
Lambda-cube, part 3

Lambda-cube crew

June 28, 2023

So far we have seen three versions of typed lambda-calculus: simply-typed,
polymorphic, and weak omega. To sum these up,

In simply-typed lambda-calculus λ → terms depend on terms
In system F λ2 terms depend on types
In weak-omega λω types depend on types

Let us now introduce the missing version of lambda-calculus: dependent
types λP , where types will depend on terms. Once we have defined this, we will
have all three edges departing from the simply-typed vertex on the lambda cube,
as displayed in Figure ??. After that, we can combine our different approaches
to complete the whole cube.

1 Dependent types

In λP , types are allowed to depend on arbitrary terms, and are therefore refered
to as dependent types.

The canonical example of a dependent type is vectors of a set length, where
the size of a vector is baked into its type as an integer: the empty vector has
type vec0, a vector of size 1 has type vec1, etc. The type vecn is dependent on
n, an integer.

More generally, for any type A and any kind k, we will now authorize building
types of kind k that depend on terms of type A, i.e. A → k is now a kind.

λ2

λω

λ→ λP

Figure 1: Half lambda-cube

1

For instance, A → ⋆ : □. If f : A → ⋆ and a : A, then we can apply f to a,
and f(a) : ⋆, i.e. f(a) is a type depending on the term a. Likewise, we can use
abstractions to create arrow-types: λx : A.f(x) : A → ⋆. Taking N for A and
vec for f , we get that vecn is a type, for any integer n.

Now imagine we wish to write a function that, given an integer n, constructs
a vector of size n initialize at some value. What type should that function have?
If one writes N → vecn, the n in the subscript of the result-type is ill-defined:
we wish that n to be exactly the input provided to the function. In order to
express the type of this function, we must generalise the notion of arrow-type
to now allow the argument to be named and used in the right-hand-side of the
arrow. We do this but introducing Π−types of the form

Πx : A.B

meaning a function that expects type A as an argument, and yields a result of
type B. Importantly, the type B will be allowed to reference x, the argument
given to the function. If B does not depend on x, then Πx : A.B is exactly the
type we previously denoted by A → B. Given these Π−types, the function we
mentioned earlier, that takes an integer argument and returns a vector of that
given type, now can be typed to type Πn : N.vecn.

Let us now formalise the way we define λP . The terms in this language are
defined by

T ::= V | C | T T | λV : T .T | ΠV : T .T

Just like in λω, there is no distinction between types and terms. We have
generalised T → T to ΠV : T .T . Just like in λω, the set of constants C
contains the set of sorts S = {⋆,□}. The statements are still of the form M : A
where M ∈ T and A ∈ T , and bases are still linearily ordered in the form
Γ =< [x1 : A1, . . . , xn : An] >.

We can still prove statements like α : ⋆, x : α ⊢ x : α, but now where in λω
we wrote α : ⋆ ⊢ λx : α.x : α → α to type the identity function, we now write

α : ⋆ ⊢ λx : α.x : Πx : α.α

More precisely, our typing rules are now:

Ax/sort

⊢ ⋆ : □

var
Γ ⊢ A : s x /∈ Γ

Γ, x : A ⊢ x : A

Weak
Γ ⊢ M : B Γ ⊢ A : s x /∈ Γ

Γ, x : A ⊢ M : B

Lambda
Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

App
Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[N/x]

ConvBeta
Γ ⊢ M : A Γ ⊢ B : s A =β B

Γ ⊢ M : B

Type/Kind Pi

Γ ⊢ A : ⋆ Γ, x : A ⊢ B : s

Γ ⊢ Πx : A.B : s

Where s stands for ⋆ or □.
These rules are very close to the ones in λω, with two main differences:

2

Ax/sort
⊢ ⋆ : □

Var
A : ⋆ ⊢ A : ⋆

Ax/sort
⊢ ⋆ : □

Weak
A : ⋆ ⊢ ⋆ : □

Ax/sort
⊢ ⋆ : □

Var
A : ⋆ ⊢ A : ⋆

Weak
A : ⋆, x : A ⊢ ⋆ : □

Type/Kind Pi
A : ⋆ ⊢ (A → ⋆) : □

Figure 2: Proof of example 1

• The arrow type has now become the more general Π−type. This means
that the application rule now has a term substitution in the result type,
to account for types depending on terms.

• The Type/Kind rule now allows creating a Π−type from types to types,
or a Π−kind from types to kind, where in λω, we could build an arrow-type
from type to type or an arrow-kind from kind to kind.

Using these rules, we can prove for example (using A → B as a shorthand
for Πx : A.B when x isn’t free in B):

1.
A : ⋆ ⊢ (A → ⋆) : □

We show the proof tree in Figure ??

2.
A : ⋆, P : A → ⋆, a : A ⊢ Pa : ⋆

To prove this, we use the following proof derivation:

Weak, Var and 1.

A : ⋆, P : A → ⋆, a : A ⊢ P : A → ⋆

Weak and 1.

