
Language-Based Security
Notes from OPLSS@BU 2024, Lecture 4

Lecturer: Stephen Chong
Scribe: Elanor Tang

June 13, 2024

1 Enforcing Language Abstractions
Language abstractions hide details of execution and memory layout, allowing us to
reason about program security. In practice, these abstractions can be violated—one
example is compilation which composes with foreign code that violates language ab-
stractions. Moreover, languages can have strange features: reflection, unsafe blocks of
code, dynamic code that evaluates a string as a program, etc., can all break abstractions.
Thus, we need methods for enforcing language abstractions, which encode security
guarantees, during execution:

• No executable data: prevent execution of unauthorized code. For example,
you could exclude the eval operator from a language. It may be useful to
allow limited forms of reflection, such as allowing a program to manipulate the
program or create new pieces of executable content.

• Fat pointers: using pointers enhanced with upper/lower bounds on the available
region may prevent buffer overflows.

• Software fault isolation (SFI): limit what code can execute and what memory
can be accessed. One example is control flow integrity (CFI), which restricts the
addresses execution can jump to.

These approaches do not enforce the semantics of the original language, but merely
reduce the possible behaviors to an approximation of the original source program. For
example, CFI may only allow a program to jump to a valid target, but perhaps it could
still do so at a time outside the control flow of the original program. Thus, we want to
actually guarantee enforcement of language semantics.

1.1 Secure Compilation
Compilation frequently results in target code which violates language semantics of
the source code. Since semantics are a method of enforcing security properties, this
can create security vulnerabilities. Thus, we want secure compilation: security
properties at the source level should still be valid after compilation.

1

Language-Based Security Stephen Chong

1.2 Contextual Equivalence
A context ℂ is a program with a hole [⋅]; this can be filled with a program 𝑃 to generate
a whole program ℂ[𝑃]. Contexts can model situations like linking, where a program
is imported from another file, and the hole is the import statement.

We write 𝑃 ⇓ 𝑜 if a (whole) program 𝑃 produces observation 𝑜; this observation can
be divergence or terminationwith output. Two components 𝑃1 and 𝑃2 are contextually
equivalent, notated 𝑃1 ≃ctx 𝑃2, if

∀ℂ, 𝑜. ℂ[𝑃1] ⇓ 𝑜 ⟺ ℂ[𝑃2] ⇓ 𝑜.

The idea is that two programs are equivalent if no context can be used to distinguish
between them—we will use this at the levels of both source and target programs.
Notably, two programs that assign different values to a secret value may be considered
contextually equivalent, since the output appears the same.

Contextual equivalence, however, fails to capture the time taken for an execution
to terminate.

1.3 Full Abstraction
A compiler is fully abstract if

∀𝑃1, 𝑃2. 𝑃1 ≃ctx 𝑃2 ⟺ J𝑃1K ≃ctx J𝑃2K.

Here, J𝑃K denotes the compilation of a program 𝑃.
We call the backward direction reflection of contextual equivalence, and it follows

from compiler correctness. (A very high-level definition of compiler correctness is
that target-level behaviors are a subset of the possible behaviors of source-level code.
That is, a compiler does not introduce any new behaviors.) For example, an incorrect
compiler which compiles every program to “return 42” would not satisfy reflection.

We call the forward direction preservation of contextual equivalence; it implies
the target language cannot make any additional distinctions between 𝑃1 and 𝑃2. That
is, there is no additional ability to break source-level abstractions.

Achieving full abstraction may require back translation: proving any target-
language context can be expressed as a source-language context. This can be used to
prove preservation.

Static techniques include using a type system to restrict target language contexts
to those translatable back to the source language. Dynamic techniques including using
homomorphic encryption on some target values to limit operations on the encrypted
data, inserting runtime checks, or using security architectures such as address space
layout randomization, or Trusted Execution Environments.

Full abstraction is hard to achieve in practice: the downside of full abstraction
would be losing current compilation infrastructure and efficiency.

1.4 Beyond Full Abstraction
While full abstraction does preserve and reflect contextual equivalence, we also care
about other properties: safety, liveness, and hyperproperties (properties over sets of

OPLSS@BU 2024 2

Language-Based Security Stephen Chong

execution traces) such as noninterference. Full abstraction is not strong enough to
enforce hyperproperties, and conversely, it may be too hard to enforce if we only care
about safety.

For example, consider a compiler that translates programs of the form

f(x:Bool) ↦ e

to

f(x:Nat) ↦ if x < 2 then e↓ else x < 3 then f(x) else 42

where e↓ is the compilation of e.
Here a boolean input is compiled to a natural number, with expected behavior on

{0, 1} and new behavior on all other inputs. This compiler is fully abstract: provided
there is no context that can distinguish between programs in the source language,
there is no context that can distinguish between programs in the target language, and
vice versa. But it clearly does not satisfy the safety property of “Never output 42.”

