Tricks of Computer Architects and Inductive Refinement Maps

Thomas, Arvind
OPLSS
"There is plenty of room at the top" a bit more motivation for proving correctness of architecture

A nice way to do refinement maps - Inductive Refinement Maps

Maybe 3. The Problem
Tricks of Architects – Codex Preview

Pure pipelining

Stateful pipelining

Duplicating (Parallel lanes)

Banking

Folding, Caching, Cache Coherency, Vectorization, Pipelining with Control Flow, Reordering, Associativity, Queueing through Network (NoC)
Where is there room for performance?

There is plenty of room at the top [...] , Science 2020, C. Leiserson & al.
Where is there room for performance?

"There is plenty of room at the top[...], Science 2020, C. Leiserson & al."
Where is there room for performance?

There is plenty of room at the top[...], Science 2020, C. Leiserson & al.
Where is there room for performance?

There is plenty of room at the top[...], Science 2020, C. Leiserson & al.
Weak Simulation/Refinement Map (Abadi/Lamport)

Find a mapping \((\phi: \text{stateImpl} \rightarrow \text{stateSpec} \rightarrow \text{Prop})\) such that:

- \(\phi \ i0 \ s0\)
- \(\forall i \ s, \phi \ i \ s \rightarrow i < s\)
- And \(\phi\) is preserved forward:
Simulation Relations – First Examples

\[
\text{enq}(x) \rightarrow g.f \rightarrow \text{deq}() \quad \text{first}() = ? \quad \text{value}() = ?
\]

\[
\text{enq}(x) \rightarrow f \rightarrow \text{mid} \rightarrow g \rightarrow \text{out} \quad \text{deq}() \quad \text{value}() = ?
\]

\[
\phi_i^i s := \\
\text{map}(g \cdot f) s.\text{in} + s.\text{out} = \\
\text{map}(g \cdot f) i.\text{in} + \text{map} g i.\text{mid} + i.\text{out}
\]
Shelving A Few Issues

How hard is it to write phi?
 Even for small designs, too hard

How big is phi?
 Even for small designs, too big

How much does phi changes when doing a little design update?
 Too much
Part 2 - Inductive Refinement Maps
Defining processor correctness – Burch&Dill '94

At a time when there was no clean notion of interface in hardware, Burch & Dill defined correctness as "commuting with Flushing":

Fig. 1. Commutative diagram for showing our correctness criteria.
What we like/don't like

• Yay:
 o Property of "implementation flushes and specification agree post flushing" is a very rich relation
 o Architecturally meaningful, I can think about it!
 o Criteria amenable to automatic verification when pipeline has bounded depth

• Abstain:
 o We can (almost) prove that the ultimately lazy machine is Burch&Dill correct

• Nay:
 o Requires to write the flushing steps as shadow logic (the machine does not really flush), error prone, what do we verify if error in that code?
 o Ambiguous – more than one way to "flush" -> are those notion of correctness equivalent
Flush for our \((f \circ g)\) pipeline: an inductive simulation relation!

\[
\text{Inductive } \phi : \text{ImplState} \rightarrow \text{SpecState} \rightarrow \text{Prop} := \\
\quad | \text{Flushed} : \text{forall } l, \phi ([],[],l) ([],l) \\
\quad | \text{one_more_f} : \text{forall } i i' \text{ s,} \\
\quad \quad (i \sim (\text{do_f}) \sim i') \rightarrow \\
\quad \quad \phi i' \text{ s} \rightarrow \phi i \text{ s} \\
\quad | \text{one_more_g} : \text{forall } i i' \text{ s,} \\
\quad \quad (i \sim (\text{do_g}) \sim i') \rightarrow \\
\quad \quad \phi i' \text{ s} \rightarrow \phi i \text{ s}.
\]
Phi is preserved forward, by induction on phi

Only one case interesting:

\[
\begin{align*}
&\frac{\phi(x)}{\phi(x)} \\
\end{align*}
\]
Phi is preserved forward, by induction on phi

Base case:

Only one case interesting:

\[
\begin{align*}
\phi & \quad \Downarrow \quad \phi \\
\phi & \quad \Rightarrow \quad \phi
\end{align*}
\]

One more \(f \)

One more \(g \), then flushed!
Phi is "inductive" by induction on phi

Inductive cases
Phi is "inductive" by induction on phi

Inductive cases

We get this ψ
\(\phi \ i \ s \rightarrow i < s \)

- By induction on \(\phi \):
 - Base case: \(\phi (\[\],\[\],1) (\[\],1) \), masquerading all good
 - Inductive case (do_f easy, do_g not completely immediate, left as an exercise)
Unshelving The Issues

How hard is it to write phi?
 Did you consider inductive flushing?

How big is phi?
 Linear in the size (number of transitions < 10 when doing hierarchical proofs) of the system

How much does phi changes when doing a little design update?
 Very little *(the proof might change though)*

What’s the scam?
 N^2 cases in the inductive case
Maybe 3 – Actual Problems with Refinements

Coming with specification of submodules is hard, but worth it!
Two Systems: Implementation and a Specification

Instruction and data memory are separate for now
Memories have request/response interfaces
Indeed, the implementation can be queries for two instruction requests back-to-back
[ireq()–_; ireq()–_]

We do not have a valid specification just for the processor.

We only have a specification for the full system, which happened to be made of a
“processor” and a “memory”.
Generalizing the specification

4 sequential steps:
Fetch, Decode, Execute, Writeback
Always works on exactly one instruction
No speculation/prediction

Two non-deterministic load machine:
Processor does not directly emit loads to memories
Instead processor queries the load buffers
Load buffers are refilled nondeterministically

Architectural intuition: Some load speculation techniques can be wild, let’s be conservative and just say that loads can be emitted at any time, for any address.
Why is the generalization valid?

Architecturally it is obvious:

Loads don’t matter

Is that intuition formalizable?

What prevents us to make a mistake?

We just changed our specification with no discussion?

Generalized specification that emits random stores? Clearly wrong
Why is the generalization valid?

Architectural intuition:

“Loads don’t matter”

“Loads don’t matter, from the perspective of the MMIO trace of the full-system”
Modular proof

Has a chance to be true! (And it is actually true)
Note this theorem does not even mention the memory

Applying the refinement theorem