A : ⋆, P : A → ⋆, a : A ⊢ A → ⋆ : □
App

A : ⋆, P : A → ⋆, a : A ⊢ Pa : ⋆

3.
A : ⋆, P : A → ⋆, a : A ⊢ Pa → ⋆ : □

To prove this, we use the following proof derivation:

2.

A : ⋆, P : A → ⋆, a : A ⊢ Pa : ⋆

Weak, Var, 1. and Ax/sort

A : ⋆, P : A → ⋆, a : A, x : ⋆ ⊢ ⋆ : □
Type/Kind Pi

A : ⋆, P : A → ⋆, a : A ⊢ Pa → ⋆ : □

4.
A : ⋆, P : A → ⋆ ⊢ Πa : A.Pa → ⋆ : □

To prove this, we use the following proof derivation:

Weak, Var and 1.

A : ⋆, P : A → ⋆ ⊢ A : ⋆

3.

A : ⋆, P : A → ⋆, a : A ⊢ Pa → ⋆ : □
Type/Kind Pi

A : ⋆, P : A → ⋆ ⊢ Πa : A.Pa → ⋆ : □

3

5.
A : ⋆, P : A → ⋆ ⊢ (λa : A.λx : Pa.x) : (Πa : A.(Pa → Pa))

To prove this, we apply rule Lambda, leaving us with 2 proof obligations.
The second one is similar to 4. and can be proved through similar methods.
To prove the first one, we use the following proof derivation:

2.

A : ⋆, P : A → ⋆, a : A ⊢ Pa : ⋆
Var

A : ⋆, P : A → ⋆, a : A, x : Pa ⊢ x : Pa

Similar to 3.

A : ⋆, P : A → ⋆, a : A ⊢ Pa → Pa : □
Lambda

A : ⋆, P : A → ⋆, a : A ⊢ λx : Pa.x : Pa → Pa

The Curry-Howard correspondance holds for λP , and because types can
depend on terms, we can now reason about logical predicates that depend on
simpler types. A predicate P on set A is represented as P : A → ⋆. For a ∈ A,
Pa is valid if, and only if, it is inhabited as a type. ∀x ∈ A.Px is translated as
Πx : A.Px, and A → B is translated as Πx : A.B.

For example, the formula

(∀x ∈ A,∀y ∈ A,Pxy) =⇒ (∀x ∈ A,Pxx)

is valid because its translation in λP is inhabited:

A : ⋆, P : A → A → ⋆ ⊢ [λz : (Πx : A.Πy : A.Pxy).λx : A.zxx] :

((Πx : A.Πy : A.Pxy) → (Πx : A.Pxx))

2 The lambda-cube

We are now ready to close the lamdba-cube. We present a visual representation
of the cube in Figure ??: the simply-typed lambda-calculus is our base vertex,
and walking along the edges adds extra features. Going vertically up allows for
polymorphism (terms depending on types), going back in depth allows for type
functions (types depending on types), and going right horizontally allows for
dependent types (types depending on terms).

The beauty of the lambda-cube is that we can define one language that
encompasses all systems. The language has the same syntax than dependent
types presented in the previous sections, and all rules are the same, except for
the last rule Type/Kind Pi.

Instead of that rule, we introduce rule Pi:

Pi
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 (s1, s2) ∈ R

Γ ⊢ Πx : A.B : s2

To switch from different systems of lambda-calculus, we simply change the
definition of relation R. For simply-typed lambda-calculus, only (⋆, ⋆) is in
R: only simple arrow-types are allowed. For polymorphism in System F, we
also allow (□, ⋆), i.e. types can depend on kinds. In λω, R is the relation
{(⋆, ⋆); (□,□)}, i.e. we can only create simple arrow types or arrows from kinds

4

λω λPω

λ2 λP2

λω λPω

λ→ λP

Figure 3: Lambda cube

to kinds. And in accordance to the rules presented in the previous section, the
relation for dependent types is {(⋆, ⋆); (⋆,□)}.

To combine these feature, one can simply augment R. The following table
shows how to define R for each system:

System R
λ → (⋆, ⋆)
λ2 (⋆, ⋆) (□, ⋆)
λP (⋆, ⋆) (⋆,□)
λω (⋆, ⋆) (□,□)
λP2 (⋆, ⋆) (□, ⋆) (⋆,□)
λω (⋆, ⋆) (□, ⋆) (□,□)
λPω (⋆, ⋆) (⋆,□) (□,□)
λPω (⋆, ⋆) (□, ⋆) (⋆,□) (□,□)

These are the related systems:

System
λ → simple type theory Church (1940)
λ2 system F Girard (1972)

Reynolds (1974)
λP AUT-QE (AUTOMAT) de Bruijn (1970)

logical frameworks (LF) Harper et al. (1987)
λω POLYREC Renardel de Lavalette (1991)
λP2 Longo and Moggi (1988)
λPω Fω Girard (1972)
λPω calculus of constructions Coquand and Huet (1988)
λPω

All eight systems in the cube are strongly normalising.

5