1.5 Robust Preservation
We provide several definitions of secure compilation which go beyond full abstraction.

1.5.1 Robust Trace Preservation (RTP)

A compiler satisfies RTP if and only if compilation preserves every trace-based prop-
erty:

∀𝜋 ∈ 2𝑇 𝑟𝑎𝑐𝑒. ∀𝑃. (∀ℂ𝑆, 𝑡 . ℂ𝑆[𝑃] ⇝𝑡 ⇒ 𝑡 ∈ 𝜋) ⇒
(∀ℂ𝑇, 𝑡 . ℂ𝑇[𝑃 ↓] ⇝𝑡 ⇒ 𝑡 ∈ 𝜋).

Here, 𝜋 is a trace-based property in the set of all traces, and 𝑡 ∈ 𝜋 means 𝑡 is a
trace satisfying 𝜋. Blue corresponds to source contexts and programs, while orange
corresponds to target contexts. We read the ℂ[𝑃] ⇝ 𝑡 as producing the trace 𝑡. Note
that here we gloss over relating source and target traces (in practice they may look
different).

Equivalently, we can define this without referring to an explicit property 𝜋 ∈ 2𝑇 𝑟𝑎𝑐𝑒.

∀𝑃. ∀ℂ𝑇. ∀𝑡. ℂ𝑇[𝑃 ↓] ⇝𝑡 ⇒ ∃ℂ𝑆. ℂ𝑆[𝑃] ⇝𝑡.

1.5.2 Robust Safety Preservation (RSP)

We specialize this definition to safety: a compiler satisfies RSP if and only if compilation
preserves every trace-based safety property:

∀𝜋 ∈ 𝑆𝑎𝑓 𝑒𝑡𝑦 . ∀𝑃. (∀ℂ𝑆, 𝑡 . ℂ𝑆[𝑃] ⇝𝑡 ⇒ 𝑡 ∈ 𝜋) ⇒
(∀ℂ𝑇, 𝑡 . ℂ𝑇[𝑃 ↓] ⇝𝑡 ⇒ 𝑡 ∈ 𝜋).

The “property-free” definition is

∀𝑃. ∀ℂ𝑇. ∀𝑚. ℂ𝑇[𝑃 ↓] ⇝𝑚 ⇒ ∃ℂ𝑆. ℂ𝑆[𝑃] ⇝𝑚

OPLSS@BU 2024 3

Language-Based Security Stephen Chong

where 𝑚 is a finite trace prefix; we can think of it as a “bad” trace that breaks the
safety property. In other words, if the safety property is broken in a target context,
it is broken in some source context; by the contrapositive, if the safety property is
upheld in all target contexts, it is upheld in all source contexts.

1.5.3 Robust Hyperproperty Preservation (RHP)

We can generalize these definitions to hyperproperties: a compiler satisfies RHP if and
only if compilation preserves every trace-based hyperproperty:

∀𝐻 ∈ 2𝑇 𝑟𝑎𝑐𝑒
𝑇 𝑟𝑎𝑐𝑒

. ∀𝑃. (∀ℂ𝑆. 𝐵𝑒ℎ𝑎𝑣(ℂ𝑆[𝑃]) ∈ 𝐻) ⇒
(∀ℂ𝑇. 𝐵𝑒ℎ𝑎𝑣(ℂ𝑇[𝑃 ↓]) ∈ 𝐻).

Now, we have sets of hyperproperties, which themselves are sets of trace-based prop-
erties. In words, if the set of source behaviors is in the hyperproperty, then the set of
target behaviors is in the hyperproperty.

Equivalently,

∀𝑃. ∀ℂ𝑇. ∃ℂ𝑆. 𝐵𝑒ℎ𝑎𝑣(ℂ𝑇[𝑃 ↓]) = 𝐵𝑒ℎ𝑎𝑣(ℂ𝑆[𝑃])

or
∀𝑃. ∀ℂ𝑇. ∃ℂ𝑆. ∀𝑡. ℂ𝑇[𝑃 ↓] ⇝𝑡 ⟺ ℂ𝑆[𝑃] ⇝𝑡.

1.5.4 Relating Secure Compilation Criteria

Observe that full abstraction is the same as robust trace equivalence preservation.

OPLSS@BU 2024 4

Language-Based Security Stephen Chong

2 Weird Machines
There are several security attacks which exploit features of the stack and memory
layout.

• Buffer overflow exploit: Consider a function that copies input to a buffer. An
attacker can pass in data that overflows the provided buffer, overwriting the
function’s return address. Upon returning from the function, arbitrary code is
executed.

