
Lambda Cube Part 2

Lambda Cube Crew

June 28, 2023

Contents
1 Polymorphic types, λ2 1

1.1 Properties of λ2 . 2
1.2 Expressiveness of λ2 . 2

1.2.1 Natural numbers . 2
1.3 Curry-Howard correspondence 3
1.4 Type checking, inference and inhabitation 3

2 λw 4
2.1 Formal definition . 5
2.2 Properties of λω . 7
2.3 Expressiveness of λω . 7

1 Polymorphic types, λ2
The expressiveness of λ → is limited since a function is always bound to its
type. I.e. we cannot reuse e.g. the identity function integers for other types.

λ2 adds parametric polymorphism to increase expressibility and allow
reuse of functions over multiple types.

We add the following constructs to our language:

T ::= ... | λα.T | T [T]
Type ::= ... | TVar | ∀α.Type

We add a new rule for β-reduction

(λα.M)τ →β M [τ/α]

We also need typing rules for the new terms.

1

Γ ⊢ M : σ

Γ ⊢ λα.M : ∀α.σ

Γ ⊢ M : ∀α.σ
Γ ⊢ Mτ : σ[τ/α]

As an example we can now type self application as

λx : (∀α.α).(x(σ → τ))(xσ) : (∀α.α) → τ

1.1 Properties of λ2

• Uniqueness of types:

Γ ⊢ M : σ ∧ Γ ⊢ M : τ =⇒ σ = τ

• Church-Rosser property holds.

• Subject reduction:

Γ ⊢ M : τ ∧M →βη M ′ =⇒ Γ ⊢ M ′ : τ

• Strong normalization:

Γ ⊢ M : τ =⇒ M ∈ SN

Sidenote: Strong normalization of λ2 is a Gödel sentence, i.e. it is
expressible in Peano arithmetic, but not provable in this system.

1.2 Expressiveness of λ2

1.2.1 Natural numbers

Can be expressed as the type

∀α.α → (α → α) → α

The terms corresponds to the Church numerals:

0 ≡ λα.λx : α.λf : α → α.x

n ≡ λα.λx : α.λf : α → α.fnx

succ ≡ λn : Nat.λα.λx : α.λf : α → α.f(nαxf)

2

Theorem: λ2 types exactly all primitive recursive functions.
This means that almost all meaning full programs are typable in λ2.
An example of a function that cannot be typed in λ2: The Ackerman-

Péter function:

A(0, n) = n+ 1
A(m+ 1, 0) = A(m, 1)
A(m+ 1, n+ 1) = A(m,A(m+ 1, n))

• This is recursive, but not primitive recursive

1.3 Curry-Howard correspondence

λ2 corresponds to constructive second order propositional logic (PROP2),
i.e. a second order logic formula holds if the corresponding type is inhabited
in λ2.
Theorem: (Girard, Reynolds, Curry-Howard) (see [3] for a summary).

⊢ σ ⇐⇒ ∃M. ⊢ M : σ

Note that this is constructive logic, e.g. Pierce’s law

∀α.∀β.((α → β) → α) → α

is not inhabited, and therefore does not hold constructively. (It does hold
in classical logic).

We can define some connectives from PROP2:

⊥ ≡ ∀α.α
σ ∧ τ ≡ ∀α.(σ → τ → α) → α
σ ∨ τ ≡ ∀α.(σ → α) → (τ → α) → α
∃α.σ ≡ ∀β.(∀α.σ → β) → β

• In constructive propositional logic, connectives are independent.

• PROP is minimal logic - implicational fragment of constructive propo-
sitional logic.

1.4 Type checking, inference and inhabitation

Theorem: In λ2

• Type checking is undecidable.

3

• Type inference is undecidable.

• Type inhabitation in undecidable.

Proof:

• Type inhabitation is equivalent to provability in PROP2, by Curry-
Howard correspondence.

• Cases for type checking and type inference was proved by 1990 by
Wells [4]

Note that a restriction of λ2 used by languages like Haskell and ML
allows for an efficient type inference algorithm due to Hindley and Milner [1,
2].

2 λw

The main idea of λω is to extend λ → to let types depend on types, similarly
to how λ2 lets terms depend on types. E.g. we would like to express a
function f , that we can apply to some type σ to to get the type

f(σ) = σ → σ

In λω we would express this as

f ≡ λα : ⋆.α → α

⋆ here is a kind. Intuitively it describes the “type” of types, so α : ⋆ tells
us that α is a type. We write f : ⋆ → ⋆ to describe the kind of f . We can
see this as a function from types to types.

We can informally define the set of kinds as

K = {⋆, ⋆ → ⋆, ...}

Formally we write k ∈ K as k : □.
We have

• If σ is a type, then σ : ⋆

• If k : □, and f : k, then f is the constructor of kind k.

4

2.1 Formal definition

We define pseudo-expressions (including both terms and types) as

T ::= V | C | T T | λV : T .T | T → T

Furthermore we have the sorts

S = {⋆,□} ⊆ C

In a typing judgement Γ ⊢ M : A, both M and A are pseudo-expressions.
Γ can now also contain elements like α : ⋆. This demands that Γ is

ordered, since types of other variables in Γ can depend on α. E.g.

α : ⋆, x : α ⊢ x : α
α : ⋆ ⊢ λx : α.x : α → α

are valid typing judgements. However

x : α, α : ⋆ ⊢ x : α
x : α ⊢ λα : ⋆.x : ⋆ → α

are not.
The typing rules for λω is

(ax/sort) ⊢ ⋆ : □

(weak) Γ⊢M :B Γ⊢A:s
Γ,x:A⊢M :B if x /∈ Γ

λ Γ,x.A⊢M :B Γ⊢A→B:s
Γ⊢λx:A.M :A→B

(app) Γ⊢M :A→B Γ⊢N :A
Γ⊢MN :B

(convβ) Γ⊢M :A Γ⊢B:s
Γ⊢M :B A ≡β B

(type/kind) Γ⊢A:s Γ⊢B:s
Γ⊢A→B:s

(var) Γ⊢A:s
Γ,x:A⊢x:A if x /∈ Γ

As an example, here is a typing derivation of

α : ⋆ ⊢ λx : Dα.x : D(Dα)

where D ≡ λβ : ⋆.(β → β).

5

6

2.2 Properties of λω

• Uniqueness of types:

Γ ⊢ M : σ ∧ Γ ⊢ M : τ =⇒ σ = τ

• Church-Rosser property holds.

• Subject reduction:

Γ ⊢ M : τ ∧M →βη M ′ =⇒ Γ ⊢ M ′ : τ

• Strong normalization:

Γ ⊢ M : τ =⇒ M ∈ SN

2.3 Expressiveness of λω

• λω has the same expressive power as λ →.

• λω types exactly all extended polynomials.

References
[1] R. Hindley. The principal type-scheme of an object in combinatory logic.

Transactions of the American Mathematical Society, 146:29–60, 1969.

[2] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17(3):348–375, 1978.

[3] Philip Wadler. The girard-reynolds isomorphism.

[4] J.B. Wells. Typability and type checking in system f are equivalent and
undecidable. Annals of Pure and Applied Logic, 98(1):111–156, 1999.

7

	Polymorphic types, 2
	Properties of 2
	Expressiveness of 2
	Natural numbers

	Curry-Howard correspondence
	Type checking, inference and inhabitation

	w
	Formal definition
	Properties of
	Expressiveness of

