OREGON Harvard John A. Paulson
PROGRAMMING @ | School of Engineering
LANGUAGES nd Applied Sciences
SUMMER at

SCHOOL unversITy

Language-Based Security

Stephen Chong, Harvard University

Formal Methods for Securi

* Modeling computer systems to understand and
enforce security guarantees

Model of E
computer

system E.g., specifying security, proving
the system satisfies (or violates)
security, ...
E.g., enforcement mechanisms,

defense mechanisms, ...

B

system

Formal Methods

* Approaches to reasoning about computational
entities

| ogical or mathematical descriptions

*Enable drawing reliable conclusions about behavior

e Enable modeling, verifying, and synthesizing
computer systems.

e Can be usefully applied with varying degrees of
rgor

Security

e Often described as “making sure bad things don't
happen” in computer systems
* Distinct from functional correctness

*i.e., making sure the system does the right thing when
provided with appropriate input

* Many aspects to it

e Authentication, authority, confidentiality, integrity,
availability, abstraction violation, non-repudiation, ...

e \We will examine some of these later

Advantages of Formal Methods

e Clear and explicit statement of what we mean by
security

e Moc¢

eling often requires explicating threat model,

dSSU

mptions, goals, ...

| ead to clarity and insight

e Formal methods can lead to proofs of security

e Up to the assumptions of the model, computer system
guaranteed to be secure!

e Against entire classes of attacks!

*Even against as-yet-unknown attacks!

e Contrast with the “patch latest vulnerability” mentality

Disadvantages of Formal Methods

Security guarantees only as good as model

* Precisely phrasing a security guarantee can lead
to difficult/unintuitive/opaque security

guarantees
e Applying formal mett

consuming, ...

ods can be expensive

e Difficult, requires significant expertise, time-

Language-Based Security

e Use of Programming Language concepts and
techniques to reason about and enforce security

e Great fit for formal methods for security!

Language-Based Reasoning

*PL has rich tradition of
simple formal models of
languages

e ambda calculus, Pi calculus,

Imperative calculi,
labeled transition systems, ...

Model of
computer
system

)¢

i\

Real compu te
system

Enforcement
Mechanisms

* Also often good models for computer systems

Language-Based Reasoning

*PL has rich tradition of
simple formal models of
languages

e ambda calculus, Pi calculus,

Imperative calculi,
labeled transition systems, ...

* Also often good models for computer systems

* Techniques for reasoning and proofs in calculi
translate to techniques for reasoning and proofs

about security

f

Model of
computer
system .

(x,
M Reason
e

about

! sm“
model

i\

Real compu te ’

Enforcement
Mechanisms

PL Enforcement Techniques

e Enforcement mechanisms in
PL-based models often
translate to useful real
mechanisms

e Because we use PL to
implement systems

°E.g., type systems, reference
analyses, ...

%

Model of | e .
computer _I'—'
system |-___—

k

IR
Enforcement
Mechanisms

=

BE—

Real computer

system M

=

monitors, static

Abstraction Enforcement

e Aspects of security of system relies on
correctness/security of application code

*But if system execution doesn’t obey application
code, hard to reason correctly about security

*E.g., buffer overflow errors injecting arbitrary
computation

°E.g., linking to arbitrary binary libraries

Techniques to enforce Language-based
language semantics/ C Security

abstractions

Case Study: Noninterference

o Setting: a computer system that handles
information of varying sensitivity
eE.g., Military Multi-Level Security (MLS)

* Data labeled e.g., “Nuclear Confidential”, “Signals Top
Secret”, “Crypto Unclassified”

eE.g., Web app with different users

e Key security idea: a user/adversary should not
learn information inappropriately

e (We will be examining this in much more depth later)

Model of EI
computer <
system | =

Real computer
system

_.

