
Semantic Type Soundness and Language Interoperability

Amal Ahmed

June 8, 2024

1 Logical Relations

Logical Relations are a proof tactic to prove properties about programs and programming languages.
Some properties of interest are:

• Program termination

• Type soundness/safety

• Program equivalence (Contextual equivalence)

• Representation Independence (Interface and existential type)

• Parametricity

• Non-interference in security-typed programming languages

These relations are said to be unary when reasoning about a property of a single program, as
in the case of termination or type soundness, or binary, when reasoning about the relation between
two programs. Binary relations can apply to programs written in two different languages, such as
a source language and a target language.

2 Simply Typed Lambda Calculus

The language used in these lectures is the Simply Typed Lambda Calculus, with type annotations
à la Church and extended with boolean and if-then-else expressions.

2.1 Formal Definition

The formal definition of the language follows, where the meta-variables τ , e, v, E and Γ represent
respectively types, expressions, values, evaluation contexts and typing contexts.

τ ::= bool | τ1 → τ2

e ::= x | true | false | if e then e1 else e2 | λx : τ. e | e1 e2

v ::= true | false | λx : τ. e

E ::= [·] | if E then e1 else e2 | E e | v E

Γ ::= · | Γ, x : τ

1

2.2 Operational Semantics

e 7→ e′

if true then e1 else e2 7→ e2 if false then e1 else e2 7→ e2 (λx : τ. e) v 7→ e[v/x]

e 7→ e′

E[e] 7→ E[e′]

2.3 Typing Judgements

Γ ⊢ e : τ

Γ ⊢ true : bool Γ ⊢ false : bool
Γ(x) = τ

Γ ⊢ x : τ

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1. e : τ1 → τ2

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ

Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

3 Type Soundness

The theorem of type soundness, introduced by Milner, states that if a term is well-typed then it is
guaranteed to have well-defined behaviour when evaluated.

Theorem 3.1 (Type Soundness).

· ⊢ e : τ =⇒ ∀e′ [(e 7→∗ e′) → (val(e′) ∨ [∃e′′. e′ 7→ e′′])]

In English: “If a well-typed term e evaluates to e′, the e′ is either a value, or can be evaluated
further to e′′ ”

3.1 Syntactic Type Soundness

Type soundness is most commonly proved syntactically, by proving progress and preservation. This
technique was introduced by Wright and Felleisen.

Lemma 3.2 (Progress). If · ⊢ e : τ , then val(e) ∨ ∃ e′ . e 7→ e′

Lemma 3.3 (Preservation). If · ⊢ e : τ and e 7→ e′, then · ⊢ e′ : τ

Theorem 3.4. Progress & Preservation =⇒ Type-Safety

Proof. Suppose · ⊢ e : τ , e 7→∗ e′ be arbitrary. Then · ⊢ e′ : τ by preservation (and induction).
Hence val(e′) ∨ ∃ e′ . e 7→ e′ by progression. Thus we get type-safety

Remark. Recall what we want to achieve is type soundness. Proving progress and preservation
is one way of achieving this goal. However, proving progress and preservation may be more than
necessary. In the lecture, we commented on Rust. We may write unsafe Rust in an unsafe block,
which during execution may temporarily enter a state that is considered unsafe or not well-typed.
However, when the entire unsafe block is executed, the program returns to a safe state.

2

4 Semantic Type Soundness

While syntactic type soundness is the most used technique, Milner’s original approach used denota-
tional semantics. While the syntactic approach characterizes soundness by syntactic well-typedness,
the semantic approach characterizes soundness by the behaviour of programs. One of the advan-
tages of the semantic approach is in proving the safety of programs with unsafe behaviour, such as
in Rust or Haskell, where the type system is too restrictive to allow programs that behave correctly.

Definition 4.1 (Safety).

safe(e)
def
= ∀e′

[(
e 7→∗ e′

)
=⇒

(
val(e′) ∨

[
∃ e′′ . e′ 7→ e′′

])]
Below, we define what it means for a value and an expression to be semantically well-behaved

in the STLC. Values are well-behaved under type τ if they are a member of VJτK. The same follows
for expressions and EJτK.

