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1 Introduction
We can talk about proofs at three different levels, the social level, the object level, and
the meta level. At the social level, proofs are informal arguments, or evidence, of the
truth of an informal statement. The role of proofs at the social level is to communicate
arguments. At the object level, proofs are formal arguments of the truth of formal
statements. The role of proofs at the object level is to have a systematic way of checking
the validity of proofs. At the meta level, proofs are treated as mathematical objects of
study, and we wish to reason about the properties that proofs and proof systems may
have. For example, we may wish to say that a proof system is sound, complete, etc.

A brief timeline of the development of proof theory is as follows:

1879 Frege - the structure of proofs should be formalized as objects (object level)

1890 Peano - arithmetic should be formalized (object level)

1906 Russel & Whitehead - Principia Mathematica

1928 Hilbert’s Program - proofs systems should be studied and reasoned about as
mathematical objects:

(a) Are proof systems consistent (ie. false is not derivable)?

(b) Can proof systems be complete (ie. is every formula either provable or
disprovable)?

(c) Is provability decidable (ie. algorithmic proof procedure)?

1928 Hilbert & Ackermann - classical predicate logic

1929 Gödel’s completeness theorem (syntactic provability corresponds to semantic
provability)

1930 Gödel’s incompleteness theorem (proof systems for arithmetic cannot prove or
disprove any statement in the language)

1935 Gentzen - consistency of arithmetic (cut elimination)

1936 Church - undecidability of classical predicate logic

In these notes we will attempt to describe logic completely syntactically, and with-
out reference to semantics.

2 Propositional Logic Lp

Propositional logic is typically what comes to mind when we think of formal logic.
Propositional logic consists of basic statements such as A and B, A or B, and A implies
B. as well as more complex statements that can be stitched together from these basic
statements such as

A and B implies B,
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and

A implies B implies that not B implies not A.

Unfortunately, expressing such statements in plain English introduces various ambigu-
ities. Our goal in this section is to define a mathematical syntax for unambiguously
expressing such statements.

Of course, our formal syntax will also be able to express false statements such as

A or B implies B.

To use our syntax in a meaningful way, we would like to define a set of axioms which
we semantically know to be true (for example, A and B implies B), and a set of inference
rules for what statements we can derive from a set of true statements (for example,
Given A and A implies B we have B), and use this to decide whether a statement is true
or false. We study a natural set of axioms and inference rules for propositional logic in
Section 4.

Syntax We start by defining the syntax of propositional logic Lp. The basic terms of
the language are defined as follows.

1. Propositional Variables: A countable set of variables

Varp = {p, q, r, . . .}.

2. Propositional Constants: ⊥ which represents false.

3. Connectives: ∨ (disjunction), ∧ (conjunction),→ (implication)

Using these basic terms, we can inductively define the set of formulas Formp as
follows.

• Propositional variables and constants are formulas.

• If A and B are formulas then A ∨ B (read A or B), A ∧ B (read A and B), and
A→ B (read A implies B) are formulas.

Now, we have a formal language for expressing our previous statements. For ex-
ample, to formally state A and B implies B we write

A ∧ B→ B.

Encoding Negation and True Instead of introducing additional terms, we can en-
code negation and true using the language we have built so far. In particular, we can
define negation as

¬A := A→ false.

Intuitively, if ¬A is true, (that is, A is false) we have that A vacuously implies anything,
including false. As an example, to formally state A implies B implies that not B implies
not A, we write

(A→ B)→ (¬B→ ¬A).

3



Similarly, we can define true as
⊤ := p ∨ ¬p

where p is a propositional variable. Intuitively, regardless of the assignment of p we
have that either p is true or false (classically that is).

In fact, we can even design an even more minimal language by encoding ∨ and ∧
using just→ and ⊥. However, this is beyond the scope of this lecture.

Interpreting Propositional Formulas Thus far, we have defined a language that is
populated with basic terms and the formulas that inductively arise from these terms.
We would like to semantically interpret these formulas in a meaningful way. Naturally,
we can assign propositional variables in Varp true (denoted with 1) or false (denoted
with 0). We can represent this assignment as a function α of type Varp → {0, 1}
Given an assignment for propositional variables, we can inductively derive meaningful
assignments for formulas as follows. Given assignments for propositional variables A
and B we derive an assignment for A ∧ B according to the following table.

