Language-Based Security

Notes from OPLSS@QBU 2024, Lecture 3

Stephen Chong
6/12/24

1 Enforcement

In contemporary systems, how is noninterference enforced? We distinctly separate the
objectives we aim to achieve (defining the semantics) from the mechanisms employed
to enforce them.

1.1 Dimensions of Enforcement

Enforcement mechanisms vary in granularity and timing. Granularity can be:

o Coarse-grained: these mechanisms operate at higher levels of abstraction, such
as modules, containers, operating systems, or programming languages.

o Fine-grained: these mechanisms operate at the level of individual values or vari-
ables, allowing for greater precision and more detailed enforcement of desired
properties.

Timing is categorized as either:

o Static mechanisms: enforcement occurs before the program is deployed, typi-
cally during compile time.

e Dynamic mechanisms: these mechanisms enforce policies during runtime, which
can sometimes provide greater precision.

1.2 Security-Typed Language

Security typing for IMP involves two types of judgments: espression typing and com-
mand typing.

Language-Based Security Stephen Chong

1.2.1 Typing of Expressions

An expression typing judgment I' F e : 7, includes labels on the type, which represent
the upper bound of information influencing the value. (Intuitively, we can think of
this as the “security level” of the value.) For instance, a Low integer is influenced
only by public information, whereas a High integer could be influenced by both secret
and public information. The context I' maps program variables to labeled types.

'k n:int, T + true:bool . T + false:bool . L'k z:T(z)
't a;:int 'k ay:int 'k a;:int 'k as:int
a 41 . 2 Lo 0= 0,0, 1 £1 az £y 0=ty ity
I'a; +as:int, Fl_a1<021b00|[

Values are assigned a bottom label since they are part of the literal program code
and, thus, entirely public information. For expressions, the label should be the least
upper bound of the labels of its component expressions. Keeping labels as precise as
possible leads to more accurate type-checking of programs.

1.2.2 Typing of Commands

A command typing judgment I', pc | ¢ involves a program counter level (pc) in the
antecedent. pc is a program counter label from A. It represents the lower bound
of any effects ¢ might have, such as writing to a variable, and the upper bound on
information influencing ¢’s execution. For example, if ¢ is within an if statement, pc
summarizes the information that might trigger ¢’s execution.

Iypckcy TI',pck co

'te:m, f.UpcC ¥, r

—— () =72,
T, pc + skip O,pckz:=e T,pct cr;eo
I'Eb:bool, I'pclltcy I',pcllt co I'Fb:bool, T',pcllltc
T',pct if b then c; else ¢, I',pc - while b do ¢

In the assignment rule, information revealed by the result of e will be assigned to x,
so I, must be the upper bound of I.. We want pc to be less than [, because pc is the
lower bound on the impact of the assignment. (In other words, assignments can be
made to a high-security variable from a low pc.) This avoids revealing a high-security
decision to execute a command through a low-security variable.

For if-then-else statements, pc increases to pc LI [because the information
affecting whether we execute c¢; or ¢, includes pc combined with the information
revealed by the guard expression. Here, pc helps to understand the decision to execute
the command and what information it might reveal. This prevents the testing of secret
information and subsequent modification of low-security variables.

OPLSS@BU 2024 2

Language-Based Security Stephen Chong

In sequences, the same pc level is maintained. We ignore information gained by
knowing that a while loop has terminated, even if ¢; is a while loop.

While loops are similar to if-then-else statements, where the decision to execute
¢ depends on pc combined with information revealed by the loop condition. This
rule implies termination-insensitive interference: it does not track that termination
depends on a condition with some security level (bool;). If we wanted termination-
sensitive inference, we would need to modify the judgment to track pc after the while
loop.

The key difference between this and taint analysis is that taint analysis does not
track implicit flow through control structures.

1.3 Examples

e sec := pub + 42 is well-typed and NI

e pub := sec + 42isinsecure: it would violate the assignment typing rule, since
pub has a lower security level than sec.

e if (sec < 0) sec = -sec is secure.

e if (sec < 0) pub = 42isnot well-typed: it would also violate the assignment
typing rule, this time because pub has a lower security level than pc (whose
security level becomes high inside the if statement).

In this last example, if pub was already 42, it would be secure, but ill-typed. This
shows how our typing system is conservative: it will reject some secure programs.

We assume that the security level of variables is given to us, supposing we use
this typing system as a complement to a real system.

1.4 Soundness of Type System
Theorem. For all programs c, if I';, L & ¢ then c is noninterfering. That is,
Yoy, 09,07, 04,1

01 =1ow 02 N (¢, 01) | 0] A (¢, 09) | o),

/ /
= 01 =Low Oq-

This is a relational property concerning two executions of a program. Techniques
for proving it include:

e Induction on operational semantics

» Using logical relations to phrase the semantic property in terms of types. Here
we would need to indexed our logical relations by labeled types.

