
Language-Based Security
Notes from OPLSS@BU 2024, Lecture 2

Lecturer: Stephen Chong
Scribe: Simon Guo

6/11/24

1 Information Flow
Access control doesn’t capture what happens to information after access, which in-
volves information flow. Our current definition of information flow is extensional,
which means it is about the external behavior of the system. Cohen (1976) in-
troduced strong dependency: consider a (deterministic) system H whose inputs
include entity A and whose outputs include entity B. Output B strongly depends
on input A if there exist two executions of H where the inputs differ only for entity
A and the output B differs.

This is essentially the key definition of noninterference today. Then security is
the absence of certain strong dependencies.

1.1 Example
Assume two security levels, High and Low. Use the same definition as before:

σ1 =Low σ2 ⇐⇒ ∀x.Γ(x) = Low ⇒ σ1(x) = σ2(x).

A program c is noninterfering if

∀σ1, σ2, σ
′
1, σ

′
2. σ1 =Low σ2 ∧ 〈c, σ1〉 ⇓ σ′

1 ∧ 〈c, σ2〉 ⇓ σ′
2 ⇒ σ′

1 =Low σ′
2.

This is equivalent to having no strong dependencies from high inputs to low outputs.

1.2 Beyond Noninterference for IMP
We need to specify the entities present and what information flows are allowed be-
tween them, including

• The computation model - the entities that are manipulated during system
executions.

1

Language-Based Security Stephen Chong

• The threat model - the entities with which the adversaries interact.

• Allowed/forbidden information flow - the control flows between the system
and the adversary.

There has been much research into these specifications to more closely model real-
world systems.

1.3 Labels and Flow Relations
Labels are syntactic objects associated with entities of a system. Some examples are

• Sensitivity: Secret, Public

• Names: Alice, Charlie, Bob

• Government security level and compartment:
{(Level, Compartment) |Level ∈ {Public, Confidential, Secret, TopSecret}∧
Compartment ∈ {Nuclear, Cryptography,Biological...}}

Info-flow then describes flows between entities based on labels, though they are not
themselves policies. Info-flow policies are often represented as flow relations v on a
set Λ of labels, where if `1 v `2, then info is allowed to flow from `1 to `2 This flow
relation should have reflexivity and transitivity, making it a pre-order. It can also be
made a partial order by adding antisymmetry.

We can also make this a join-semi-lattice flow relation by adding a least-upper-
bound t with the following properties:

• Upper Bound: ∀`1, `2 ∈ Λ, `1 v `1 t `2 ∧ `2 v `1 t `2.

• Least Upper Bound: ∀`1, `2, `3 ∈ Λ, `1 v `3 ∧ `2 v `3 ⇒ `1 t `2 v `3.

This enables modeling of if-then-else like statements, or combining data from different
labels. t needs to be as precise as possible (hence least upper bound), otherwise the
following will be considered a violation

c = a⊕ b; d1 = c; d2 = c

if multiple upper bounds of `a and `b are used for `c, `d1, and `d2.

1.4 Labels to Noninterference
We now have a more general version of noninterference specified by a lattice (Λ,v)
of security levels. Some examples include

OPLSS@BU 2024 2

Language-Based Security Stephen Chong

We now generalize σ1 =Low σ2 to σ1 =` σ2 for an arbitrary label `.

∀x.Γ(x) v ` ⇔ σ1(x) =` σ2(x).

A program c is noninterfering if

∀σ1, σ2, σ
′
1, σ

′
2, ` ∈ Λ.σ1 =` σ2 ∧ 〈c, σ1〉 ⇓ σ′

1 ∧ 〈c, σ2〉 ⇓ σ′
2 ⇒ σ′

1 =` σ
′
2.

This definition is extensional, which means a temporary violation of noninterfering
in intermediate steps does not imply the entire program is not noninterfering.

2 Threat Model
The threat model defines how an adversary interacts with the model. A stronger
threat model allows adversaries more interactions with the model. Information is
conveyed through information channels as categorized by Lampson (1973):

• Legitimate channels - files, console, network messages...