A B A ∧ B
1 1 1
1 0 0
0 1 0
0 0 0

Likewise, we derive an assignment for A ∨ B according to the following table.

A B A ∨ B
1 1 1
1 0 1
0 1 1
0 0 0

Finally, we derive an assignment for A→ B according to the following table.

A B A→ B
1 1 1
1 0 0
0 1 1
0 0 1

We say an assignment α satisfies a formula A (denoted α |= A) if the the formula A
is assigned 1 according to the above rules. Equivalently, we can compute an assignment
for a formula A according to α inductively as follows.

α ̸|= ⊥
α |= p iff α(p) = 1
α |= A ∧ B iff α |= A and α |= B
α |= A ∨ B iff α |= A or α |= B
α |= A→ B iff α ̸|= A or α |= B
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3 Predicate Logic
Predicate logic enhance the expressiveness of propositional logic by adding functions,
predicates and quantifiers, as well as rules to recursively generate the sets of terms and
formulas. We define the syntax of predicate language L= as follows.

Symbols

• Variables: Var = {x, y, z, . . .}

• Propositional Variables: PropVar = {p, q, r, . . .}

• Function Symbols: Fun = { f , g, h, . . .}

– each function symbol has a fixed number of arguments it takes (in other
words, a fixed arity). For example, succ(x) is a function symbol with arity
1.

– Constants are special function symbols that take zero arguments. For ex-
ample, zero is a constant.

• Predicate Symbols: Pred = {P,Q,R, . . .}

– each predicate symbol has a fixed arity. For example, Even(x), Odd(y) are
predicate symbols with arity 1.

• Equality Symbol: =

– equality symbol is in effect predicate symbol but since it has an important
role in our language, we define it separately.

• Connectives: ∨,∧,→,⊥

• Quantifiers: ∃ (existential), ∀ (universal)

Formation Rules

• Terms are used to represent individual entities, i.e elements in the domain we are
working with and they are denoted by s, t, u, ....
The set of terms TERMS is inductively generated as follows:

∗ Variables are terms.

∗ If f ∈ FUN is a k-ary function symbol and t1, t2, ...tk are terms, then f (t1, t2, ...tk)
is also a term.

Examples of terms are: z, f , f (z, z), and g( f (z, z), x), where

• Atomic formulas are generated as follows:

∗ If P ∈ Pred is a k-ary predicate symbol and t1, t2, ...tk are terms, then
P(t1, t2, ...tk) is an atomic formula.
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∗ If s and t are terms then s = t is an atomic formula.
Note that this is a particular case of the first rule where P corresponds to =
(the equality symbol), whose arity is 2.

Predicates take one or more terms and decide if the terms satisfy a property, in
other words, P : T ERMk → Bool.
Examples of atomic formulas are: P(x), f (z) = f (g(y)) and R( f (x), y, z,w).

• The set of formulas, FORM, is inductively generated as follows:

∗ Atomic formulas are formulas.

∗ ⊥ is a formula.

∗ If A and B are formulas then A ∨ B, A ∧ B and , A→ B are formulas.

∗ If A is a formula and x is a variable then ∃xA and ∀xA is a formula.

4 Proof Systems

4.1 Proof Systems, informally
A proof system consists of:

• Set of axioms (formulas of the language)

• Set of inference rules. (how to compose formulas of the language)

A proof of a formula A is constructed by chaining together axioms, inference rules,
and objects (intermediate steps) generated from axioms and inference rules, until A is
reached.

A logic can be identified with the set of provable formulas.

4.2 Various kinds of proof systems
• Hilbert-Frege proof systems, or axiom systems, or reductive systems (Prawitz,

1971)

• Gentzen-style proof systems (our focus)

5 Hilbert-Frege system for classical propositional logic
Hcp

Let A, B and C be formulas of Lp, then the following are axiom schemas for the logic.
This means we have an instance of each axiom for each instance of A, B, and C.
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PL1. A→ (B→ A)
PL2.

(
A→ (B→ C)

)
→
(
(A→ B)→ (A→ C)

)
PL3. (A ∧ B)→ A
PL4. (A ∧ B)→ B
PL5. A→

(
B→ (A ∧ B)

)
PL6. A→ (A ∨ B)
PL7. B→ (A ∨ B)
PL8. (A→ C)→

(
(B→ C)→

(
(A ∨ B)→ C

))
PL9. ⊥ → A
PL10. A ∨ (A→ ⊥)

One inference rule for implication elimination (modus ponens):

mp
A A→ B

B

Note that PL1.−PL2. are rules for implication, PL3.−PL5. are rules for conjunction,
PL6. − PL8. are rules for disjunction, PL9. is the principal of explosion, and PL10. is
the law of excluded middle.

