
Tricks of Computer Architects
and

Inductive Refinement Maps

Thomas, Arvind
OPLSS

1

Outline

"There is plenty of room at the top" a bit more motivation for proving
correctness of architecture

A nice way to do refinement maps - Inductive Refinement Maps

Maybe 3. The Problem

2

Pure pipelining

Stateful pipelining

3

Tricks of Architects – Codex Preview
Duplicating (Parallel lanes)

Banking

Folding, Caching, Cache Coherency, Vectorization, Pipelining with Control Flow, Reordering, Associativity,
Queueing through Network (NoC)

Where is there room for performance?

There is plenty of room at the top[...], Science 2020, C. Leiserson & al.

4

Where is there room for performance?

There is plenty of room at the top[...], Science 2020, C. Leiserson & al.

5

Where is there room for performance?

There is plenty of room at the top[...], Science 2020, C. Leiserson & al.

6

Where is there room for performance?

There is plenty of room at the top[...], Science 2020, C. Leiserson & al.

7

Weak Simulation/Refinement Map (Abadi/Lamport)

Find a mapping (phi: stateImpl -> stateSpec -> Prop) such that:

- phi i0 s0
- forall i s, phi i s -> i < s
- And phi is preserved forward:

8

Simulation Relations – First Examples

9

genq(x) deq()f

g. fenq(x)
deq()

first()=?

value()=?

phi i s :=
map (g • f) s.in ++ s.out =
 map (g • f) i.in ++ map g i.mid ++ i.out

Shelving A Few Issues

How hard is it to write phi?
Even for small designs, too hard

How big is phi?
Even for small designs, too big

How much does phi changes when doing a little design update?
Too much

10

Part 2 -
Inductive Refinement Maps

11

Defining processor correctness – Burch&Dill '94

12

At a time when there was no clean notion of interface in hardware
Burch & Dill defined correctness as "commuting with Flushing":

What we like/don't like

• Yay:
o Property of "implementation flushes and specification agree post flushing" is a very rich

relation
o Architecturally meaningful, I can think about it!
o Criteria amenable to automatic verification when pipeline has bounded depth

• Abstain:
o We can (almost) prove that the ultimately lazy machine is Burch&Dill correct

• Nay:
o Requires to write the flushing steps as shadow logic (the machine does not really flush),

error prone, what do we verify if error in that code?
o Ambiguous – more than one way to "flush" -> are those notion of correctness equivalent

13

Flushing for our (f•g) pipeline:
an inductive simulation relation!

Inductive phi : ImplState -> SpecState -> Prop :=

| Flushed : forall l, phi ([],[],l) ([],l)

| one_more_f : forall i i' s,

(i ~(do_f)~> i') ->

phi i' s -> phi i s

| one_more_g : forall i i' s,

(i ~(do_g)~> i') ->

phi i' s -> phi i s.

14

genq(x) f

g. fenq(x)

Phi is preserved forward, by induction on phi

15

Phi is preserved forward, by induction on phi

Base case:

16

Phi is "inductive" by induction on phi

17

Inductive cases

Phi is "inductive" by induction on phi

18

Inductive cases

phi i s -> i < s

• By induction on phi:
o Base case: phi ([],[],l) ([],l) , masquerading all good

o Inductive case (do_f easy, do_g not completely immediate, left as an exercise)

19

Unshelving The Issues

How hard is it to write phi?
Did you consider inductive flushing?

How big is phi?
Linear in the size (number of transitions < 10 when doing hierarchical proofs) of the
system

How much does phi changes when doing a little design update?
Very little (the proof might change though)

What' s the scam?
N^2 cases in the inductive case

20

Maybe 3 – Actual Problems with
Refinements
Coming with with specification of submodules is hard, but worth it!

21

Two Systems: Implementation and a
Specification

⊑

Instruction and data memory
are separate for now
Memories have request/response
interfaces 22

Invalid processor specification!

⊑

We do not have a valid specification just for the processor.

We only have a specification for the full system, which happened to be made of a
“processor” and a “memory”.

Indeed, the implementation can be queries for two instruction requests back-to-back
 [ireq()->_; ireq()->_]

Pipelined processor
Simple specification processor

Generalizing the specification
4 sequential steps:
 Fetch, Decode, Execute, Writeback
 Always works on exactly one instruction
 No speculation/prediction

Two non-deterministic load machine:
 Processor does not directly emit loads to memories
 Instead processor queries the load buffers
 Load buffers are refilled nondeterministically

Architectural intuition: Some load speculation techniques can be wild, let’s
be conservative and just say that loads can be emitted at any time, for any
address.

Why is the generalization valid?

Architecturally it is obvious:
 Loads don’t matter

Is that intuition formalizable?

What prevents us to make a mistake?
We just changed our specification with no discussion?
 Generalized specification that emits random stores? Clearly wrong

Why is the generalization valid?

Architectural intuition:
 “Loads don’t matter”
 “Loads don’t matter, from the perspective of the MMIO trace
of the full-system”

⊑

Modular proof

⊑

⊑⊑

Has a chance to be true! (And it is actually true)
Note this theorem does not even mention the memory

Applying the refinement theorem

	Slide 1: Tricks of Computer Architects and Inductive Refinement Maps
	Slide 2: Outline
	Slide 3: Tricks of Architects – Codex Preview
	Slide 4: Where is there room for performance?
	Slide 5: Where is there room for performance?
	Slide 6: Where is there room for performance?
	Slide 7: Where is there room for performance?
	Slide 8: Weak Simulation/Refinement Map (Abadi/Lamport)
	Slide 9: Simulation Relations – First Examples
	Slide 10: Shelving A Few Issues
	Slide 11: Part 2 - Inductive Refinement Maps
	Slide 12: Defining processor correctness – Burch&Dill '94
	Slide 13: What we like/don't like
	Slide 14: Flushing for our (f•g) pipeline: an inductive simulation relation!
	Slide 15: Phi is preserved forward, by induction on phi
	Slide 16: Phi is preserved forward, by induction on phi
	Slide 17: Phi is "inductive" by induction on phi
	Slide 18: Phi is "inductive" by induction on phi
	Slide 19: phi i s -> i < s
	Slide 20: Unshelving The Issues
	Slide 21: Maybe 3 – Actual Problems with Refinements
	Slide 22: Two Systems: Implementation and a Specification
	Slide 23: Invalid processor specification!
	Slide 24: Generalizing the specification
	Slide 25: Why is the generalization valid?
	Slide 26: Why is the generalization valid?
	Slide 27: Modular proof