• Covert channels - execution time, heat emission, energy consumption...

– Side channels are covert channels that can be exploited by a passive
adversary simply observing the channel.

2.1 Termination Sensitivity
Our earlier definition of NI is termination-insensitive, assuming the attacker ignores
all execution that do not terminate. Therefore we can modify our definition to a
program c is termination-sensitive noninterfering if for all σ1, σ2, ` ∈ Λ, σ1 =` σ2

implies either
∃σ′

1, σ
′
2. 〈c, σ1〉 ⇓ σ′

1 ∧ 〈c, σ2〉 ⇓ σ′
2 ∧ σ′

1 =` σ
′
2

or both executions diverge.

2.2 Timing Sensitivity
The definition can be further expanded to take into account execution time in general
with time-sensitivity. There are several ways to think about time:

OPLSS@BU 2024 3

Language-Based Security Stephen Chong

• Number of computational steps - far removed from reality.

• External time - the ”wall clock” time. This is hard to capture due to memory
hierarchy and microarchitectural details.

• Internal time - such as information shared by threads on the same machine
through ordering.

Computational steps and external time can be modeled by adding a counter variable
to the state T that is observable by entities with low labels. Internal timing requires
reasoning about concurrency.

2.3 Interaction
The “batched” model of computation does not capture an adversary providing input
and observing output during the execution. The solution is to add input and output
operations to IMP,

c ::= ... | x := input from ` | output x to `

The new semantics is
〈c, σ〉 −→τ 〈c, σ′〉

where the trace τ is a sequence of events. We can expand the definition of noninter-
fering to take traces into account:

∀σ1, σ2, σ
′
1, σ

′
2, ` ∈ Λ. σ1 =` σ2

∧ 〈c, σ1〉 −→τ1 〈skip, σ′
1〉

∧ 〈c, σ2〉 −→τ2 〈skip, σ′
2〉

∧ inputs(τ1) =` inputs(τ2)

⇒ τ1 =` τ2.

This states that if initial memories are `-equivalent and low inputs are identical, then
the traces are low-equivalent.

2.4 Progress Sensitivity
Traces allow us to define progress sensitivity (i.e. can the attacker observe whether
the program is making progress?) as whether the attacker can observe the trace during
execution. It is a generalization of termination sensitivity.

2.5 Program Code
Noninterference typically assumes the attacker knows the program code. Some other
models also assume the attacker can provide code to the program (which can be
simulated from attacker-provided input).

OPLSS@BU 2024 4

Language-Based Security Stephen Chong

2.6 Computational Ability
We require a bound on the attacker’s computational ability as cryptographic algo-
rithms are only secure against an attacker with bound computational ability.

2.7 Views of a System
We can define the attacker’s view on the system as a function from the system state
(or history) to the attacker’s observations. This allows us to model cases where the
attacker can only observe a part of the system, such as in distributed systems. With
views, a program c is noninterfering if

∀σ1, σ2, σ
′
1, σ

′
2, ` ∈ Λ. σ1 =` σ2 ∧ 〈c, σ1〉 ⇓ σ′

1 ∧ 〈c, σ2〉 ⇓ σ′
2 ⇒ view(σ′

1) =` view(σ
′
2)

Kozyri et. al. summarizes the threat models as follows:

3 Computational Model

3.1 Nondeterminism
Noninterference doesn’t hold for a nondeterministic system. For example,

low := 42 8 7

does not satisfy noninterference because the way nondeterminism is resolved may
depend on secret information, which is called a refinement attack. Thus we need
the following definition: a program c is generalized-noninterfering if

∀σ1, σ2, σ
′
1, σ

′
2, ` ∈ Λ, σ1 =` σ2 ∧ 〈c, σ1〉 ⇓ σ′

1 ∧ 〈c, σ2〉 ⇓ σ′
2

⇒ ∃σ3, σ
′
3 s.t. σ3 =Low σ1 ∧ σ3 =High σ2 ∧ 〈c, σ3〉 ⇓ σ′

3 ∧ σ′
3 =Low σ′

1.