VJboolK = {true, false}
VJτ1 → τ2K = {λx : τ1. e | ∀v ∈ VJτ1K. e[v/x] ∈ EJτ2K}

EJτK = {e | ∀e′. e 7→∗ e′ ∧ irred(e′) =⇒ e′ ∈ VJτK}

where

irred(e) = ∄e′. e 7→ e′

Note that this definition of EJτK is based on the fact that evaluation of expressions in the STLC
always terminates. For extensions of STLC, particularly those in which this guarantee is lost, a
new definition may be necessary. Furthermore, note that for v ∈ VJτK to hold, we do not need
to produce a typing derivation for v : τ . Instead, we are focused on asking if during execution,
the value “behaves” as a member of the claimed type; in particulary if it is “semanticallly well-
behaved“. For the STLC, there is little distinction between a value being well-typed and it being
semantically well-behaved (under the same type τ). However, this has practical usage in languages
such as Rust, where an unsafe segment of code which would not ordinarily typecheck is assumed to
be overall semantically well-behaved and satisfy whatever guarantees are expected.

Definition 4.2 (Substitution Function).

GJ·K = ∅
GJΓ, x : τK = {γ[v/x] | γ ∈ GJΓK ∧ v ∈ VJτK}

where ∅ denotes the function with ∅ as domain. γ[v/x] denotes function γ extended with x maps
to v

Definition 4.3 (Semantically Well-Typed).

Γ ⊨ e : τ ⇐⇒ ∀ γ ∈ GJΓK . γ(e) ∈ EJτK

We may understand that a term is semantically well-typed if given any substitution function, the
function substitutes to produce a well-behaved term. The definition of well-behaved depends on
EJτK.

3

Theorem 4.1 (Semantic Type Soundness). If · ⊢ e : τ then safe(e)

Proof. The proof comes in two parts

A. · ⊢ e : τ =⇒ e ∈ EJτK

Proof. Here we assume the Fundamental Property of Logical Relations.
Suppose · ⊢ e : τ . Then we get · ⊨ e : τ .
By definition of ⊨, we have ∀ γ ∈ GJ·K . γ(e) ∈ EJτK.
But this means e ∈ EJτK (because a substitution function for the empty context does not
modify e) ■

B. e ∈ EJτK =⇒ safe(e)

Proof. Suppose e ∈ EJτK.
Let e 7→∗ e′ be arbitrary.

If ¬ irred(e′), then it means ∃ e′′ . e′ 7→ e′′, hence

(
val(e′) ∨

[
∃ e′′ . e′ 7→ e′′

])
If irred(e′), then notice by definition of EJτK, we get e′ ∈ VJτK. Examining the elements of

VJτK shows that e′ must be a value, hence val(e′), and

(
val(e′) ∨

[
∃ e′′ . e′ 7→ e′′

])
Thus safe(e). ■

Thus we get · ⊢ e : τ =⇒ safe(e)

Theorem 4.2 (Fundamental Property of Logical Relations). If Γ ⊢ e : τ then Γ ⊨ e : τ

Proof. Proof by induction on typing derivation.

Case 4.1. Γ ⊢ true

Want to show: Γ ⊨ true : bool
Suppose that γ ∈ G,
We only need to show that γ(true) ∈ E(JboolK)
then it suffices to show that
true ∈ V JboolK

Case 4.2.
Γ(x) = τ

Γ ⊢ x : τ
Want to show: Γ ⊨ x : τ
Suppose γ ∈ GJΓK
then it suffices to show that
v = γ(x) ∈ EJτK which is immediate from the definition of EJτK

Case 4.3. λ:
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ x : τ1.e : τ1− > τ2
Need to show
γ(λx : τ1.e) ∈ EJτ1 → τ2K
which is equivalent to

4

λx.τ1.γ(e) ∈ EJτ1 → τ2K
From the definition of entailment and E it suffices to show that:
λx : τ1.γ(e) ∈ VJτ1 → τ2K
Suppose that v ∈ VJτ1K.
As v is arbitrary, it suffices to show γ(e)[v/x] ∈ EJτ2K
which is equivalent to
γ[v/x](e) ∈ EJτ2K

By our inductive hypothesis (IH) we have that Γ, x.τ1 ⊨ e : τ2
in the definition of entailment IH let us instantiate ∀γ with γ, [v/x],
which is an element of GJγ, x : τ1K by our assumptions.
The gives us γ[v/x](e) ∈ EJτ2K. The desired result.

