
Language-Based Security

Stephen Chong, Harvard University

Stephen Chong, Harvard University 2

Stephen Chong, Harvard University 3

Stephen Chong, Harvard University 4

Stephen Chong, Harvard University

Formal Methods for Security

•Modeling computer systems to understand and
enforce security guarantees

5

Real computer
system

Model of
computer

system

Reason
about
model

E.g., enforcement mechanisms,
defense mechanisms, ...

E.g., specifying security, proving
the system satisfies (or violates)
security, ...

Stephen Chong, Harvard University

Formal Methods

•Approaches to reasoning about computational
entities
•Logical or mathematical descriptions
•Enable drawing reliable conclusions about behavior

•Enable modeling, verifying, and synthesizing
computer systems.

•Can be usefully applied with varying degrees of
rigor

6

Stephen Chong, Harvard University

Security

•Often described as “making sure bad things don’t
happen” in computer systems

•Distinct from functional correctness
•i.e., making sure the system does the right thing when

provided with appropriate input

•Many aspects to it
•Authentication, authority, confidentiality, integrity,

availability, abstraction violation, non-repudiation, ...

•We will examine some of these later

7

Stephen Chong, Harvard University

Advantages of Formal Methods

•Clear and explicit statement of what we mean by
security

•Modeling often requires explicating threat model,
assumptions, goals, ...
•Lead to clarity and insight

•Formal methods can lead to proofs of security
•Up to the assumptions of the model, computer system

guaranteed to be secure!
•Against entire classes of attacks!
•Even against as-yet-unknown attacks!
•Contrast with the “patch latest vulnerability” mentality

8

Stephen Chong, Harvard University

Disadvantages of Formal Methods

•Security guarantees only as good as model
•Precisely phrasing a security guarantee can lead

to difficult/unintuitive/opaque security
guarantees

•Applying formal methods can be expensive
•Difficult, requires significant expertise, time-

consuming, ...

9

Stephen Chong, Harvard University

Language-Based Security

•Use of Programming Language concepts and
techniques to reason about and enforce security

•Great fit for formal methods for security!

10

Stephen Chong, Harvard University

Language-Based Reasoning

•PL has rich tradition of
simple formal models of
languages
•Lambda calculus, Pi calculus,

Imperative calculi,
labeled transition systems, ...

•Also often good models for computer systems

11

Real computer
system

Model of
computer

system

Reason
about
model

Enforcement
Mechanisms

Stephen Chong, Harvard University

Language-Based Reasoning

•Techniques for reasoning and proofs in calculi
translate to techniques for reasoning and proofs
about security

12

Real computer
system

Model of
computer

system

Reason
about
model

Enforcement
Mechanisms

•PL has rich tradition of
simple formal models of
languages
•Lambda calculus, Pi calculus,

Imperative calculi,
labeled transition systems, ...

•Also often good models for computer systems

Stephen Chong, Harvard University

PL Enforcement Techniques

•Enforcement mechanisms in
PL-based models often
translate to useful real
mechanisms
•Because we use PL to

implement systems

•E.g., type systems, reference monitors, static
analyses, ...

13

Real computer
system

Model of
computer

system

Reason
about
model

Enforcement
Mechanisms

Stephen Chong, Harvard University

Abstraction Enforcement

•Aspects of security of system relies on
correctness/security of application code

•But if system execution doesn’t obey application
code, hard to reason correctly about security
•E.g., buffer overflow errors injecting arbitrary

computation
•E.g., linking to arbitrary binary libraries

14

Techniques to enforce
language semantics/

abstractions

Language-based
Security⊆

Stephen Chong, Harvard University

Case Study: Noninterference

•Setting: a computer system that handles
information of varying sensitivity
•E.g., Military Multi-Level Security (MLS)
•Data labeled e.g., “Nuclear Confidential”, “Signals Top
Secret”, “Crypto Unclassified”

•E.g., Web app with different users

•Key security idea: a user/adversary should not
learn information inappropriately

• (We will be examining this in much more depth later)

15

Stephen Chong, Harvard University 16

Real computer
system

Model of
computer

system

Reason
about
model

Stephen Chong, Harvard University

Input, Output, and Observation

•Let’s consider a simplified setting, just two security levels,
Low and High
•Think “public information” for Low and “secret information” for High

•Key idea, diagrammatically:

17

System

9261
High

“It’s my
dog’s birthday”

Low

High
$23

Low
“Happy

Birthday Fido!”