Input, Output, an

*|et’s consider a simplified setting, just two security levels,
Low and High

e Think “public information” for Low and “secret information” for High

eKey idea, diagrammatically:

High High
926 1—ex3 g
.. Low Low
It s my “"Happy
dog’s birthday” Birthday Fido!,

Stephen Chong, Harvard University

A Simple

*et's model the computer system with a simple
imperative language (IMP)

arithmetic expressions a € Aexp a:= x|n|a +as|a Xas
boolean expressions b € Bexp b::= true | false | a; < ao
commands c € Com c:= SKIp |z :=a|cy;co

iIf b then ¢; else c>

while b do ¢

Stephen Chong, Harvard University 18

IMP Se

e Store O is a function from variables to ints
Jaexp € Aexp x Store x Int
UBexp € Bexp x Store x Bool

Jcom € Com x Store x Store

Arithmetic expressions.

where o(z) = n

(n,o) I n (z,0) I n

(a1, 0) § m {az,0) I no (a1, 0) 4 {az,0) I ng
where n = nqy + n9 where n = ny x no
(a1 + az,0) I n (a1 X ag,0) I n

Stephen Chong, Harvard University 19

IMP Se

Boolean expressions.

(true, o) || true (false, o) | false
{a1,0) I n (az, o) |} na (a1, 0) | ny (az, o) | na
where n; < no where n{ > nso
(a1 < ag,0) | true (a1 < ag,0) | false
Commands.
SKIP ASG a,0) b n SEQ o) Yol A o) bo”
(skip,o) || o (x :=a,0) | olx — n] (c1;¢0,0) | o
i (b,o) || true (c1,0) | o - (b,o) | false (ca,0) | o
(if b then c; else ¢y, 0) | o (if b then ¢, else co,0) || o
WHILEE (b,o) | false WEHILET (b,o) | true (c,o) | o (while b do ¢, ") | o”
(Whilebdo ¢,0) || o (whilebdo c,0) || o”

Stephen Chong, Harvard University 20

Security Condition

*Inputs are the store before the program executes, outputs are
the final store

e | et’s designate a subset of the variables as “Low”, meaning
the attacker can observe them, and the rest as “High”

e Context I' will be a function from variables to {Low, High}
* Write 61 =10w 02 if states 61 and o2 are equal on all low
variables
eFor all x, if I'(x) = Low then o1(x) = 62(x)
* Definition: Program c is noninterfering if:
For all o1, 02, 6’1 0’3,
if 61 =Low 02 and {c,o1)| 0’1 and {(c,02)| 0’2
then 6’1 =Low 672

[(x)=High
[(y)=Low

Stephen Chong, Harvard University 22

Examp

[(x)=High

[=1,
(y)=Low while (x > 0) do skip

while (x > 0) doy :=1

y = encrypt(x)

Stephen Chong, Harvard University 23

Road Map

s

*Intro
e Formal Methods for Security
e anguage-Based Security

e Case Study: Noninterference

* Primer on Computer Security

e Information Flow
e Semantics
e Enforcement
e Beyond confidentiality

e Enforcing Language Abstractions

24

Road Map

~

e Intro Mon

e Formal Methods for Security
| anguage-Based Security
e Case Study: Noninterference

* Primer on Computer Security

J

" e|nformation Flow Tue
L e Semantics)
' eEnforcement Wed

* Beyond confidentiality)

e Enforcing Language Abstractions

Thu

J

Road Map

*Intro
e Formal Methods for Security
e|anguage-Based Security
e Case Study: Noninterference

(* Primer on Computer Security

e Information Flow
e Semantics
e Enforcement
e Beyond confidentiality

e Enforcing Language Abstractions

Stephen Chong, Harvard University 26

Harvard John A. Paulson
School of Engineering
and Applied Sciences

OREGON
PROGRAMMING
LANGUAGES
SUMMER &r

SCHOOL unzversrry

Primer on Computer Security

e Some of the key concepts in computer security
e Some of which may crop up in future lectures

Primer Outline

Policy

Enforcement
Trust
Threat Model

Some good securi
principles

28

Policy vs Enforcement

*Policy is (or leads to) the security guarantee we want to
achieve

e Enforcement is how we achieve the security guarantee

e Sometime called the mechanism

e Threat model (aka adversary model, attacker model):
assumptions about the abilities and/or motivations of the attacker

* Trusted Computing Base (TCB): components of the system that
are trusted

* Goal: given the assumptions of the threat model and assuming
components in the TCB work correctly, the enforcement
mechanism should ensure the desired security guarantee.

