Tricks of Computer Architects
and
Inductive Refinement Maps

Thomas, Arvind
OPLSS

Outline

"There is plenty of room at the top" a bit more motivation for proving
correctness of architecture

A nice way to do refinement maps - Inductive Refinement Maps

Maybe 3. The Problem

Tricks of Architects — Codex Preview

Pure pipelining

$DIG § < ey

Stateful pipelining

D

-
@)

Duplicating (Parallellanes)

—

< P

f'eg.tl’

g (eadl

g%l

Folding, Caching, Cache Coherency, Vectorization, Pipelining with Control Flow, Reordering, Associativity,

Queueing through Network (NoC)

3

Where Is there room for performance?

Fraction
Running time Absolute Relative of peak
Version Implementation (s) GFLOPS speedup speedup (%)
1 Python 25552 .48 0.005 1 - 0.00

There is plenty of room atthe top[...], Science 2020, C. Leiserson & al.

Where Is there room for performance?

Fraction

Running time Absolute Relative of peak
Version Implementation (s) GFLOPS speedup speedup (%)
1 Python 25552.48 0.005 1 — 0.00
2 Java 2,372.68 0.058 11 10.8 0.0

There is plenty of room atthe top[...], Science 2020, C. Leiserson & al.

Where Is there room for performance?

Fraction

Running time Absolute Relative of peak
Version Implementation (s) GFLOPS speedup speedup (%)
1 Python 25552 .48 0.005 1 - 0.00
2 Java 2372.68 0.058 11 10.8 0.01
3 c 542.67 0.253 47 4.4 0.03

There is plenty of room atthe top[...], Science 2020, C. Leiserson & al.

Where Is there room for performance?

Fraction

Running time Absolute Relative of peak
Version Implementation (s) GFLOPS speedup speedup (%)
1 Python 25,552,418 0.005 1 - 0.00
2 Java 2,372.68 0.058 11 10.8 0.0
3 C 54267 0.253 47 4.4 0.03
4 Parallel loops 69.80 1.969 366 7.8 0.24
3 Parallel divide and 3.80 36.180 6,727 18.4 4.33

conquer
6 plus vectorization 1.10 124.914 23,224 35 14.96
7 plus AVX intrinsics 0.41 337.812 62,806 2.7 40.45

There is plenty of room atthe top[...], Science 2020, C. Leiserson & al.

Weak Simulation/Refinement Map (abadisLamport)

Finda mapping (phi: stateImpl -> stateSpec -> Prop) such that:

- phi i0 so
- forall i s, phi i s -> 1 < s
- And phiis preserved forward:

i \‘r <1 il \‘V sl

\llmwﬁa | e
I:s.?. \l/sa.
| A r | ro

=3 vsS

mm(&rﬁ)

Simulation Relations — First Examples

enq(x)
phi i s :=
map (g o f) s.in ++ s.out =
map (g o f) i.in ++ map g i.mid ++ i.out

enqg(x) R deq()

__value()=?

Shelving A Few Issues

How hard is it to write phi?
Even for small designs, too hard

How big is phi?
Even for small designs, too big

How much does phi changes when doing a little design update?
Too much

10

Part 2 -
Inductive Refinement Maps

Defining processor correctness — Burch&Dill '94

At a time when there was no clean notion of interface in hardware
Burch & Dill defined correctness as "commuting with Flushing":

Old Impl| Fimpi(+, Isan) = = Fimpi(-, Issa)) |Flushed Old| P/ |Old Spec
State i | Impl State State
Frmpi(-, T) Fspec(-, 1)

1 ¥
New Impl e e ee _Flushed New New Spec
St2t€ | Fimpi(-, Istan) Fimpi(-, Isian) [J0P1 1At | proj | State

Fig. 1. Commutative diagram for showing our correctness criteria.

12

What we like/don't like

* Yay:

o Property of "implementation flushes and specification agree post flushing" is a very rich
relation

o Architecturally meaningful, | can think about it!
o Criteria amenable to automatic verification when pipeline has bounded depth

* Abstain:
o We can (almost) prove that the ultimately lazy machine is Burch&Dill correct
* Nay:

o Requires to write the flushing steps as shadow logic (the machine does not really flush),
error prone, what do we verify if error in that code?

o Ambiguous - more than one way to "flush" -> are those notion of correctness equivalent

13

Flushing for our (feg) pipeline:
an inductive simulation relation!