Stephen Chong, Harvard University

A Simple Model

•Let’s model the computer system with a simple
imperative language (IMP)

18

Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

IMP: a simple imperative language

Lecture 5 Tuesday, February 7, 2023

We shall now consider a more realistic programming language, one where we can assign values to vari-

ables and execute control constructs such as if and while. The syntax for this simple imperative language,

called IMP, is as follows:

arithmetic expressions a 2 Aexp a ::= x | n | a1 + a2 | a1 ⇥ a2

boolean expressions b 2 Bexp b ::= true | false | a1 < a2

commands c 2 Com c ::= skip | x := a | c1; c2

| if b then c1 else c2

| while b do c

1 Small-step operational semantics

We’ll first give a small-step operational semantics for IMP. The configurations in this language are of the

form hc,�i, hb,�i, and ha,�i, where � is a store. The final configurations are of the form hskip,�i, htrue,�i,

hfalse,�i, and hn,�i. There are three different small-step operational semantics relations, one each for

commands, boolean expressions, and arithmetic expressions.

�!Com ✓ Com ⇥ Store ⇥ Com ⇥ Store

�!Bexp ✓ Bexp ⇥ Store ⇥ Bexp ⇥ Store

�!Aexp ✓ Aexp ⇥ Store ⇥ Aexp ⇥ Store

For brevity, we will overload the symbol �! and use it to refer to all of these relations. Which relation

is being used will be clear from context.

The evaluation rules for arithmetic and boolean expressions are similar to the ones we’ve seen before.

However, note that since the arithmetic expressions no longer contain assignment, arithmetic and boolean

expressions can not update the store.

Stephen Chong, Harvard University

IMP Semantics

•Store σ is a function from variables to ints

19

Lecture 5 IMP: a simple imperative language

2 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, boolean expressions, and commands.

The relation for arithmetic expressions relates an arithmetic expression and store to the integer value that

the expression evaluates to. For boolean expressions, the final value is in Bool = {true, false}. For com-

mands, the final value is a store.

+Aexp ✓ Aexp ⇥ Store ⇥ Int

+Bexp ✓ Bexp ⇥ Store ⇥ Bool

+Com ✓ Com ⇥ Store ⇥ Store

Again, we overload the symbol + and use it for any of these three relations; which relation is intended

will be clear from context. We also use infix notation, for example writing hc,�i + �0 if (c,�,�0) 2+Com.

Arithmetic expressions.

hn,�i + n hx,�i + n
where �(x) = n

ha1,�i + n1 ha2,�i + n2

ha1 + a2,�i + n
where n = n1 + n2

ha1,�i + n1 ha2,�i + n2

ha1 ⇥ a2,�i + n
where n = n1 ⇥ n2

Boolean expressions.

htrue,�i + true hfalse,�i + false

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + true
where n1 < n2

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + false
where n1 � n2

Commands.

SKIP
hskip,�i + �

ASG
ha,�i + n

hx := a,�i + �[x 7! n]
SEQ

hc1,�i + �0 hc2,�0i + �00

hc1; c2,�i + �00

Page 4 of 6

Lecture 5 IMP: a simple imperative language

2 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, boolean expressions, and commands.

The relation for arithmetic expressions relates an arithmetic expression and store to the integer value that

the expression evaluates to. For boolean expressions, the final value is in Bool = {true, false}. For com-

mands, the final value is a store.

+Aexp ✓ Aexp ⇥ Store ⇥ Int

+Bexp ✓ Bexp ⇥ Store ⇥ Bool

+Com ✓ Com ⇥ Store ⇥ Store

Again, we overload the symbol + and use it for any of these three relations; which relation is intended

will be clear from context. We also use infix notation, for example writing hc,�i + �0 if (c,�,�0) 2+Com.

Arithmetic expressions.

hn,�i + n hx,�i + n
where �(x) = n

ha1,�i + n1 ha2,�i + n2

ha1 + a2,�i + n
where n = n1 + n2

ha1,�i + n1 ha2,�i + n2

ha1 ⇥ a2,�i + n
where n = n1 ⇥ n2

Boolean expressions.

htrue,�i + true hfalse,�i + false

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + true
where n1 < n2

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + false
where n1 � n2

Commands.