5 Recursive Types

In order to express the types of recursive data structures such as trees and lists, we must add
sufficient typing rules to the STLC. Intuitively, in an ML-like language, we could express the type
of a binary tree with values on the nodes as:

tree = 1 + (int ∗ tree ∗ tree)

We transform this type definition into a function F which, given a type α, constructs anew type
resembling the tree type above.

F = λα : type. 1 + (int ∗ α ∗ α)

Let µα. τ be a least fixpoint constructor (recall that a fixpoint x of a function f is a value such
that x = f(x)). If we apply µα. τ to F from above, we find the following:

µα. F (α) = F (µα. F (α)) By definition

µα. τ = F (µα. τ) Let τ = F (α)

µα. τ = τ [µα. τ/α]

Note this final equivalence. To replace µα. τ with τ [µα. τ/α] is to unfold the type, and to go in
the reverse direction is to fold it. We formalize this in an extension of the STLC below.

5.1 Language

The syntax of the STLC presented earlier extended with recursive types and folding operations.

τ ::= · · · | µα.τ
e ::= · · · | fold e | unfold e

v ::= · · · | fold v

E ::= · · · | fold E

5

5.2 Typing Rules

Γ ⊢ e : τ

Γ ⊢ e : τ [µα.τ/α]

Γ ⊢ fold e : µα.τ

Γ ⊢ e : µα.τ

Γ ⊢ unfold e : τ [µα.τα]

5.2.1 Nontermination

As an aside, note that we now support nontermination in our programs as we can typecheck terms
whose evaluation does not terminate.

Let SA be the self-application term λx : µα. α → τ. (unfold x) x. Then unfold x has the type
(µα. α → τ) → τ . Therefore, SA produces a τ and thus has the type (µα. α → τ) → τ .

Now we construct the term Ω = SA (fold SA). From the type of SA, we see that the term
(fold SA) has the type µα. α → τ . Therefore, Ω has the type τ . We have successfully typechecked
a term which causes nonterminating evaluation!

5.3 Denotation

VJµα.τK = {fold v | v ∈ VJτ [α → µα.τ]K}

5.4 Operational Semantics

e 7→ e′

unfold (fold v) 7→ v

6 Step Index

6.1 Motivation

Here we will build up the motivation for the technique known as Step Index.
Now we have added recursive types to our language, we must also define the set of well-behaved

µα.τ terms. Let us consider the following naive approach:

VJµα.τK = {fold v | unfold (fold v) ∈ VJτ [α → µα.τ]K}

The approach is analogous to the set for τ1 → τ2, where e[v/x] is the same as (λx.e)v, which is the
eliminator of function types. Similarly here, unfold is the eliminator of recursive types.

However, this approach is flawed. Consider the type τ [α → µα.τ] on the right-hand side, which
almost certainly is a larger type than the µα.τ on the left-hand side. We will not be able to use
the induction hypothesis on a larger type, thus previous approach will fail.

6.2 Solution: Step Index

We can solve the problem by introducing the concept of step. Intuitively, we want “terms that
behave well for k steps”, for “arbitrarily large k”.

6

6.3 Denotation

VkJboolK = {true, false}
VkJτ1 → τ2K = {λx : τ1.e | ∀j ≤ k, ∀v. v ∈ VjJτ1K =⇒ e[v/x] ∈ EjJτ2K}

VkJµα.τK = {fold v | ∀j < k. v ∈ VjJτ [µα.τ/α]K} (note unfold (fold v) 7→ v)

EJτK = {e | ∀j < k, ∀e′.e 7→j e′ ∧ irred(e′) =⇒ e′ ∈ Vk−jJτK}
GkJΓ, x : τK = {γ[v 7→ x] | γ ∈ GkJΓK ∧ v ∈ VkJτK}

6.4 Type Soundness

Theorem 6.1 (Step-indexed Semantic Type Soundness).