Inductive phi : ImplState -> SpecState -> Prop :=
| Flushed : forall 1, phi ([]1,[1,1) ([]1,1)

enq(x) S S
| one_more f : forall i i' s,

AN ot (i ~(do_f)~> i') ->

phi i' s -> phi i s

eng(x) one more_g : forall i i' s,
_’CD* _’@ ’ (i ~(do_g)~> i) ->

An v o o phi i' s -> phi i s.

14

Phi is preserved forward, by induction on phi

On\\ﬁ one Cane \'(*O\P)h“}. l(] (3 2)

15

Phi is preserved forward, by induction on phi

Base case:

Onky onn canc 1nlewntny 0,00 —— \”(,V)
w\l"\l v

ida, ()
) ki (3, Lyt 4 0)

bl\e.fmol“(-@

om_worﬁg, Chea WQC"

(

16

Phiis "inductive" by induction on phi

OM -MQ'(. L
Inductive cases

. l do L ‘
2\
50 N L\oJP :

17

Phiis "inductive" by induction on phi

OM -MQ'(. L
Inductive cases

. l do L ‘
2\
50 N L\oJP :

\l’ -—-'—'e'ﬁJm \t/ \{ S
\ AN

We ot Wa
ol

O'\c- MOI'C —g

18

phi 1 s -> 1 < s

* By induction on phi:
o Basecase: phi ([],[]1,1) ([],1) , masquerading all good

o Inductive case (do_f easy, do_g notcompletely immediate, left as an exercise)

19

Unshelving The Issues

How hard is it to write phi?
Did you consider inductive flushing?

How bigis phi?
Linear in the size (humber of transitions <10 when doing hierarchical proofs) of the
system

How much does phi changes when doing a little design update?
Very little (the proof might change though)

What' s the scam?
N”*2 cases in the inductive case

20

Maybe 3 — Actual Problems with
Refinements

Coming with with specification of submodulesis hard, but worth it!

Two Systems: Implementation and a

Specification

Implementation processor

dreq| |dresp ireq| |iresp|

proc2dmem) (dmem2proc proc2imem imem2proc

Memory Specification Memory Specification

MMIOreq MMIOresp
proc2mmio mmio2proc I
v —
MMIOreq MMIOresp

Instruction and data memory

are separate for now

Memories have request/response
interfaces

Simple specification processor

;dreqﬂ \95?59 ‘ireq| iresp MMIOreq
proc2dmem, (dmem2proc proc2imem imem2proc
| proc2mmio
Memory Specification Memory Specification o
MMIOreq

MMIOresp

mmio2proc

MMIOresp

Invalid processor specification!

NONT 03

ireq/ireép

Simple specification processor

Pipelined processor 7
7 (| Fetch |-
//”’ L N D
d2e 2w \ S~—— BN
Decode — <—|Execute)]—— <—Writeback (VVﬁteback) i?ecé;;s ,
N
/ [Execute | E*
|8 g g s - £ >/ _F//// s
o ¥ s [‘ O . S =
g : 5 ‘ el EE Z £
5 s g EI 9| 5] g o
e & = £ o i =
A A = e 3 13
| rBD :g_
| dreq MMIOreq MMIOresp dresp . ;
dresp [MMIOresp [dreq | [MMIOreq liresp |

Indeed, the implementation can be queries for two instruction requests back-to-back
[ireq()->_; ireq()->_]
We do not have a valid specificationjust for the processor.

We only have a specificationfor the full system, which happened to be made of a
“processor” and a “memory”.

wawi 0}

T

ireq

ey

Generalizing the specification

Generalized specification processor

Fetch

Writeback Decode

Instruction Load Buffer

Data Load Buffer E " Refill

?

MMIOresp dresp| |dreq MMIOreq ireq iresp

Two non-deterministic load machine:
Processor does not directly emit loads to memories
Instead processor queries the load buffers
Load buffersare refilled nondeterministically

Architecturalintuition: Some load speculationtechniques can be wild, let’s
be conservative and just say that loads can be emitted at any time, for any
address.