5.1 Proofs inHcp

Given a formula A in Lp, and Γ a set of formulas of Lp, an Hcp derivation of A from
assumptions Γ is a list of Lp formulas

A1
A2
...

An

such that An = A and for each Ai we have either

1. Ai is an axiom ofHcp

2. Ai ∈ Γ

3. Ai is obtained by applying mp to formulas in A1 . . . Ai−1.

We write Γ ⊢H cpA if there is a derivation of A from formulas in Γ. A proof of A is a
derivation of A from the empty set of premises ∅. We write ⊢Hcp A if there is a proof of
A. The classical propositional logic

CPL

is defined as {A | ⊢H cpA}.

Remark 1. Note that a derivation in Hcp can also be viewed as a tree. However, the
list representation is more compact since hypotheses may be reused.
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5.1.1 Examples

Example 1. ⊢Hcp A→ A

1. A→ ((B→ A)→ A) (PL1.)

2. (A→ ((B→ A)→ A))→ (A→ ((B→ A)→ (A→ A))) (PL2.)

3. (A→ (B→ A))→ (A→ A)) (mp 1, 2)

4. A→ (B→ A) (PL1.)

5. A→ A (mp 3, 4)

Example 2 (Exercise). ⊢Hcp (A→ B)→ (B→ C)→ (A→ C)

5.2 Deduction Theorem
Theorem 5.1 (Deduction). For a formula A and a set of hypotheses Γ of Lp,

Γ ⊢Hcp A→ B iff Γ ∪ {A} ⊢Hcp B

This means to prove an implication A→ B, it is sufficient to assume A as a hypoth-
esis and then proceed to derive B, and it is also true the other way around. This means
the following two derivations are equivalent.

Γ
...

A→ B

⇐⇒

Γ ∪ {A}
...
B

6 Peano Arithmetic

6.1 First-order logicH f o

In section 2, we have introduced propositional language Lp that can be used to de-
scribe facts like ”lemon is a fruit”, i.e. Fruit(lemon). However, it is not powerful,
expressive enough to describe a complicated world in a concise way. For example, in a
world (domain) where we describe family relationships, we want to express a parent of
one’s parent (a.k.a one’s grandparent). Using propositional logic, we can describe this
knowledge as

∃p,Parent(g, p) ∧ Parent(p, c)

where g is p’s grandparent. This can be more concisely expressed using first-order
logic as

∀g, c,Grandparent(g, c)

Intuitively, being able to express complex knowledge more concisely serves as our
motivation to expand propositional logic to first-order logic. Now, let us formally de-
fine the axiom system of first-order logicH f o.
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Axioms Axioms of first-order logic are defined as follows

1. ∀x(A(x))→ A(t)

2. A(t)→ ∃x(A(x))

3. ∀x(A→ B(x))→
(
A→ ∀x(B(x))

)
where x < FV(A)

4. ∀x(A(x)→ B)→
(
∃x(A(x))→ B

)
where x < FV(B)

5. ∀x(x = x)

6. ∀x∀y
(
x = x→ (A(x)→ A(y))

)
Inference Rules Inference rule of first-order logic is defined as

∀x(A)
gen −−−−−−−−−−−

A

6.2 Proofs inH f o

We denote the A as formula, and Γ as a set of formula. (We have defined formula when
we talked about predicate logic in previous section)

We define derivation of A from Γ as a list of formula,

A1
A2
...

An

where An = A and for each Ai, for i ≤ n, we have that either:

• Ai is an axiom ofH f o;

• Ai ∈ Γ;

• Ai is obtained by applying (mp) or (gen) to A1, . . . , Ai−1.

A proof of A is a derivation of A from ∅. We write Γ ⊢H f o A if there is a proof of A.

6.3 Peano Arithmetic
Perhaps numbers are the most vivid example of a first-order logic where we start from
a small set of axioms and build up the large theory of natural numbers. These axioms
are known as Peano axioms that define natural numbers and addition.

More formally,
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7 Intuitionistic Logic

7.1 Constructive proofs
Motivation for constructive logic. Let’s consider the following theorem:

Theorem 7.1. There exists irrational numbers a and b such that ab is irrational.