SKIP
hskip,�i + �

ASG
ha,�i + n

hx := a,�i + �[x 7! n]
SEQ

hc1,�i + �0 hc2,�0i + �00

hc1; c2,�i + �00

Page 4 of 6

Stephen Chong, Harvard University

IMP Semantics

20

Lecture 5 IMP: a simple imperative language

2 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, boolean expressions, and commands.
The relation for arithmetic expressions relates an arithmetic expression and store to the integer value that
the expression evaluates to. For boolean expressions, the final value is in Bool = {true, false}. For com-
mands, the final value is a store.

+Aexp ✓ Aexp ⇥ Store ⇥ Int
+Bexp ✓ Bexp ⇥ Store ⇥ Bool
+Com ✓ Com ⇥ Store ⇥ Store

Again, we overload the symbol + and use it for any of these three relations; which relation is intended
will be clear from context. We also use infix notation, for example writing hc,�i + �0 if (c,�,�0) 2+Com.
Arithmetic expressions.

hn,�i + n hx,�i + n
where �(x) = n

ha1,�i + n1 ha2,�i + n2

ha1 + a2,�i + n
where n = n1 + n2

ha1,�i + n1 ha2,�i + n2

ha1 ⇥ a2,�i + n
where n = n1 ⇥ n2

Boolean expressions.

htrue,�i + true hfalse,�i + false

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + true
where n1 < n2

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + false
where n1 � n2

Commands.

SKIP
hskip,�i + �

ASG
ha,�i + n

hx := a,�i + �[x 7! n]
SEQ

hc1,�i + �0 hc2,�0i + �00

hc1; c2,�i + �00

IF-T
hb,�i + true hc1,�i + �0

hif b then c1 else c2,�i + �0 IF-F
hb,�i + false hc2,�i + �0

hif b then c1 else c2,�i + �0

WHILE-F
hb,�i + false

hwhile b do c,�i + �
WHILE-T

hb,�i + true hc,�i + �0 hwhile b do c,�0i + �00

hwhile b do c,�i + �00

It’s interesting to see that the rule for while loops does not rely on using an if command (as we needed
in the case of small-step semantics). Why does this rule work?

2.1 Command equivalence

The small-step operational semantics suggest that the loop while b do c should be equivalent to the com-
mand if b then (c;while b do c) else skip. Can we show that this indeed the case when the language is
defined using the above large-step evaluation?

Page 3 of 4

Lecture 5 IMP: a simple imperative language

2 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, boolean expressions, and commands.
The relation for arithmetic expressions relates an arithmetic expression and store to the integer value that
the expression evaluates to. For boolean expressions, the final value is in Bool = {true, false}. For com-
mands, the final value is a store.

+Aexp ✓ Aexp ⇥ Store ⇥ Int
+Bexp ✓ Bexp ⇥ Store ⇥ Bool
+Com ✓ Com ⇥ Store ⇥ Store

Again, we overload the symbol + and use it for any of these three relations; which relation is intended
will be clear from context. We also use infix notation, for example writing hc,�i + �0 if (c,�,�0) 2+Com.
Arithmetic expressions.

hn,�i + n hx,�i + n
where �(x) = n

ha1,�i + n1 ha2,�i + n2

ha1 + a2,�i + n
where n = n1 + n2

ha1,�i + n1 ha2,�i + n2

ha1 ⇥ a2,�i + n
where n = n1 ⇥ n2

Boolean expressions.

htrue,�i + true hfalse,�i + false

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + true
where n1 < n2

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + false
where n1 � n2

Commands.

SKIP
hskip,�i + �

ASG
ha,�i + n

hx := a,�i + �[x 7! n]
SEQ

hc1,�i + �0 hc2,�0i + �00

hc1; c2,�i + �00

IF-T
hb,�i + true hc1,�i + �0

hif b then c1 else c2,�i + �0 IF-F
hb,�i + false hc2,�i + �0

hif b then c1 else c2,�i + �0

WHILE-F
hb,�i + false

hwhile b do c,�i + �
WHILE-T

hb,�i + true hc,�i + �0 hwhile b do c,�0i + �00

hwhile b do c,�i + �00

It’s interesting to see that the rule for while loops does not rely on using an if command (as we needed
in the case of small-step semantics). Why does this rule work?