Why is the generalization valid?

Architecturally it is obvious:
Loads don’t matter

Is that intuition formalizable?
What prevents us to make a mistake?

We just changed our specification with no discussion?
Generalized specification that emits random stores? Clearly wrong

Why is the generalization valid?

Architectural intuition:

“Loads don’t matter, from the perspective of the MMIO trace
of the full-system”

Generalized specification processor Simple specification processor
dreq dresp ireq iresp | MMIOreq 6 |MMIOresp dreq dresp | ireq | iiresp ' MMIOreq Ml\ilgr?sp‘
proc2dmem) (dmem2proc proc2imem imem2proc . ‘ proc2dmem ‘,\dmem2pro§‘ (proc2imem) (imemz2proc, — W e
- proc2mmio mmio2proc T T 7" (proc2mmio) '«mm'OZfo)C‘
—
Memory Specification Memory Specification Memory Memory . 18 E‘

MMIOreq | MMIOresp
MMIOreq MMIOresp !

M Od u l_a r p rO Of Has a chance to be true! (And itis actually true)

Note this theorem does not even mention the memory

Generalized specification processor

Fetch
Fe£ch m Decode) — m <—|Execute)— > m < Writeback Writeback Decode
/ Execute,
% 4 Z z I T e
g ‘,:'1 g Ié E‘ ‘:’ 2 — . Data Load Buffer 3 Re;;LI Y -
T & 2 R i 'y o
& :) A i ?
4 } p °
ireq/iresp dreq| MMIOreq MMIOresp | [dresp
MMIOresp dx“esp dreq MMIOreq T iresp)
Implementation processor Generalized specification processor Simple specification processor
v
[A 1 % : B T 2 ETE | e 7 r i A\l
dreq dresp |[ireq| |iresp MMIOreq MHIOresp dr el dr €SP ireq ZLEEoP PRIOreq) S NHIOresD | dreq dresp | ireq iresp MMIOreq MMIOresp
; : : - — - i - n =
proc2dmem) (dmem2proc proc2imem imem2proc proc2dmem) (dmem2proc proc2imem imem2proc S ‘ brochmenj gmemZproﬁ‘ "iprocZimem; x"imem2proc/, P S ——
R _ _ & ~ ~ / < \
proc2mmio mmio2proc = T = — proc2mmio mmio2proc - — (proc2mmio) \mmloZpro;:
Memory Specification Memory Specification LB ; Memory Specification Memory Specification a Memory Memory g é =
= LB : o
(B 2 e L
. - [

MMIOreq MMIOresp

MMIOreq MMIOresp MMIOreq MMIOresp

	Slide 1: Tricks of Computer Architects and Inductive Refinement Maps
	Slide 2: Outline
	Slide 3: Tricks of Architects – Codex Preview
	Slide 4: Where is there room for performance?
	Slide 5: Where is there room for performance?
	Slide 6: Where is there room for performance?
	Slide 7: Where is there room for performance?
	Slide 8: Weak Simulation/Refinement Map (Abadi/Lamport)
	Slide 9: Simulation Relations – First Examples
	Slide 10: Shelving A Few Issues
	Slide 11: Part 2 - Inductive Refinement Maps
	Slide 12: Defining processor correctness – Burch&Dill '94
	Slide 13: What we like/don't like
	Slide 14: Flushing for our (f•g) pipeline: an inductive simulation relation!
	Slide 15: Phi is preserved forward, by induction on phi
	Slide 16: Phi is preserved forward, by induction on phi
	Slide 17: Phi is "inductive" by induction on phi
	Slide 18: Phi is "inductive" by induction on phi
	Slide 19: phi i s -> i < s
	Slide 20: Unshelving The Issues
	Slide 21: Maybe 3 – Actual Problems with Refinements
	Slide 22: Two Systems: Implementation and a Specification
	Slide 23: Invalid processor specification!
	Slide 24: Generalizing the specification
	Slide 25: Why is the generalization valid?
	Slide 26: Why is the generalization valid?
	Slide 27: Modular proof