Policy

* “A security policy is a statement of what is, and
what is not, allowed”

* [Bishop]
 “Security policies legislate behavior by people,
computers, executing programs, communications

channels, and other system entities capable of
taking action.”

e [Schneider]
e Refer to such entities as principals

Information Security

* Foundation of computer security is CIA
e Confidentiality
*ntegrity
* Availability

Confidentiality

e The concealment of information or resources
e Access control mechanisms support confidentiality

oE.o. cryptography, discretionary access control, ...
8-, cryptograpny. y

e But may be concerned not just with restricting access to
information, but also with restricting propagation of and
knowledge of information.

e Note: sometimes the existence of information itself is
confidential

*E.g., What resources a client is using is confidential, but so is the
existence of the client

eE.g., Contents of message from employee to HR is confidential, but
so is the fact that a message was sent at all

Integrity

e Trustworthiness of data or resources

e Often about preventing improper or unauthorized changes

e Includes:

e Data integrity (i.e. content of information)

- Contamination, supression

*Origin integrity (aka authentication)

* Mechanisms to support integrity typically either prevention or
detection
* Prevention: prevent unauthorized changes to data
e Detection: determine when data/resources no longer trustworthy
*In many settings, integrity is dual to confidentiality
e Cryptography, information flow, ...

Avail

* Ability to use information or resource as desired

* Attacks to block availability often called denial
of service attacks

Stephen Chong, Harvard University 34

Privacy

e Related to the confidentiality of personal
information

* May also include right of individuals to control
or influence what info about them is collected,
stored, shared

e Often broader societal question

* Many laws and regulations

Non-Repudiation

e A party that took an action is unable to plausibly
deny that they did so

°f.g,

e After signing a document, can not deny that they did
SO

* After sending a message, can not deny that the
message was sent by them

*Related to integrity

Example: Electronic Voting

e Desirable properties for electronic voting

e Verifiability: The final tally is verifiably correct

e Voter/individual verifiability: Each voter can check that their own
vote is included in the tally

 Universal verifiability: Anyone can check that all votes cast are
counted, that only authorized votes are counted, and that no votes
are changed during counting

e Coercion Resistance: Voters cannot prove whether or how

they voted

e Might involve ability to repudiate!

* Availability: t

during the vo

ne voting system should be available to voters

ing period

Example: Noninterference

e Here is the security condition from earlier:

e Context I' is function from variables to {Low, High}

*Write 61 =1ow 02 if states 61 and o2 are equal on all low
variables: For all x, if I'(x) = Low then o1(x) = 62(x)

e Definition: Program c is noninterfering if:

For all 61, 02, 0’1 02,
if 61 =Low 02 and <c,o1){ 06’1 and {c,02)| 0”2
then 6’1 =Low 6”2

e\What is and isn’t allowed here? What are we
trying to achieve?

Primer Outline

Policy

Enforcement
Trust
Threat Model

Some good securi
principles

39

Enfor

* Mechanism by which we ensure a system satisfies a security policy

* Many kinds of mechanisms
* Cryptography
* Type systems
* Program Analyses
e Program Rewriting, Runtime Monitors, Inlined Reference Monitors
* APls and frameworks

* E.g. access control frameworks
e anguage abstractions

* E.g., information hiding
e Patterns/idioms

* E.g., escaping SQL strings
e [ntrusion Detection Systems
eFirewalls

Stephen Chong, Harvard University 40

What is a good mechanism?

e Correct (i.e., actually achieves the desired security policy)
e Hard or impossible to get wrong

e Examples for and against?
e Can not be subverted or bypassed, aka complete mediation
By attacker, developer, etc.
eEasy to use (possibly even transparent to developer)
e Separates policy and mechanism
*i.e., what we want to achieve from how we achieve it
o Useful
* Most secure system is one that doesn’t turn on...