2.1 Command equivalence

The small-step operational semantics suggest that the loop while b do c should be equivalent to the com-
mand if b then (c;while b do c) else skip. Can we show that this indeed the case when the language is
defined using the above large-step evaluation?

Page 3 of 4

Stephen Chong, Harvard University

Security Condition

•Inputs are the store before the program executes, outputs are
the final store

•Let’s designate a subset of the variables as “Low”, meaning
the attacker can observe them, and the rest as “High”

•Context Γ will be a function from variables to {Low, High}
•Write σ1 =Low σ2 if states σ1 and σ2 are equal on all low

variables
•For all x, if Γ(x) = Low then σ1(x) = σ2(x)

•Definition: Program c is noninterfering if:
 For all σ1, σ2, σ’1, σ’2,
 if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 then σ’1 =Low σ’2

21

y := x + 42;

Stephen Chong, Harvard University

Examples

22

✘ x := x + y;
y := y + 42;

✔

if (x > 0)
 y := 1
else
 y := 0

✘ y := 0;
if (x > 0)
 y := 1

Γ(x)=High
Γ(y)=Low

✘

Stephen Chong, Harvard University

Examples

23

while (x > 0) do skip✔Γ(x)=High
Γ(y)=Low

y := 0;
while (x > 0) do y := 1

✔
y := encrypt(x)✘

Stephen Chong, Harvard University

Road Map

•Intro
•Formal Methods for Security
•Language-Based Security
•Case Study: Noninterference

•Primer on Computer Security

•Information Flow
•Semantics
•Enforcement
•Beyond confidentiality

•Enforcing Language Abstractions

24

Stephen Chong, Harvard University

Road Map

•Intro
•Formal Methods for Security
•Language-Based Security
•Case Study: Noninterference

•Primer on Computer Security

•Information Flow
•Semantics
•Enforcement
•Beyond confidentiality

•Enforcing Language Abstractions

25

Mon

Tue

Wed

Thu

Stephen Chong, Harvard University

Road Map

•Intro
•Formal Methods for Security
•Language-Based Security
•Case Study: Noninterference

•Primer on Computer Security

•Information Flow
•Semantics
•Enforcement
•Beyond confidentiality

•Enforcing Language Abstractions

26

Primer on Computer Security

•Some of the key concepts in computer security
•Some of which may crop up in future lectures

Stephen Chong, Harvard University

Primer Outline

•Policy
•Enforcement
•Trust
•Threat Model
•Some good security

principles

28

Stephen Chong, Harvard University

Policy vs Enforcement

•Policy is (or leads to) the security guarantee we want to
achieve

•Enforcement is how we achieve the security guarantee
•Sometime called the mechanism

•Threat model (aka adversary model, attacker model):
assumptions about the abilities and/or motivations of the attacker

•Trusted Computing Base (TCB): components of the system that
are trusted

•Goal: given the assumptions of the threat model and assuming
components in the TCB work correctly, the enforcement
mechanism should ensure the desired security guarantee.

29

Stephen Chong, Harvard University

Policy

•“A security policy is a statement of what is, and
what is not, allowed”
•[Bishop]

•“Security policies legislate behavior by people,
computers, executing programs, communications
channels, and other system entities capable of
taking action.”
•[Schneider]
•Refer to such entities as principals

30

Stephen Chong, Harvard University

Information Security

•Foundation of computer security is CIA
•Confidentiality
•Integrity
•Availability

31

Stephen Chong, Harvard University

Confidentiality

•The concealment of information or resources
•Access control mechanisms support confidentiality

•E.g., cryptography, discretionary access control, ...

•But may be concerned not just with restricting access to
information, but also with restricting propagation of and
knowledge of information.