Γ ⊨ e : τ
def
= ∀k ≥ 0. ∀γ ∈ GkJΓkK. γ(e) ∈ EkJτK

Proof. Proof of type soundness by induction on the rules of typing derivation.
Note: We only provide the proof for the fold type judgement, the remaining derivations are left

to the reader.

Proof. Fold Recall: type judgement of fold
Γ ⊢ e : τ [µα.τ/α]

Γ ⊢ fold e : µα.τ
We will need to show that Γ ⊨ fold e : µα.τ

• Assumption: k ≥ 0

• Assumption: γ ∈ GJΓK

To satisfy the definition of entailment we must now show that

γ(fold e) ∈ EkJµα.τK
which is equivalent to
fold γ(e) ∈ EkJµα.τK

• Assumption: for some j ¡ k γ(e) 7→ e′ ∧ irreducible(e)

Note that our language is deterministic so the following must be true:

• foldγ(e) 7→j≤k (e′) ∧ irreducible(e) =⇒ γ(e) 7→j1≤j (e
′) ∧ irreducible(e)

notice that we are focusing on the e rather that fold e.
also note that we are focusing upon j1 and k

now we call upon our inductive hypothesis:

Γ ⊨ e : τ
def
= ∀k′ ≥ 0. ∀γ′ ∈ GJΓK. γ′(e) ∈ E ′

kJτK
Let us specialize γ′ with γ and k′ with k

7

By the definition of E and by our previous assumptions
e must evaluate to some value e” s.t. irreducible(e”) and γ(e′′) ∈ VJµα.τ/τK

We know that e1 satisfies this predicate, so, by the definition
of operational semantics j = j1 and e’ = e1

therefore fold e 7→k−j fold e′

therefore fold e′ ∈ Vk−jJfoldK by definition of V
and from monotonicity we also have that ∀j′ ≤ k − j.fold e′ ∈ Vj′JfoldK

Which satisfies our definition of entailment.

In the proof of the previous theorem, the proof for the case of recursive types requires the
following monotonicity theorem, which states that values which are semantically well-behaved for
k steps also behave as such for fewer steps.

Theorem 6.2 (Monotonicity or Downward Closure).

v ∈ VkJτK =⇒ ∀j ≤ k.v ∈ VjJτK

7 Mutable References

We now consider an extension of the STLC with mutable references but without recursive types.

7.1 Language

τ ::= 1 | bool | τ1 → τ2 | ref τ

e ::= · · · | () | new e | !e | e1 := e2

v ::= · · · | l
E ::= · · · | new E | !E | E := e2 | v := E

7.2 Operational Semantics

Program configurations are represented as pairs (S, e) where S is a store (also called a heap) and e
is the current expression being evaluated. Stores map locations to closed values.

S : Loc → CVal

S = {l1 7→ v1, . . . , ln 7→ vn}

l /∈ dom(S)

(S, new v) 7→ (S[l 7→ v], l)

l 7→ v ∈ S

(S, !l) 7→ (S, v)

l ∈ dom(S)

(S, l := v) 7→ (S[l 7→ v], ())

8

7.3 Typing Rules

Γ ⊢ e : τ

Γ ⊢ new e : ref τ

Γ ⊢ e : ref τ

Γ ⊢ !e : τ

Γ ⊢ e1 : ref τ Γ ⊢ e2 : τ

Γ ⊢ e1 := e2 : 1

7.4 Aliasing and Types

Aliasing can be an issue for many languages that implement mutable references. One danger comes
from “use after freed” in languages like C. Here we present another source of error.

Consider the following setup, where x, y are references that both point to the same location l:

x y

l

Now consider the following code:

x := 5;

if (! y) then . . . else . . .

This is a dangerous piece of code because when de-referencing y, as we will get stuck when
evaluating “if 5 . . . ”. To avoid this issue, we will enforce the constraint “once a reference is
created with a value of type τ , it will always store a value of type τ”. We already see this in the
typing rules, where an assignment expression has a type only when the value type matches the
reference type. We will see later how to express this in logical relations.

