \alpha). (x(\sigma \to \tau))(x\sigma) : (\forall \alpha. \alpha) \to \tau$$

1.1 Properties of $\lambda 2$

• Uniqueness of types:

$$\Gamma \vdash M : \sigma \land \Gamma \vdash M : \tau \implies \sigma = \tau$$

- Church-Rosser property holds.
- Subject reduction:

$$\Gamma \vdash M : \tau \land M \to_{\beta\eta} M' \implies \Gamma \vdash M' : \tau$$

• Strong normalization:

$$\Gamma \vdash M : \tau \implies M \in \mathrm{SN}$$

Sidenote: Strong normalization of $\lambda 2$ is a Gödel sentence, i.e. it is expressible in Peano arithmetic, but not provable in this system.

1.2 Expressiveness of $\lambda 2$

1.2.1 Natural numbers

Can be expressed as the type

$$\forall \alpha. \alpha \to (\alpha \to \alpha) \to \alpha$$

The terms corresponds to the Church numerals:

$$\begin{split} 0 &\equiv \lambda \alpha.\lambda x : \alpha.\lambda f : \alpha \to \alpha.x \\ n &\equiv \lambda \alpha.\lambda x : \alpha.\lambda f : \alpha \to \alpha.f^n x \\ succ &\equiv \lambda n : Nat.\lambda \alpha.\lambda x : \alpha.\lambda f : \alpha \to \alpha.f(n\alpha x f) \end{split}$$

Theorem: $\lambda 2$ types exactly all primitive recursive functions.

This means that almost all meaning full programs are typable in $\lambda 2$.

An example of a function that cannot be typed in $\lambda 2$: The Ackerman-Péter function:

$$\begin{array}{rcl} A(0,n) & = & n+1 \\ A(m+1,0) & = & A(m,1) \\ A(m+1,n+1) & = & A(m,A(m+1,n)) \end{array}$$

• This is recursive, but not primitive recursive

1.3 Curry-Howard correspondence

 $\lambda 2$ corresponds to constructive second order propositional logic (PROP2), i.e. a second order logic formula holds if the corresponding type is inhabited in $\lambda 2$.

Theorem: (Girard, Reynolds, Curry-Howard) (see [3] for a summary).

$$\vdash \sigma \iff \exists M. \vdash M : \sigma$$

Note that this is constructive logic, e.g. Pierce's law

$$\forall \alpha. \forall \beta. ((\alpha \to \beta) \to \alpha) \to \alpha$$

is not inhabited, and therefore does not hold constructively. (It does hold in classical logic).

We can define some connectives from PROP2:

$$\begin{array}{cccc} \bot & \equiv & \forall \alpha. \alpha \\ \sigma \wedge \tau & \equiv & \forall \alpha. (\sigma \to \tau \to \alpha) \to \alpha \\ \sigma \lor \tau & \equiv & \forall \alpha. (\sigma \to \alpha) \to (\tau \to \alpha) \to \alpha \\ \exists \alpha. \sigma & \equiv & \forall \beta. (\forall \alpha. \sigma \to \beta) \to \beta \end{array}$$

- In constructive propositional logic, connectives are independent.
- PROP is minimal logic implicational fragment of constructive propositional logic.

1.4 Type checking, inference and inhabitation

Theorem: In $\lambda 2$

• Type checking is undecidable.

- Type inference is undecidable.
- Type inhabitation in undecidable.

Proof:

- Type inhabitation is equivalent to provability in PROP2, by Curry-Howard correspondence.
- Cases for type checking and type inference was proved by 1990 by Wells [4]

Note that a restriction of $\lambda 2$ used by languages like Haskell and ML allows for an efficient type inference algorithm due to Hindley and Milner [1, 2].

2 λw

The main idea of $\lambda \underline{\omega}$ is to extend $\lambda \rightarrow$ to let types depend on types, similarly to how $\lambda 2$ lets terms depend on types. E.g. we would like to express a function f, that we can apply to some type σ to to get the type

$$f(\sigma) = \sigma \to \sigma$$

In $\lambda \underline{\omega}$ we would express this as

$$f \equiv \lambda \alpha : \star . \alpha \to \alpha$$

 \star here is a kind. Intuitively it describes the "type" of types, so $\alpha : \star$ tells us that α is a type. We write $f : \star \to \star$ to describe the kind of f. We can see this as a function from types to types.