•Note: sometimes the existence of information itself is
confidential
•E.g., What resources a client is using is confidential, but so is the

existence of the client
•E.g., Contents of message from employee to HR is confidential, but

so is the fact that a message was sent at all
32

Stephen Chong, Harvard University

Integrity

•Trustworthiness of data or resources
•Often about preventing improper or unauthorized changes

•Includes:
•Data integrity (i.e. content of information)
•Contamination, supression

•Origin integrity (aka authentication)

•Mechanisms to support integrity typically either prevention or
detection

•Prevention: prevent unauthorized changes to data
•Detection: determine when data/resources no longer trustworthy

•In many settings, integrity is dual to confidentiality
•Cryptography, information flow, ...

33

Stephen Chong, Harvard University

Availability

•Ability to use information or resource as desired
•Attacks to block availability often called denial

of service attacks

34

Stephen Chong, Harvard University

Privacy

•Related to the confidentiality of personal
information

•May also include right of individuals to control
or influence what info about them is collected,
stored, shared

•Often broader societal question
•Many laws and regulations

35

Stephen Chong, Harvard University

Non-Repudiation

•A party that took an action is unable to plausibly
deny that they did so

•E.g.,
•After signing a document, can not deny that they did

so
•After sending a message, can not deny that the

message was sent by them

•Related to integrity

36

Stephen Chong, Harvard University

Example: Electronic Voting

•Desirable properties for electronic voting
•Verifiability: The final tally is verifiably correct

•Voter/individual verifiability: Each voter can check that their own
vote is included in the tally

•Universal verifiability: Anyone can check that all votes cast are
counted, that only authorized votes are counted, and that no votes
are changed during counting

•Coercion Resistance: Voters cannot prove whether or how
they voted
•Might involve ability to repudiate!

•Availability: the voting system should be available to voters
during the voting period

37

Stephen Chong, Harvard University

Example: Noninterference

•Here is the security condition from earlier:
•Context Γ is function from variables to {Low, High}
•Write σ1 =Low σ2 if states σ1 and σ2 are equal on all low

variables: For all x, if Γ(x) = Low then σ1(x) = σ2(x)
•Definition: Program c is noninterfering if:

 For all σ1, σ2, σ’1, σ’2,
 if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 then σ’1 =Low σ’2

•What is and isn’t allowed here? What are we
trying to achieve?

38

Stephen Chong, Harvard University

Primer Outline

•Policy
•Enforcement
•Trust
•Threat Model
•Some good security

principles

39

Stephen Chong, Harvard University

Enforcement

•Mechanism by which we ensure a system satisfies a security policy

•Many kinds of mechanisms
•Cryptography

•Type systems

•Program Analyses

•Program Rewriting, Runtime Monitors, Inlined Reference Monitors

•APIs and frameworks
• E.g. access control frameworks

•Language abstractions
• E.g., information hiding

•Patterns/idioms
• E.g., escaping SQL strings

•Intrusion Detection Systems

•Firewalls

•...
40

Stephen Chong, Harvard University

What is a good mechanism?

•Correct (i.e., actually achieves the desired security policy)
•Hard or impossible to get wrong

•Examples for and against?

•Can not be subverted or bypassed, aka complete mediation
•By attacker, developer, etc.

•Easy to use (possibly even transparent to developer)
•Separates policy and mechanism

•i.e., what we want to achieve from how we achieve it

•Useful
•Most secure system is one that doesn’t turn on...

•These may be in conflict with each other
•E.g., to be “easy to use”, a developer may want to disable a mechanism locally if the

enforcement mechanism is too strict
• Like unsafe in Rust

• cf. declassification for noninterference

41

Stephen Chong, Harvard University

The “Gold Standard”

•Authorization
•Authentication
•Audit

•Many aspects of enforcement rely on one or
more of these

42

Au comes from aurum,
the Latin name for gold.

Stephen Chong, Harvard University

Authentication

•Confirm identity of entity
•Based on one or more of:

•Something you know
• E.g., password, secret

•Something you have
•Mobile phone, smart card, hardware authentication device
• Physical key

•Something you are
•Biometric, e.g., fingerprint, iris pattern

43

Stephen Chong, Harvard University

Authorization

•Can requested actions proceed?
•Is the requestor authorized to do the action?