This represents the notion that secret inputs do not constrain the range of possible
public outputs.

OPLSS@BU 2024 5

Language-Based Security Stephen Chong

3.2 Observational Determinism
Alternatively, we use the notion of observational determinism. This requires the
resolution of Low nondeterminism (e.g. processes picked by the scheduler) to not
depend on secret information. The definition is the same as the deterministic one - a
program c is noninterfering if

∀σ1, σ2, σ
′
1, σ

′
2, ` ∈ Λ. σ1 =` σ2 ∧ 〈c, σ1〉 ⇓ σ′

1 ∧ 〈c, σ2〉 ⇓ σ′
2 ⇒ σ′

1 =` σ
′
2.

While this eliminates refinement attacks, it also eliminates all public nondeterminism,
which we may want in our program.

3.3 Probability
Possibilistic nondeterminism may not be sufficient if a program will most likely leak
secret information. Therefore we define Probabilistic noninterference to be when
the distribution of low outputs is independent of high inputs, using a probabilistic
semantics. It assumes a probabilistic semantics 〈c, σ1〉 ⇓ D where D is a (sub-)distri-
bution over stores:

∀σ1, σ2,D1,D2, ` ∈ Λ. σ1 =` σ2 ∧ 〈c, σ1〉 ⇓ D1 ∧ 〈c, σ2〉 ⇓ D2 ⇒ D1|` = D2|`.

Here D|` means projecting to a distribution over the low-observable part of the store.

3.4 Concurrency
In a concurrent setting, information might flow by

• Interaction between threads - e.g. race conditions

• Scheduling

• Memory model

• Speculative execution - e.g. Spectre and Meltdown

However, no new definition of noninterference is necessary. We just need to extend
the existing language and semantics to support concurrency.

3.5 Reclassification
Noninterference is too restrictive in practice. Sometimes we may need to declassify
information, i.e. weakening confidentiality requirements, in cases like displaying the
last 4 digits credit card number, and making a patient’s record available to the as-
signed doctor. We may also need to erase information, in cases like deleting credit
card information after a transaction or securing sensitive information when a subma-
rine surfaces. Declassification has to be controlled as we do not we want to release
confidential information at once.

OPLSS@BU 2024 6

Language-Based Security Stephen Chong

There are “dimensions” of declassification such as what is declassified, to whom,
and where in the system. An example mechanism include delimited release that
allows declassification given a set of escape hatch expressions.

A program c and a set of escape hatches {a1, . . . , an} satisfies delimited release if:

∀σ1, σ2, σ
′
1, σ

′
2.

σ1 =Low σ2 ∧ 〈c, σ1〉 ⇓ σ′
1 ∧ 〈c, σ2〉 ⇓ σ′

2

∧ ∀i ∈ {1, . . . , n}, σ1(ai) = σ2(ai)

⇒ σ′
1 =Low σ′

2

allowing the low-outputs to also depend on the escape hatch expressions. Note
that the escape hatch expressions ai may depend on High variables, such as an
average salary of individual secret salaries.

3.6 Quantitative Information Flow
Sometimes information leaks are unavoidable (i.e. side channels). Quantitative in-
formation flow can measure the magnitude of the leakage using information theory,
by comparing the adversary’s degree of uncertainty before and after the execution:

info leakage = initial uncertainty - remaining uncertainty.

There are different ways to measure leakage, such as Shannon entropy, Bayes
vulnerability, Renyi’s min entropy, gain functions, etc. Moreover, not all bits are
equal - bits of the encryption key may be more important than bits of one’s SSN.

As an example, using Shannon Entropy H(X) and conditional entropy H(X|Y),
leakage is measured as

leakage = H(Insecret)−H(Insecret | Inpublic, Outpublic).

OPLSS@BU 2024 7