We can informally define the set of kinds as

$$\mathcal{K} = \{\star, \star \to \star, \ldots\}$$

Formally we write $k \in \mathcal{K}$ as $k : \Box$. We have

- If σ is a type, then $\sigma : \star$
- If $k : \Box$, and f : k, then f is the constructor of kind k.

2.1 Formal definition

We define pseudo-expressions (including both terms and types) as

$$\mathcal{T} ::= \mathcal{V} \mid \mathcal{C} \mid \mathcal{TT} \mid \lambda \mathcal{V} : \mathcal{T}.\mathcal{T} \mid \mathcal{T} \to \mathcal{T}$$

Furthermore we have the sorts

$$S = \{\star, \Box\} \subseteq \mathcal{C}$$

In a typing judgement $\Gamma \vdash M : A$, both M and A are pseudo-expressions.

 Γ can now also contain elements like $\alpha : \star$. This demands that Γ is ordered, since types of other variables in Γ can depend on α . E.g.

$$\begin{array}{rrrr} \alpha:\star,x:\alpha & \vdash & x:\alpha \\ \alpha:\star & \vdash & \lambda x:\alpha.x:\alpha \to \alpha \end{array}$$

are valid typing judgements. However

$$\begin{array}{rrrr} x:\alpha,\alpha:\star & \vdash & x:\alpha \\ & x:\alpha & \vdash & \lambda\alpha:\star.x:\star \to \alpha \end{array}$$

are \mathbf{not} .

The typing rules for $\lambda\underline{\omega}$ is

$$\begin{array}{l} (\mathrm{ax/sort}) \vdash \star : \Box \\ (\mathrm{weak}) \xrightarrow{\Gamma \vdash M:B} \xrightarrow{\Gamma \vdash A:s} \text{ if } x \notin \Gamma \\ \lambda \xrightarrow{\Gamma, x: A \vdash M:B} \xrightarrow{\Gamma \vdash A \to B:s} \\ \Gamma \vdash \lambda x: A.M: A \to B \\ (\mathrm{app}) \xrightarrow{\Gamma \vdash M: A \to B} \xrightarrow{\Gamma \vdash N: A} \\ (\mathrm{conv}_{\beta}) \xrightarrow{\Gamma \vdash M: A} \xrightarrow{\Gamma \vdash B:s} A \equiv_{\beta} B \\ (\mathrm{type/kind}) \xrightarrow{\Gamma \vdash A:s} \xrightarrow{\Gamma \vdash B:s} \\ (\mathrm{var}) \xrightarrow{\Gamma \vdash A:s} \underset{\Gamma, x: A \vdash x: A}{\Gamma, x: A \vdash x: A} \text{ if } x \notin \Gamma \end{array}$$

As an example, here is a typing derivation of

$$\alpha: \star \vdash \lambda x: D\alpha. x: D(D\alpha)$$

where $D \equiv \lambda \beta : \star . (\beta \to \beta)$.

2.2 Properties of $\lambda \underline{\omega}$

• Uniqueness of types:

$$\Gamma \vdash M : \sigma \land \Gamma \vdash M : \tau \implies \sigma = \tau$$

- Church-Rosser property holds.
- Subject reduction:

$$\Gamma \vdash M : \tau \land M \to_{\beta\eta} M' \implies \Gamma \vdash M' : \tau$$

• Strong normalization:

$$\Gamma \vdash M : \tau \implies M \in \mathrm{SN}$$

2.3 Expressiveness of $\lambda \underline{\omega}$

- $\lambda \underline{\omega}$ has the same expressive power as $\lambda \rightarrow$.
- $\lambda \underline{\omega}$ types exactly all extended polynomials.

References

- [1] R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of the American Mathematical Society, 146:29–60, 1969.
- [2] Robin Milner. A theory of type polymorphism in programming. *Journal* of Computer and System Sciences, 17(3):348–375, 1978.
- [3] Philip Wadler. The girard-reynolds isomorphism.
- [4] J.B. Wells. Typability and type checking in system f are equivalent and undecidable. *Annals of Pure and Applied Logic*, 98(1):111–156, 1999.