Proof 1. Let’s assume that
√

22 is either rational or irrational by the axiom of excluded
middle.

• Case
√

22 is a rational number: let a = b =
√

2, then a and b are irrational
numbers such that ab =

√
22 is rational and the statement is proved.

• Case
√

22 is an irrational number: Let a =
√

2
√

2 and b =
√

2.
Then (

√
2
√

2)
√

2 = 2, which is rational and the statement is proved.

□

Note that the above is a non-constructive proof because it assumes that
√

22 is either
rational or irrational, but it does not say which case holds true.

Proof 2. Take a =
√

2 and b = log29. Then ab = 3, which is rational. □

On the other hand, Proof 2 is a constructive proof because it provides evidence of
two elements a and b satisfying that ab is irrational.

7.2 An axiom system for intuitionistic propositional logic: Hip

The syntax used in the axiom system for intuitionistic propositional logic Hip is the
same syntax from Lp. Additionally,Hip consist of the following axioms:

PL1 B→ (A→ B)
PL2 (A→ (B→ C))→ ((A→ B)→ (A→ C))
PL3 (A ∧ B)→ A
PL4 (A ∧ B)→ B
PL5 A→ (B→ (A ∧ B))
PL6 A→ (A ∨ B)
PL7 B→ (A ∨ B)
PL8 (A→ C)→ ((B→ C)→ ((A ∨ B)→ C))
PL9 ⊥ → A

On top of that,Hip has one single inference rule, namely modus ponens:

A A→ B

B
mp

which can be read as if we have a proof of A and a proof of A → B, then we can
conclude that we have a proof of B.
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7.3 Proofs inHip

Definition 1. Let A be a formula in Lp, Γ a set of formulas in Lp. AHip derivation of
A from assumptions in Γ is a list of Lp formulas

A1
A2
...

An

where A1 = A and for each Ai such that i ≤ n, we have that either:

• Ai is an axiom ofHip

• A − i ∈ Γ

• Ai is obtained by applying (mp) to formulas in A1, A2, . . . , An−1.

We write Γ ⊢Hip A if there is a derivation of A from formulas in Γ.

Definition 2. A proof of A is a derivation of A from ∅, denoted by

⊢Hip A

.

Definition 3. Intuitionistic propositional logic IPL is define as all the propositional
formulas A such that there is a proof of A, i.e, there is a derivation of A from ∅; in other
words:

IPL = { A | ⊢Hip A}

7.3.1 Examples

Examples of formulas that are provable inHip:

• (¬A ∨ B)→ A→ B

• (A ∨ B)→ ¬(¬A ∧ ¬B)

Examples of formulas that are not provable inHip:

• A ∨ ¬A (excluded middle)

• ¬¬A→ A (double negation)

• ((A→ B)→ A)→ A (Pierce’s law)

• (A→ B)→ (¬A ∨ B)
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8 Intuitionistic Natural Deduction NJ
A pre-derivation in natural deduction (NJ) is a tree with nodes labelled with formulas
in Lp as well as a deduction rule (see below). A leaf is a formula which is tagged as
either open (live) or closed (dead/discharged) with an index i. For a set of hypotheses
Γ, a derivation of C from Γ is a well-formed pre-derivation with root C (defined below)
whose set of open leaves all lie in Γ. Given a pre-derivation T , denote by T [i] the same
tree where the closed leaves tagged with index i are now marked as open.

A deduction rule R is an n-ary constructor of the form

A1 . . . Ak

[B1]i
...

Ak+1

. . .

[Bn−k]i
...

An

C
Ri

A leaf A is a well formed derivation of A from hypotheses {A} ∪ Γ if it is open.
A pre-derivation of C from assumptions Γ with root node labelled with formula C,

rule R, and index i seen as follows,

(C,R, i)

Tn. . .T1

is well-formed if for each child derivation T j, then T j is a derivation of A j from
hypotheses Γ when j ≤ k, and T j[i] is a derivation of A j from hypotheses Γ, B j−k when
j > k.

The rules are categorized either as introduction or elimination rules. Namely, an
introduction rule specifies how to construct a proof of a formula, and an elimination
rule specifies how to use a proof of this formula to prove another formula.

