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Outline

"There is plenty of room at the top" a bit more motivation for proving
correctness of architecture

A nice way to do refinement maps - Inductive Refinement Maps

Maybe 3. The Problem



Tricks of Architects — Codex Preview

Pure pipelining
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Folding, Caching, Cache Coherency, Vectorization, Pipelining with Control Flow, Reordering, Associativity,

Queueing through Network (NoC)
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Where Is there room for performance?

Fraction
Running time Absolute Relative of peak
Version Implementation (s) GFLOPS speedup speedup (%)
1 Python 25552 .48 0.005 1 - 0.00

There is plenty of room atthe top[...], Science 2020, C. Leiserson & al.
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Where Is there room for performance?

Fraction

Running time Absolute Relative of peak
Version Implementation (s) GFLOPS speedup speedup (%)
1 Python 25,552,418 0.005 1 - 0.00
2 Java 2,372.68 0.058 11 10.8 0.0
3 C 54267 0.253 47 4.4 0.03
4 Parallel loops 69.80 1.969 366 7.8 0.24
3 Parallel divide and 3.80 36.180 6,727 18.4 4.33

conquer
6 plus vectorization 1.10 124.914 23,224 35 14.96
7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45

There is plenty of room atthe top[...], Science 2020, C. Leiserson & al.



Weak Simulation/Refinement Map (abadisLamport)

Finda mapping (phi: stateImpl -> stateSpec -> Prop) such that:

- phi i0 so
- forall i s, phi i s -> 1 < s
- And phiis preserved forward:
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Simulation Relations — First Examples

enq(x)
phi i s :=
map (g o f) s.in ++ s.out =
map (g o f) i.in ++ map g i.mid ++ i.out

enqg(x) R deq()

__value()=?




Shelving A Few Issues

How hard is it to write phi?
Even for small designs, too hard

How big is phi?
Even for small designs, too big

How much does phi changes when doing a little design update?
Too much
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Part 2 -
Inductive Refinement Maps



Defining processor correctness — Burch&Dill '94

At a time when there was no clean notion of interface in hardware
Burch & Dill defined correctness as "commuting with Flushing":

Old Impl| Fimpi(+, Isan) = = Fimpi(-, Issa)) |Flushed Old| P/ |Old Spec
State i | Impl State State
Frmpi( -, T) Fspec( -, 1)

1 ¥
New Impl e e ee _Flushed New New Spec
St2t€ | Fimpi( -, Istan) Fimpi( -, Isian) [ J0P1 1At | proj | State

Fig. 1. Commutative diagram for showing our correctness criteria.
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What we like/don't like

* Yay:

o Property of "implementation flushes and specification agree post flushing" is a very rich
relation

o Architecturally meaningful, | can think about it!
o Criteria amenable to automatic verification when pipeline has bounded depth

* Abstain:
o We can (almost) prove that the ultimately lazy machine is Burch&Dill correct
* Nay:

o Requires to write the flushing steps as shadow logic (the machine does not really flush),
error prone, what do we verify if error in that code?

o Ambiguous - more than one way to "flush" -> are those notion of correctness equivalent
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Flushing for our (feg) pipeline:
an inductive simulation relation!

Inductive phi : ImplState -> SpecState -> Prop :=
| Flushed : forall 1, phi ([]1,[1,1) ([]1,1)

enq(x) S S
| one_more f : forall i i' s,

AN ot (i ~( do_f )~> i') ->

phi i' s -> phi i s

eng(x) one more_g : forall i i' s,
_’CD* _’@ ’ (i ~( do_g )~> i) ->

An v o o phi i' s -> phi i s.
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Phi is preserved forward, by induction on phi

On\\ﬁ one Cane \'(\*O\P)h“}. l(] (3 2)
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Phi is preserved forward, by induction on phi
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Phiis "inductive" by induction on phi
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Phiis "inductive" by induction on phi
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phi 1 s -> 1 < s

* By induction on phi:
o Basecase: phi ([],[]1,1) ([],1) , masquerading all good

o Inductive case (do_f easy, do_g notcompletely immediate, left as an exercise)
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Unshelving The Issues

How hard is it to write phi?
Did you consider inductive flushing?

How bigis phi?
Linear in the size (humber of transitions <10 when doing hierarchical proofs) of the
system

How much does phi changes when doing a little design update?
Very little (the proof might change though)

What' s the scam?
N”*2 cases in the inductive case
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Maybe 3 — Actual Problems with
Refinements

Coming with with specification of submodulesis hard, but worth it!



Two Systems: Implementation and a

Specification

Implementation processor

dreq| |dresp ireq| |iresp|

proc2dmem) (dmem2proc proc2imem imem2proc

Memory Specification Memory Specification

MMIOreq MMIOresp
proc2mmio mmio2proc I
v —
MMIOreq MMIOresp

Instruction and data memory

are separate for now

Memories have request/response
interfaces

Simple specification processor

;dreqﬂ \95?59 ‘ireq| iresp MMIOreq
proc2dmem, (dmem2proc proc2imem imem2proc
| proc2mmio
Memory Specification Memory Specification o
MMIOreq

MMIOresp

mmio2proc

MMIOresp



Invalid processor specification!
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ireq/ireép

Simple specification processor

Pipelined processor 7
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Indeed, the implementation can be queries for two instruction requests back-to-back
[ireq()->_; ireq()->_]
We do not have a valid specificationjust for the processor.

We only have a specificationfor the full system, which happened to be made of a
“processor” and a “memory”.
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Generalizing the specification

Generalized specification processor

Fetch

Writeback Decode

Instruction Load Buffer

Data Load Buffer E " Refill

?

MMIOresp dresp| |dreq MMIOreq ireq iresp

Two non-deterministic load machine:
Processor does not directly emit loads to memories
Instead processor queries the load buffers
Load buffersare refilled nondeterministically

Architecturalintuition: Some load speculationtechniques can be wild, let’s
be conservative and just say that loads can be emitted at any time, for any
address.



Why is the generalization valid?

Architecturally it is obvious:
Loads don’t matter

Is that intuition formalizable?
What prevents us to make a mistake?

We just changed our specification with no discussion?
Generalized specification that emits random stores? Clearly wrong



Why is the generalization valid?

Architectural intuition:

“Loads don’t matter, from the perspective of the MMIO trace
of the full-system”

Generalized specification processor Simple specification processor
dreq dresp ireq iresp | MMIOreq 6 |MMIOresp  dreq dresp | ireq | iiresp ' MMIOreq Ml\ilgr?sp‘
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M Od u l_a r p rO Of Has a chance to be true! (And itis actually true)

Note this theorem does not even mention the memory

Generalized specification processor
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