7.5 Non-termination

As an aside, note that this extension of the STLC supports recursion and nontermination! We
utilize the following technique called Landin’s Knot.

let x = new λz : 1. z

let f = λz : 1. (!x) z

x := f ;

f ()

7.6 Storing Typing Information

The denotational semantics are extended do deal with mutable references as follows. This requires
the use of a new context Ψ which maps locations to semantic types. This will be useful when we
express “the type of stored expression will not change”.

Ψ = {l1 7→ VJτ1K, . . . , ln 7→ VJτnK}

9

7.7 Denotation

Here we modify definitions of V, E , and G to properly support our new store typing.

Vk,ΨJref τK = {l | Ψ(l) = ⌊VJτK⌋k−1}
Vk,ΨJτ1 → τ2K = {λx : τ1.e | ∀(j,Ψ′) ⊒ (k,Ψ).∀v ∈ Vj,ΨJτ1K =⇒ e[v/x] ∈ Ej,Ψ′Jτ2K}

Ek,ΨJτK = {e | ∀S, S′, e′, j < k. Sk : Ψ ∧ (S,E) 7→j (S′, e′) ∧ irred(S′, e′)

=⇒ ∃Ψ′. (k − j,Ψ′) ⊒ (k,Ψ) ∧ S′ :k−j Ψ
′ ∧ e′ ∈ Vk−j,ΨJτK}

Gk,ΨJΓ, x : τK = {γ[x 7→ v] | γ ∈ Gk,ΨJΓK ∧ v ∈ Vk,ΨJτK}

The new semantics definitions are designed such that the store should only be able to update
a location with a value of the same type, for all future steps. But designing the semantics naively
introduces inconsistencies in our logic. Thus we will need to also introduce new Meta-Type def-
initions, and a new concept ’worlds’. Reading about the new Meta-Types and worlds will give
meaning to the new notation in these semantics.

7.8 Type Hierarchy

As we have extended the STLC, the structure of our semantic types have changed as below.

Type = {I ∈ P(CVal)} Base STLC

Type = {I ∈ N → P(CVal) | monotonicity(I)} + Recursive Types

We might expect that we can extend this similarly to work with our new Ψ context:

Type = {I ∈ N× StoreTy → P(CVal) | monotonicity(I)} + Mutable References

StoreTy = Loc
fin−→ Type

Unfortunately, this actually produces an inconsistency. Because StoreTy appears in the negative
of Type, |Type| > StoreTy. Because Type appears in the negative of StoreTy, |StoreTy| ≥ Type.
These inequalities cannot hold together, so we need a less naive type structure. We will build one
up hierarchically so as to stratify the types.

Type0 = ∅
Typek+1 = N× StoreTyk → P(CVal)

StoreTyk = Loc
fin−→ Typek

Type =
⋃
k∈N

Typek

10

7.9 Worlds

We can also express our types in terms of the concept of worlds. Logic that considers these worlds
is also called Kripke Models or accessibility models. We define this system as below:

Worldn = {(k,Ψ) | k < n ∧Ψ ∈ StoreTyk}

StoreTyn = {Ψ ∈ Loc
fin−→ Typen}

Typen = {I ∈ Worldn → P(CVal) | monotonicity(I)}

Here we also define some convenient notations:

⌊VJτK⌋k
def
= Vk,ΨJτK

⌊Ψ⌋k
def
= {l 7→ ⌊VJτK⌋k} where Ψ(l) = VJτK

7.10 Ordering on Worlds

While discussing recursive types, we introduced step indexing. The point was to consider how terms
behave as time progresses. We are now replacing time with worlds. Thus we need to define order
on worlds.

(j,Ψ′) ⊒ (k,Ψ)
def
= j ≤ k ∧ ∀l ∈ dom(Ψ). ⌊Ψ(l)⌋j−1 = ⌊Ψ′(l)⌋j−1

Here we first require j < k, representing fewer steps remaining. There is no free operation, so the
new reference table must have at least as many locations, with each location storing closed a value
of the same type as previous world. This relation is called the accessibility relation.

7.11 Storage Satisfying Store Type

Previously, when discussing whether a value is well-behaved, we considered eliminating it with all
possible well-behaved values. We will use a similar argument for mutable reference. Previously,
whether a term is well-behaved depends on the number of steps remaining. Now we need to take
storage into account.