The rules for NJ are as follows:

Introduction rules

A

A ∨ B
∨I1

B

A ∨ B
∨I2

A B

A ∧ B
∧I

[A]i
...
B

A→ B
→ Ii
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Elimination rules

A ∧ B

A
∧E1

A ∧ B

B
∧E2

A ∨ B

[A]i
...
C

[B]i
...
C

C
∨Ei

A→ B A

B
→ E

As can be remarked from this definition, the property of a leaf being open or closed
is not a static property of the proof since it changes depending on the subtree we are
verifying. Hence a natural deduction proof is not a genuine tree. One may wonder why
not present the natural deduction in the style of the sequent calculus with judgements
of the form Γ ⊢ A. However, the proofs in this calculus are not one to one with proofs
in natural deduction. Consider for example the following derivation:

A, A ⊢ A
?

A ⊢ A→ A
→ I

A ⊢ A

A ⊢ A
→ E

⊢ A→ A
→ I

This proof corresponds to two different natural deduction proofs, since we have two
ways to prove A, A ⊢ A. Contrast this with the NJ proof

[A]2

A→ A
→ I2

[A]1

A
→ E

A→ A
→ I1

where this ambiguity is resolved.

8.1 Completeness and Soundness
We can now show that NJ is relatively sound and complete with respect toHip. That
is, the completeness theorem says that if Hip is complete then NJ is complete, and
the soundness theorem says that if Hip is sound then NJ is sound (recall that a proof
system is sound if ⊥ is not derivable).

Theorem 8.1 (Completeness of NJ). If ⊢Hip A then ⊢NJ A.

Proof. By induction on the structure of the derivation of ⊢Hip A, seen as a tree (see
remark 1).

Base case: We must show that each of the axioms PL. 1-9 are derivable in NJ
(exercise).
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Inductive step: The only inductive case is the mp rule, that is if we have ⊢NJ A→ B
and ⊢NJ A, then to derive ⊢NJ B we use the→ E rule. □

Theorem 8.2 (Soundness of NJ). If ⊢NJ A then ⊢Hip .

Proof. By induction on the structure of the derivation.
Base case: If ⊢NJ A where A is an open leaf (recall this means that A belongs to the

set of hypotheses), then recall from example 1 that ⊢Hip A → A, and by the deduction
theorem we obtain A ⊢Hip A.

Inductive step: We must consider every rule of NJ .

→ I In the case that a derivation of ⊢NJ A → B ends with the rule → I, we know
from the induction hypothesis that A ⊢Hip B, and thus ⊢Hip A → B follows from
the deduction theorem.

The other cases are left as exercise. □

9 The Curry-Howard Correspondence
Over a series of exchanges between the 1930’s and 1950’s Curry and Howard together
discovered a remarkable correspondence between the structure of proofs and the struc-
ture of programs. Just as programs map a set of input types to a set of output types,
proofs can be viewed as mapping a set of input propositions (expressed as formulas) to
a set of output propositions. The formal realization of this symmetry is known as the
Curry-Howard correspondence.

To see this, we can introduce a new typing judgement

M : A

to indicate that M is a proof of A. Then, by definition, there exists M such that M : A
if and only if ⊢ A, that is A is true in the proof system. Thus, under the Curry-Howard
paradigm, to prove that a proposition A is true, we seek to show that type A is inhibited
by some term M which represents the proof.

Of course, the type system will change based on the logical system that we use.
In this section, we first introduce the simply-typed lambda calculus with products and
sums. We then argue that a formula is true inNJ if and only if the corresponding type
in this language inhibited.

SLTC with Products and Sums We define the syntax of the simply typed lambda
calculus with products (i.e. pairs) and sums (i.e. disjunctions) as follows.

L,M,N :=x | λx.M | MN |

⟨M,N⟩ | π1(M) | π2(M) |
in1(M) | in2(M) | case(L, x⇒ M, y⇒ N) |
ε(M)
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Semantically, ⟨M,N⟩ represents a pair of elements. Then, π1 (respectively π2) is in-
tended to represent projecting the first element of a pair (respectively second). Simi-
larly, in1 (respectively in2) is intended to represent injecting the first (respectively sec-
ond) element into a disjoint pair. case is intended to represent picking different terms
based on whether the input is a the first or second element of a disjunctive pair. Finally
ε(M) is intended to represent an error.

Proofs as λ-terms We now show how to view a proof of a formula in NJ as a term
in the simply typed lambda calculus with products and sums. We do so inductively: In
particular, we will show how to construct such terms for each of the introduction and
elimination rules in NJ .