•May rely on authentication
•Common mechanisms include:

•Access control mechanisms
• E.g., Role-based access control

•Capabilities
•Authorization logic

44

Stephen Chong, Harvard University

Audit

•Records system activity, attributing actions to
some responsible principal

•Supports accountability: holding people (legally)
responsible for their actions
•Might help enforce security policy by
• (1) providing incentive for people to follow policy; and/or
• (2) retroactively enforcing policy

45

Stephen Chong, Harvard University

Example Authorization Mechanism:
Discretionary Access Control

•Discretionary = up to the owner to decide access rights
•E.g., owner of a file can set the permissions for the file
•By contrast, with Mandatory Access Control, the system determines

access rights

•If we are using access control to protect actions (e.g.,
launching of missiles, opening door), may be a good
mechanism for the policy
•Policy (access control lists) separate from how the policy is enforced

•If we are using access control to enforce confidentiality, may
not be a good mechanism
•Actual goal is preventing some entities from learning information
•Different from whether they can open a file

46

Stephen Chong, Harvard University

Primer Outline

•Policy
•Enforcement
•Trust
•Threat Model
•Some good security

principles

47

Stephen Chong, Harvard University

Trust

•Trust is inevitable. Need to trust something
•Ideally, want to trust as little as possible.

•You can only be hurt by those you trust!

48

“Draw a picture that conveys the message you can only be hurt by those you trust”

Stephen Chong, Harvard University

Trusted vs Trustworthy

•Trustworthy: worthy of trust
• Exhibits all and only expected functionality/behavior, and is
some compelling reason to believe that is the case

•Trusted is not the same as trustworthy
•Trust may be misplaced

•A component is trusted if its failure can violate the
security goal

•Trusted Computing Base is the set of components
that are trusted
•Sometimes trustworthy components are not included in

TCB, i.e., TCB is only the trusted components that might fail
49

Stephen Chong, Harvard University

Threat Model

•Aka Attacker Model, Adversary Model, ...
•Assumptions about the ability of an adversary
•Good to be clear and explicit about assumptions

•Help determine whether a mechanism does or does not achieve desired security

•E.g., what can the attacker do with respect to communication channels?
•Observe that messages are sent? Observe length of messages? Contents of

messages? Send messages itself?

•E.g., does the attacker have physical access to the computer?
•May be able to snoop on the memory bus to see what accesses are being made
•May be able to more easily cause random bitflips
•May be able to turn off power
•May be able to connect devices (e.g., USB keys)
•May be able to repeatedly try attacks without observation (e.g., smartcard)

50

Stephen Chong, Harvard University

Threat Model

•E.g., can the attacker execute new programs/
code? If so, is the attacker restricted to well-typed
programs?

•E.g., is the attacker computationally limited?
•An omniscient attacker can break cryptography...

•E.g., is the attacker able to encrypt additional
messages using the secret key?

51

Stephen Chong, Harvard University

Security Up To Threat Model

•Recall our goal: given the assumptions of the threat
model and assuming components in the TCB work
correctly, the enforcement mechanism should ensure
the desired security guarantee.

•If threat model assumptions incorrect, system may not
be secure
•Generally good to assume stronger adversary

•Evaluating whether assumptions are reasonable are
typically beyond scope of formal methods

•But making threat model explicit helps clarify what
assumptions are being made

52

Stephen Chong, Harvard University

Attack Surface

•Points where attacker can interact with system
•Smaller the attack surface, fewer opportunities

for attacks
•Attack surface tightly connected with threat

model
•Isolating systems (or components) as much as

possible can reduce attack surface

53

Stephen Chong, Harvard University

Primer Outline

•Policy
•Enforcement
•Trust
•Threat Model
•Some good security

principles

54

Stephen Chong, Harvard University

Some Good Security Principles

•Defense in depth
•Have multiple mechanisms to defend against attacks

•Principle of Least Privilege
•Principals should be given only the minimum privileges/authority needed to

accomplish its task

•Privilege Separation
•Different actions should require different privileges
•Supports principle of least privilege
•But may be difficult to manage huge numbers of privileges

•Security by obscurity is generally bad
•i.e., security of system relying on keeping mechanism design secret is not a

good approach
•Yes, hiding design information makes attacking more difficult
•But the design often leaks eventually; more scrutiny of design improves it

55

Stephen Chong, Harvard University

References

•“Computer Security: Art and Science” by Matt
Bishop

•Draft chapters for an as-yet untititled textbook
on cybersecurity, by Fred Schneider
•https://www.cs.cornell.edu/fbs/fullist.html

56