• Return to libc attack: Rather than overwriting the return address with arbitrary
code (whichmay not work if the stack is non-executable), an attack can overwrite
it with the address of a system function in libc. If the attacker also overwrites the
argument build area with the address of the string /bin/sh, then the program
will jump to the system and open up a shell for the attacker.

• Return-Oriented Programming (ROP): ROP chains gadgets, short sequences
of machine instructions which end in a return—each gadget performs a small
amount of computation, then the return address jumps to the next gadget. An
attacker can automatically identify gadgets and overwrite the stack with a chain
of them to execute a desired computation.

Weird machines, based on a 2020 paper by Dullien, provide a model for formalizing
and generalizing these kinds of vulnerabilities.

2.1 Intended Finite State Machines (IFSM)
IFSMs describe the intended implementation of the programmer. An IFSM is notated
as Θ = (𝑄, 𝑖𝐹 , Σ, Δ, 𝛾 , 𝜎), with

• Set of states 𝑄

• Initial state 𝑖

• Final states 𝐹

• Input alphabet Σ

• Output alphabet Δ

• State transition function 𝛿 ∶ 𝑄 × Σ → 𝑄

• Output function 𝜎 ∶ 𝑄 × Σ → Δ

2.2 Example: Tiny Secure Message Passing Server
Consider a machine that remembers password-secret pairs for later retrieval which
removes the pair. We set an arbitrary limit of 5000 password-secret pairs. Intuitively,
we want security to mean needing to know (or guess) the right password to obtain the
secret.

OPLSS@BU 2024 5

Language-Based Security Stephen Chong

2.2.1 IFSM

We define the corresponding IFSM as follows:

OPLSS@BU 2024 6

Language-Based Security Stephen Chong

2.2.2 Security Property

To define the security property, we set up the following game:

We want the probability that Θ𝑒𝑥𝑝𝑙𝑜𝑖𝑡 obtains the secret to be no better than guessing:

Pr[𝑠 ∈ 𝑜𝐼 𝐹𝑆𝑀] ≤
𝑛𝑠𝑒𝑡𝑢𝑝 + 𝑛𝑒𝑥𝑝𝑙𝑜𝑖𝑡

|𝑏𝑖𝑡𝑠32|
=

|𝑜𝑒𝑥𝑝𝑙𝑜𝑖𝑡|

232
.

2.2.3 Emulating the IFSM

We emulate the IFSM with a Cook-and-Reckhow RAM machine model that uses
Harvard architecture (where the code is not data). We assume there are 216 32-bit
memory cells, where the first 6 are treated as registers.

We consider two variants:

• Variant 1: Use cells 0-5 as scratch and cells 6-10006 as a simple flat array for
storing pairs of values. Upon receiving a query, search through memory for
empty pairs of memory cells.

• Variant 2: Rather than an array, use two singly-linked lists: one will track
free space for password-secret pairs, and the other will track currently active
password-secret pairs.

2.2.4 Sane, Transitory, and Weird States

We use the IFSM as the intensional specification, and call the implementation machine
𝑐𝑝𝑢. Let 𝑄𝑐𝑝𝑢 be the set of states of the implementation machine.

Let 𝛼Θ,𝑐𝑝𝑢,𝜌 ∶ 𝑄𝑐𝑝𝑢 ⇀ 𝑄Θ be the (partial) abstraction function from states 𝑄𝑐𝑝𝑢 to
states 𝑄Θ of the IFSM. Denote 𝑄𝑠𝑎𝑛𝑒

𝑐𝑝𝑢 as the states for which 𝛼Θ,𝑐𝑝𝑢,𝜌 is defined (which
directly correspond to a state of the IFSM).

Since 𝑐𝑝𝑢 may take multiple steps to implement one step in the IFSM, we also
define transitory states 𝑄 𝑡𝑟𝑎𝑛𝑠

𝑐𝑝𝑢 (to distinguish them from error states).

OPLSS@BU 2024 7

Language-Based Security Stephen Chong

We can now define weird states 𝑄𝑤𝑒𝑖𝑟𝑑
𝑐𝑝𝑢 = 𝑄𝑐𝑝𝑢 ⧵ (𝑄𝑠𝑎𝑛𝑒

𝑐𝑝𝑢 ∪ 𝑄 𝑡𝑟𝑎𝑛𝑠
𝑐𝑝𝑢), which consist of

all remaining states. Formally, bugs happen when 𝑐𝑝𝑢 reaches a state in 𝑄𝑤𝑒𝑖𝑟𝑑
𝑐𝑝𝑢 . In

practice, weird states may come from human error (most common!), hardware faults,
or transcription errors.

2.2.5 Formally Defining Weird Machines

The intended machine implementation is to emulate all state transitions of the IFSM
with transitions between sane states which may involve transitory states.