First, given a proof M of A (respectively N of B), we can derive a proof in1(M)
(respectively in2(N)) of A ∨ B.

M : A

in1(M) : A ∨ B
∨I1

N : B

in2(N) : A ∨ B
∨I2

Given a proof M of A and a proof N of B, we have that the pair of proofs ⟨M,N⟩
represents a proof for A ∧ B.

M : A N : B

⟨M,N⟩ : A ∧ B
∧I

Suppose that we can derive a proof M of B assuming a proof x of A. Then, with lambda
abstraction we are afforded a function a proof of type A→ B.

[x : A]
...

M : B

λx.M : A→ B
→I

Given a proof M for A ∧ B we can project out proofs for A and B respectively.

M : A ∧ B

π1(M) : A
∧E1

A ∧ B

π2(M) : B
∧E2

Now, suppose we have a proof of A ∨ B and assuming either a proof of A or a proof of
B we can construct a proof for C. Then, we have a proof for C. This is captured by the
following rule.

L : A ∨ B

[x : A]
...

M : C

[y : B]
...

N : C

case(L, x⇒ M, y⇒ N) : C
∨E
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Similarly, given a proof M of A→ B and a proof N of A, we obtain a proof

M : A→ B N : A

app(M,N) : B
→E

which is precisely application in STLC.
Finally, if we assume a proof term for false, then we should be able to derive proof

terms for any other formula.

M : ⊥

ε(M) : A
fail

10 Intuitionistic Sequent Calculus LJ
Sequent calculus was defined by Getzen as a syntax to reflect the natural process of
deductive reasoning. In particular, a sequent is of the form

Γ⇒ A. (1)

Here, Γ is a sequence of formulas in NJ and A is a formula in NJ . We can formally
interpret a sequent as a formula in NJ via function fm as follows

fm(∅ ⇒ A) B T→ A

fm(B1, . . . , Bn ⇒ A) B (B1, . . . , Bn)→ A

We now define the inference rules of Intuitionistic Sequent Calculus. We start with
two initial sequents, which can be viewed as the axioms of the system

init −−−−−−−−−−−−−−−−−−
p,Γ⇒ p

⊥ −−−−−−−−−−−−−−−−−−−−

⊥,Γ⇒ C

We also require inference rules for conjunction, disjunction, and implication.

A, B,Γ⇒ C
∧L −−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ B,Γ⇒ C

Γ⇒ A Γ⇒ B
∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ A ∧ B

A,Γ⇒ C B,Γ⇒ C
∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∨ B,Γ⇒ C

Γ⇒ Ai
∨R −−−−−−−−−−−−−−−−−−−−−−−−−− i ∈ {0, 1}
Γ⇒ A0 ∨ A1

A → B,Γ⇒ A B,Γ⇒ C
→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A → B,Γ⇒ C

A,Γ⇒ B
→R −−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ A → B

Next, we introduce a weakening rule, which states that any provable statement can
always take additional (unused) hypothesis. We additionally introduce a contraction
rule, which states that we only need to assume a hypothesis once to use it.
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Γ⇒ C
weak −−−−−−−−−−−−−−−−−−−

A,Γ⇒ C

A, A,Γ⇒ B
cont −−−−−−−−−−−−−−−−−−−−−−−−−

A,Γ⇒ B

Finally, we introduce the cut rule which states that if formula A is provable in some
context Γ and A,Γ together prove C, then we must have that C is provable under just Γ.

Γ⇒ A A,Γ⇒ C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ C

A Derivation in LJ is a (rooted) tree where nodes are labeled by sequents such
that

(1) The leaves of the tree are initial sequents,

(2) The sequents occupying intermediate nodes in the tree are obtained from the se-
quents occupying the nodes directly above them by means of a correct application
of an inference rule, and

(3) The root of the tree is the conclusion of the derivation (the endsequent).

We say that Γ ⇒ A is derivable in LJ if it appears as the endsequent of a derivation.
We denote this with ⊢LJ Γ⇒ A.

As an example, we derive the sequent⇒ p→ (q→ (p ∧ q)) as follows

init −−−−−−−−−−−−−−−−−−
p, q⇒ p

init −−−−−−−−−−−−−−−−−−
p, q⇒ p

∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p, q⇒ p ∧ q
→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p⇒ q→ (p ∧ q)
→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

⇒ p→ (q→ (p ∧ q))

11 Cut Elimination
One of the most complex rules in intuitionistic sequent calculus is the cut rule which,
recall, is defined as follows.