« Creating a language that encodes execution pairs of the original language (the
“squared” language approach). This method reduces the relational property of
the original program to a single-argument property within the squared language.

OPLSS@BU 2024 3

Language-Based Security Stephen Chong

1.5 Another Type System

Consider a functional language with input and output capabilities. Below we present
the expressions, types, and (some of) the typing judgments of this language.

ex=z|n|()|elex| Az:T, L€
| input from £ | output e to £
[letz =e;ine;

o:::unit|int\nﬁ>rg F’pc |_ 6:7-
T =0y
Iypek z:T'(z) Upe [, pck n:inty,, I, pck () :unit,,
Llz— 7], £+ e’ D,pcke: (1 25 7)), T,pckey:m £ UpceC pey
F,pCFAxlT,e.BZ(Ti)TI)pC [,pckerex:7 Upe
pcC 4 I,pcke:T <7 o<do ecy
I, pc k= input from £:inty . I,pcke:r op < oy
T <7 Ty < T pc’ E pc
o 0 o

As before, the judgment involves both a pc label and labels on types.

The arrow type is labeled with a latent effect program counter pc, representing
the lower bound on the side effects of executing the function body. This label is used
to type-check the program body. Function inputs are annotated with both the type
and pc label.

When type-checking a variable z, the pc label is folded into the typed label. This
was unnecessary earlier because variables were used very restrictively.

During function application, since the label pc; on the arrow type encodes a lower
bound on the side effects of the function, it must be higher than the pc at function
application. (There is no correlation between the label ¢ and pc when typing a lambda
expression, since this is handled by function application.) ¢; is the upper bound on
information, and pc; is the scope of the function body, which is greater than ¢; and
pc. Together ¢ and pc represent the information leading to the decision to execute
the function body.

Possible extensions include references, exceptions, and first-class labels.

1.5.1 Follow-up QA on Slack

Question: would it be possible to get an example using the function and application
typing rule that shows the difference between pc and ¢; and why they both matter

OPLSS@QBU 2024 4

Language-Based Security Stephen Chong

for pcy?

To make the example simpler, let’s assume we have if expressions. Here’s a typing
rule (left).

In the expression on the right, note that the type of sec is inty and the type of £
is (int; -L-> unity)y. That is, which function value f is will depend on and thus
reveal secret information.

In £ 42, this application isn’t well-typed. If we look at the typing rule for the
application, from the type of £, ¢; is H, pcy is L, so {1 [pcy.

F el : bool ¢ let sec = ... secret info ... in
S e BT let f1 = A x:int_L, L. output 1 to L in

let f2 A x:int_L, L. output 2 to L in
— if el then e2 else e3 : let f = if sec > 0 then f1 else f2

1.6 Fine-Grained Dynamic Enforcement

The key idea of dynamic enforcement is monitoring and enforcing information flow
at runtime. Since this mechanism modifies execution, it may reveal information, so
we also need to track that.

1.6.1 Flow Insensitive

Security levels initially are assigned to variables and the pc in a flow-insensitive man-
ner. Runtime checks are performed for each effect and execution is halted upon
encountering a forbidden assignment. A pc level stack is used to update pc during
runtime: within the scope of a secret-guarded if statement, H is pushed onto the
stack and popped off when outside the if statement.

1.6.2 Flow Sensitive

The flow-sensitive version allows the security levels of variables to change dynamically
based on assignments to them. For example, if a variable is assigned a secret value
and then assigned a literal value, its security level would go from H to L. The
advantage is that it can accept more programs compared to flow-insensitive or type
system-based enforcement.

However, this simple model might cause a “half-bit” leak through implicit flow
from an if statement, as in the following example:

if (sec > 0)
x :=1
else
skip;
output x to L

OPLSS@BU 2024)

Language-Based Security Stephen Chong

Notice that on some executions, whether or not x is outputted reveals information
about if sec is positive. Two half-bit leaks like this can be combined to always leak
information.

The fix is to not raise the level of variables when pc is high. This prevents condi-

tionally updating a variable under a secret guard, thereby prohibiting programs with
half-bit leaks.

1.7 Dynamic vs Static

Flow-insensitive dynamic tracking can be more precise than flow-insensitive type sys-
tems, but the flow-sensitive dynamic tracking and type systems are incomparable.
Hybrid systems combine static and dynamic techniques.

There are many other techniques for fine-grained enforcement: one method is pro-
gram rewriting, which enforces NI by modifying the program into one that definitely
enforces it.