(𝑄𝑠𝑎𝑛𝑒
𝑐𝑝𝑢 ∪ 𝑄 𝑡𝑟𝑎𝑛𝑠

𝑐𝑝𝑢 , 𝑞𝑖𝑛𝑖𝑡, 𝑄𝑠𝑎𝑛𝑒
𝑐𝑝𝑢 ∪ 𝑄 𝑡𝑟𝑎𝑛𝑠

𝑐𝑝𝑢 , Σ, Δ, 𝛿, 𝜎)

A unintended, weird machine starts in a weird state and transitions to weird states,
using “instructions” in the form of input—that is, transitions meant for transforming
valid states.

(𝑄𝑤𝑒𝑖𝑟𝑑
𝑐𝑝𝑢 , 𝑞𝑖𝑛𝑖𝑡, 𝑄𝑠𝑎𝑛𝑒

𝑐𝑝𝑢 ∪ 𝑄 𝑡𝑟𝑎𝑛𝑠
𝑐𝑝𝑢 , Σ′, Δ′, 𝛿′, 𝜎 ′)

While programs consume input as data, in a weird machine the program is data
and the input is the program—an attacker can program the machine by providing
input! Consequently, weird machines have interesting properties: an unknown state
space, unknown computational power, and an emergent instruction set.

2.2.6 Attacker Models

Suppose we have a method for entering some 𝑞𝑖𝑛𝑖𝑡 from a set of sane states {𝑞𝑖}𝑖∈𝐼 ⊆ 𝑄𝑠𝑎𝑛𝑒
𝑐𝑝𝑢 .

Exploitation is the process of setup (choosing the right 𝑞𝑖), instantiation (entering 𝑞𝑖𝑛𝑖𝑡),
and programming the weird machine.

We can give an attacker varying capabilities: choosing any bit to flip at any time,
restricting bitflips to non-registers, and restricting bitflips to happen at specific program
point(s). This abstracts over Rowhammer and buffer overflow attacks, by reducing
them to bitflips.

2.2.7 Exploitability

Using our formal definitions, we can prove the security (or lack thereof) of our two
variants:

• Variant 1: Not exploitable! We can prove that any bit-flip can be achieved by a
finite number of legitimate transitions which stay within 𝑄𝑠𝑎𝑛𝑒

𝑐𝑝𝑢 , so the attacker
cannot use bit-flips to break security.

• Variant 2: Exploitable. An attacker can set up a data structure so that a bitflip
corrupts a pointer, allowing a known value to be treated as a password.

2.3 Weird Machines as Insecure Compilation
One approach for preventing weird machines is to view an exploit as behavior in the
target that does not correspond to behavior in the source—that is, insecure compilation.
We formally define an exploit and a weird machine as follows:

OPLSS@BU 2024 8

Language-Based Security Stephen Chong

This is a generalization of Dullien’s approach, using familiar vocabulary of language-
based security. In fact, robust hyperproperty preservation exactly describes the absence
of weird-machine exploits.

Thus, weird machines provide an example of applying language-based security
to understand and reason about vulnerabilities, giving access to more methods for
enforcing security.

References
Material in these notes and in Prof. Chong’s slides include content from the following
publications:

• Patrignani, M., A. Ahmed, and D. Clarke (2019, Feb). Formal approaches to
secure compilation: A survey of fully abstract compilation and related work.
ACM Comput. Surv. 51(6).

• Abate, C., R. Blanco, D. Garg, C. Hritcu, M. Patrignani, and J. Thibault (2019).
Journey beyond full abstraction: Exploring robust property preservation for
secure compilation. CSF 2019, pp. 256–271. IEEE.

• Dullien, T. (2020). Weird machines, exploitability, and provable unexploitability.
IEEE Transactions on Emerging Topics in Computing 8(2), 391–403.

• Paykin, J., E. Mertens, M. Tullsen, L. Maurer, B. Razet, and S. Moore (2019). Weird
machines as insecure compilation. In Workshop on Foundations of Computer
Security.

OPLSS@BU 2024 9

	Enforcing Language Abstractions
	Secure Compilation
	Contextual Equivalence
	Full Abstraction
	Beyond Full Abstraction
	Robust Preservation
	Robust Trace Preservation (RTP)
	Robust Safety Preservation (RSP)
	Robust Hyperproperty Preservation (RHP)
	Relating Secure Compilation Criteria

	Weird Machines
	Intended Finite State Machines (IFSM)
	Example: Tiny Secure Message Passing Server
	IFSM
	Security Property
	Emulating the IFSM
	Sane, Transitory, and Weird States
	Formally Defining Weird Machines
	Attacker Models
	Exploitability

	Weird Machines as Insecure Compilation