Γ⇒ A A,Γ⇒ C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ C

The key challenge is that the cut rule is not local: We can derive a proof of A further
up the deduction tree and still apply the cut rule much further below. This makes it
challenging for automated proof search techniques to decide when or if the cut rule is
applicable. Our goal in this section is to show that the cut rule is strictly not necessary.
In particular, we overview in this section a proof for the following theorem.

Theorem 11.1 (Hauptsatz, Getzen 1935). Every theorem in LJ has a proof that does
not use the cut rule.

As a consequence, we have the following corollary.
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Corollary 1 (Analyticity). Every theorem LJ has a proof that only contains subfor-
mulas of it.

The general strategy is to keep pushing the cut upwards in the derivation tree into
smaller and smaller derivations until they disappear. Of course, to ensure termination,
we need a “measure” on derivations and formulas, and need to ensure that we can keep
pushing the cuts into derivations of smaller measure. The actual proof is quite involved
so we only intuit the proof in this section. Several proofs of cut-elimination exist in the
literature, using slightly different procedures and for slightly different systems [4, 3, 2].

We begin by introducing several preliminary definitions and lemmas.

Definition 4 (Height, Degree, and Rank). The height of a derivationD, denoted ht(D)
is the length of the longest branch minus 1. The level of a cut rule is the sum of the
heights of the derivations of the two premises of the cut. For example, suppose we have
the following derivation with cut being used as the following rule.

D1

Γ⇒ A

D2

A,Γ⇒ C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ C

In particular, we have that the endsequent of D1 is Γ ⇒ A and the endsequent of D2
is A,Γ ⇒ C. Suppose now that ht(D1) = m and ht(D2) = n. Then, we have the level
of this cut is m + n. The degree of a formula A, denoted deg(A) is the total number of
logical connectives occurring in it. In particular we define deg inductively as follows

deg(p) B 0
deg(⊥) B 0

deg(A ⋆ B) B deg(A) + deg(B) + 1 for ⋆ ∈ {∧,∨,→}

The rank of a cut rule is the degree of a cut formula plus 1. The rank of a derivation
treeD, denoted rk(D), is the maximum degree of the cut rules occurring inD.

We will write
Γ⇒m

p C

to mean that there is a derivation of Γ ⇒ C of height at most m and rank at most p.
Additionally, we introduce the following two lemmas

Lemma 1 (Closure under Weakening). If Γ⇒m
p C then Γ′,Γ⇒m

p C for any Γ′.

Proof (Intuition). By induction on the height m of the derivation. □

Lemma 2 (Closure under Contraction). If A, A,Γ⇒m
p C, then A,Γ⇒m

p C.

Proof (Intuition). By induction on m using weakening (and invertibility). □
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11.1 The Cut Elimination Theorem
Our high level plan is to convert a derivation D in LJ of the sequent Γ ⇒p C to a
derivation D∗ of the sequent Γ ⇒0 C. That is the rank of D∗ is 0 (and therefore
necessarily does not have a cut rule). We will first show how to simulate instances of a
cut, and then leverate this technique to eliminate all cuts occurring in a derivation.

Lemma 3 (Closure under Cut). If Γ⇒m
0 A and A,Γ⇒n

0 C and

D1

Γ⇒m
0 A

D2

A,Γ⇒n
0 C

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ⇒1 C

Then, we can construct the following derivationD∗

D∗

Γ⇒0 C

Proof (Intuition). We distinguish based on cases. Let R1 be the last rule required to
derive Γ⇒m

0 A and R2 be the last rule required to derive A,Γ⇒n
0 C. First, we consider

the setting where R1 is an initial sequent (symmetrically R2 is an initial sequent). Next,
we consider the setting where A is principal in both R1 and R2 (i.e., A is the formula be-
ing “acted upon” by R1 and R2). Finally, we consider the case where A is not principal
in either R1 and R2.