We define the following notation:

S :k Ψ
def
= dom(Ψ) ⊆ dom(S) ∧ ∀j < k, l ∈ dom(Ψ). S(l) ∈ ⌊Ψ(l)⌋j

The left-hand side reads “S is satisfied by Ψ”. We say S satisfies a store type Ψ when

1. It has a value for each location in dom(Ψ)
2. Each value is well-behaved for the type in Ψ at j steps

7.12 Soundness

Lemma 7.1 (Semantic Type Soundness).

Γ ⊨ e : τ
def
= ∀k ∈ N,Ψ, γ. (k,Ψ) ∈ Worldk+1 ∧ γ ∈ Gk,ΨJΓK =⇒ γ(e) ∈ Ek,ΨJτK

Lemma 7.2 (Monotonicity).

v ∈ Vk,ΨJτK ∧ (j,Ψ) ⊒ (k,Ψ) =⇒ v ∈ Vj,Ψ′JτK

11

8 Binary Logical Relation & Language Interoperability

So far the logical relations presented were unary, but binary relations are useful to prove properties
relating two programs of the same language, or even between programs of different languages. A
binary logical relation states that two programs behave in the same manner.

The general form of binary logical relationship is as follows:

VJτK = {(v1, v2) | . . . }
EJτK = {(e1, e2) | . . . }

8.1 Example Usages

Now that we have binary logical relations, we can express ideas that involve two terms. For example,
we can express the concept of term equivalence as follows:

Γ ⊢ e1 ≈ e2 : τ = ∀(γ1, γ2) ∈ GJΓK =⇒ (γ1(e1), γ2(e2)) ∈ EJτK

The idea is that two terms are equivalent if when substituted with equivalence values, the
resulting terms are still equivalent. Of course, we did not define GJΓK, but the definition should be
similar to what we have seen previously.

Of course, we can still encounter issue with induction like we had for unary relationships. In
which case we may appeal to step-index again. Here is a possible usage:

EkJτK = {(e1, e2) | ∀e′.∀j < k.e1 7→j v1 =⇒ ∃v2.e2 7→∗ v2 ∧ (v1, v2) ∈ Vk−jJτK}

We see the usage of k and j. The exact definition depends on the case. One trick to note is we
don’t need to index the number of reduction on e1 and e2 simultaneously. In fact, it may be too
strong, since the it may take e2 more than one reduction to achieve the same effect as one reduction
on e1.

Binary logical relationships can be used to prove the equivalence of terms from two different
languages. Consider compiling a source language with a boolean to a target language with only
integers. During compilation, we may choose 0 to represent true. Thus giving us the following
relationship:

VST JboolK = {(true, 0), (false, n ̸= 0)}

The above relationship states true is related to 0, while false is related to any non-zero number.
Our choice of VST JboolK will affect what we need to prove.

Similarly, a function in a source and target language may appear very differently. For example,
in the target language, a lambda term may be represented by a piece of code, and the current
environment. We can still express the relationship as follows:

VST Jint → intK = {(λx : int.e, (code, env)) | (vs, vt) ∈ VJintK =⇒ code(env, vt) ∈ EJintK}

One application of binary logical relations is to prove the type soundness of programming lan-
guages that implement foreign function interfaces. A FFI provides an escape hatch to run code
that may not be type safe.

12

8.2 Language Interop and Semantic Intermediate Representation

Following paper by Matthew-Findler, a method of proving correctness of interop between languages
had been developed

1. Add boundary forms

2. Specify convertibility rules (τA ∼ τB) between types of each language

3. Implement target-level conversions for each pair of convertible types, denoted CτB 7→τA(e), CτA 7→τB (e)

4. Define semantic IR (Which is a logical relationship):

JτAK = {e | · · · }
JτBK = {e | · · · }

5. Prove the conversion soundness: If τA ∼ τB , then

e ∈ JτBK =⇒ CτB 7→τA(e) ∈ JτAK
e ∈ JτAK =⇒ CτA 7→τB (e) ∈ JτBK

13