2 Beyond Confidentiality

2.1 Confidentiality and Integrity

Confidentiality manages the flow of secret information, while integrity controls the
flow of untrusted data to prevent corruption. A similar diagram showing desired
information flow can interchange trusted/untrusted and secret/public roles.

With integrity, both trusted and untrusted data are handled, similar to how confi-
dentiality handles both secret and public data. Now, the destination of trusted data is
less concerning, whereas caution is crucial with untrusted data. Thus noninterference
principles remain consistent, but the lattice direction is swapped.

Interestingly, due to duality, the definition of noninterference for integrity mirrors
that of confidentiality. The distinction lies in implementation—there are mechanisms
for ensuring code integrity but not confidentiality. Conversely, side channels compro-
mise confidentiality but not integrity. In extreme cases, if adversaries control program
execution timing, it can lead to availability attacks.

2.2 Endorsement

The dual of declassification, which makes information less confidential, is endorse-
ment, which makes information more trusted.

Adjusting the endorsement level of information involves considerations of what
information, who is responsible and who receives the data, and where and when
endorsement happens.

Quantitative information flow can measure how much information is leaked, using
contamination and suppression. Analogous to information leakage suppression, con-
tamination measures how much trusted input fails to propagate to trusted output.
(In confidentiality, there is no concern about how much public information is used

OPLSS@BU 2024 6

Language-Based Security Stephen Chong

in secret output.) Suppression measures how much trusted input fails to appear in
trusted output.

2.3 Combining Confidentiality and Integrity

We can combine them as a lattice product. Observe that the most useful information
is public and trusted; the most toxic is secret and untrusted.

Secret,Untrusted

N

Public Trusted Public,Untrusted Secret, Trusted

~N S

Public, Trusted

Confidential Untrusted

2.4 Robust Declassification Typing

Consider the scenario where an adversary might manipulate execution to declassify
certain data, known as a “laundering attack.” Zdancewic and Myers (2001) introduced
the notion of robust declassification, ensuring that an active attacker gains no more
information than a passive attacker. An active attacker can provide low-integrity
input, while a passive attacker can only observe the output.

Typing rules ensure that both the decision and the data to declassify is trusted,
and that declassification is separate from endorsement. Specifically, if a principal
p couldn’t access the information before but can after declassification, p should not
have influenced the decision to declassify the data.

Robust declassification is analogous to transparent endorsement for ensuring in-
tegrity. The concept emphasizes that both the data itself and the decision to endorse
it should be publicly known. Combining robust declassification and transparent en-
dorsement achieves non-malleable information flow.

2.5 Dependency

Noninterference essentially deals with the lack of dependency, implying that tech-
niques developed for noninterference are applicable to dependency (and vice versa).
These techniques include bind-time analysis, slicing, and methods for tracking and
restricting errors in computation.

Notes Taken By
Patrycja Balik, Ronaldo Canizales, Simon Guo, and Elanor Tang @ OPLSS’24.

OPLSS@BU 2024 7

Language-Based Security Stephen Chong

References

Material in these notes and in Prof Chong’s slides include content from the following
publications:

Volpano, D.,; G. Smith, and C. Irvine (1996). A sound type system for secure
flow analysis. Journal of Computer Security 4(3), 167— 187.

Austin, T. H. and C. Flanagan (2009). Efficient purely-dynamic information
flow analysis. In Proceedings of the 2009 Workshop on Programming Languages
and Analysis for Security.

Sabelfeld, A. and A. Russo (2009). From dynamic to static and back: Riding the
roller coaster of information- flow control research. In Proceedings of Andrei
Ershov International Conference on Perspectives of System Informatics, pp.
352-365.

Russo, A. and A. Sabelfeld (2010). Dynamic vs. static flow-sensitive security
analysis. In Proceedings of the IEEE Computer Security Foundations Sympo-
sium.

Zdancewic, S. and A. C. Myers (2001, June). Robust declassification. In Pro-
ceedings of the 14th TEEE Computer Security Foundations Workshop, Cape
Breton, Nova Scotia, Canada, pp. 15-23. IEEE Computer Society.

Abadi, M., A. Banerjee, N. Heintze, and J. G. Riecke (1999). A core calculus
of dependency. In Conference Record of the Twenty-Sixth Annual ACM Sym-
posium on Principles of Programming Languages, New York, NY, USA, pp.
147-160. ACM Press.

Sampson, A., W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Gross-
man (2011). Enerj: approxi- mate data types for safe and general low- power
computation. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI "11, New York, NY,
USA, pp. 164-174. Association for Computing Machinery.

Cecchetti, E., A. C. Myers, and O. Arden (2017). Nonmalleable information
flow control. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, New York, NY, USA, pp. 1875-1891.
Association for Computing Machinery.

OPLSS@BU 2024 8