Suppose now thatD1 is initial. That is, we have that

D1 = init −−−−−−−−−−−−−−−−−−−−−−−
A,Γ′ ⇒m

p A

suppose additionally that we have the final rule ofD2 can be written as follows

D2

Γ′′ ⇒n−1
p C′′

R2 −−−−−−−−−−−−−−−−−−−−−−−−−−

A,Γ⇒n
p C

with Γ = A,Γ′. We construct the following derivationD of Γ⇒p C:

D2

Γ′′ ⇒ C′′
R2 −−−−−−−−−−−−−−−−−−−−−−−−−−−

A, A,Γ′ ⇒ C
ctr −−−−−−−−−−−−−−−−−−−−−−−−−−−

A,Γ′ ⇒ C

19



Suppose instead that A is principal in both R1 and R2. We consider the following
case. Suppose R1 =→R and R2 =→L. That is we have that rule R1 can be written as
follows

D1

A,Γ⇒m−1
p B

→R −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒m
p A → B

and R2 can be written as follows

D′2

A → B,Γ⇒n1
p A

D′′2

B,Γ⇒n2
p C

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A → B,Γ⇒n
p C

with n1, n2 < n. Then, we can construct the following derivationD of Γ⇒p C

D1

A,Γ⇒ B
→R −−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ A → B

D′2

A → B,Γ⇒ A
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ A

D1

A,Γ⇒ B
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ B

D′′2

B,Γ⇒ C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ⇒ C

Now suppose A is not principal in R1 and R1 is a one-premise rule.

D1

Γ′ ⇒m−1
p A

R1 −−−−−−−−−−−−−−−−−−−−−−

Γ⇒m
p A

D2

Γ′′ ⇒n−1
p C′′

R2 −−−−−−−−−−−−−−−−−−−−−−−−−−

A,Γ⇒n
p C

Then, we construct the following derivationD of Γ⇒p ∆:
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D1

Γ′ ⇒, A
wk −−−−−−−−−−−−−−−−−−−−
Γ′,Γ⇒ A

D2

Γ′′ ⇒ C′′
R2 −−−−−−−−−−−−−−−−−−−−

A,Γ⇒ C
wk −−−−−−−−−−−−−−−−−−−−−−−−−−

A,Γ′,Γ⇒ C
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ′,Γ⇒ C
R1 −−−−−−−−−−−−−−−−−−−−−

Γ,Γ⇒ C
−−−−−−−−−−−−−−−−−−−

Γ⇒ C

Much in the same way we can consider the remaining cases. □

Theorem 11.2 (Cut Elimination). If we have a derivation D of Γ ⇒p C then we can
construct a derivation D∗ of Γ⇒0 C, that is, a derivation where cut does not occur.

Proof (Intuition). We apply the proof transformation detailed in the Lemma to the cuts
occurring in D, starting with topmost cuts of maximal rank. The Lemma ensures us
that after every proof transformation one instance of cut is eliminated. Therefore, in
finitely many steps, we obtain a derivation D∗ of Γ ⇒0 C, where the cut rule does not
occur. □

12 Normalization
Previously, we saw the correspondence between natural deduction and the simply typed
lambda calculus. In this section we extend this correspondence to reduction. In par-
ticular, we will see how to define reduction on NJ proofs and see that they reduce to
normal forms, which are in bijection with reductions and normal forms in the lambda
calculus.

We begin by defining a detour in an NJ proof, which consists of an introduction
rule immediately followed by an elimination rule. The major premise of the elimination
rule is that which coincides with the conclusion of the introduction rule.

The following detours may occur in our proof:
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M1 : A1 M2 : A2

⟨M1,M2⟩ : A1 ∧ A2
∧I

πi⟨M1,M2⟩ : Ai
∧Ei

{ Mi : Ai

L : Ai

ini(L) : A1 ∨ A2
∨Ii

[x1 : A1]
...

M1 : C

[x2 : A2]
...

M2 : C

case(ini(L), x1 ⇒ M1, x2 ⇒ M2) : C
∨E

{

L : Ai
...

Mi[L/xi] : C

[x : A]
...

M : B

λx.M : A→ B
I

N : A

app(λx.M,N) : B
E

{

N : A
...

M[N/x] : B

The term annotations ⟨·, ·⟩, πi, case, ini, λ are only there to highlight the correspondence
with the simply typed lambda calculus. Here we immediately see that these detours
correspond to β-reduction the lambda calculus, and the reductions appear on the right.
Whereas in the lambda calculus, variables are substituted for terms, in NJ we substi-
tute an open leaf (the leaf is open in the subproof, but closed in the global proof) with
a proof of the leaf’s formula.

13 From LJ to NJ and Back

13.1 Back to Normalization

14 Peano Arithmetic with Sequents
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