* These may be in conflict with each other

°E.g., to be “easy to use”, a developer may want to disable a mechanism locally if the
enforcement mechanism is too strict
*Like unsafe in Rust

e cf. declassification for noninterference

The “Gold Standard”

e Authorization

e Authentication
e Audit

Au comes from aurum,
the Latin name for gold.

S—

* Many aspects of enforcement rely on one or
more of these

Authentic

e Confirm identity of entity

e Based on one or more of:

e Something you know
* E.g., password, secret

e Something you have
* Mobile phone, smart card, hardware authentication device
* Physical key

e Something you are
* Biometric, e.g., fingerprint, iris pattern

Stephen Chong, Harvard University 43

Authorization

e Can requested actions proceed?
*|s the requestor authorized to do the action?

* May rely on authentication
e Common mechanisms include:

* Access control mechanisms
* E.g., Role-based access control

e Capabilities

* Authorization logic

Audit

e Records system activity, attributing actions to
some responsible principal

* Supports accountability: holding people (legally)
responsible for their actions
e Might help enforce security policy by

* (1) providing incentive for people to follow policy; and/or
* (2) retroactively enforcing policy

Example Authorization Mechanism:
Discretionary Access Control

e Discretionary = up to the owner to decide access rights
°E.g., owner of a file can set the permissions for the file
* By contrast, with Mandatory Access Control, the system determines
access rights
*|f we are using access control to protect actions (e.g.,
launching of missiles, opening door), may be a good
mechanism for the policy

e Policy (access control lists) separate from how the policy is enforced
*|f we are using access control to enforce confidentiality, may
not be a good mechanism

e Actual goal is preventing some entities from learning information
* Different from whether they can open a file

Primer Outline

Policy

Enforcement
Trust
Threat Model

Some good securi
principles

47

Trust

Trust is inevitable. Need to trust something
e|deally, want to trust as little as possible.

*You can only be hurt by those you trust!

“Draw a picture that conveys the message you can only be hurt by those you trust”

Trusted vs Trustworthy

* Trustworthy: wort

* Exhibits all and on

ny of trust

y expected functionality/behavior, and is

some compelling reason to believe that is the case

* Trusted is not the same as trustworthy
* Trust may be misplaced

* A component is trusted if its failure can violate the

security goal

* Trusted Computing Base is the set of components

that are trusted

e Sometimes trustworthy components are not included in
TCB, i.e., TCB is only the trusted components that might fail

e Aka Attacker Model, Adversary Model, ...

Threat

e Assumptions about the ability of an

e Good to be clear and ex

Model

adversary

plicit about assumptions

e Help determine whether a mechanism does or does not achieve desired security

*E.g., what can the attacker do with respect to communication channels?

e Observe that messages are sent?! Observe length of messages? Contents of
messages? Send messages itself?

°E.g., does the attacker have physica

* May
* May
* May
* May
* May

D€ a
D€ ad
D€ a
D€ a

D€ d

D

e to snoop on the memory
e to more easily cause ranc
e to turn off power

access to the computer?

bus to see what accesses are being made

om bitflips

e to connect devices (e.g., USB keys)

e to repeatedly try attacks without observation (e.g., smartcard)

Threat Model

*E.g., can the attacker execute new programs/
code? If so, is the attacker restricted to well-typed
programs¢

°E.g., is the attacker computationally limited?

* An omniscient attacker can break cryptography...

°E.g., is the attacker able to encrypt additional
messages using the secret key?

Security Up To Threat Model

e Recall our goal: given the assumptions of the threat
model and assuming components in the TCB work
correctly, the enforcement mechanism should ensure
the desired security guarantee.

e |f threat model assumptions incorrect, system may not
be secure
e Generally good to assume stronger adversary

 Evaluating whether assumptions are reasonable are
typically beyond scope of formal methods

e But making threat model explicit helps clarify what
assumptions are being made

Attack Surface

 Points where attacker can interact with system

e Smaller the attack surface, fewer opportunities
for attacks

e Attack surface tightly connected with threat
model

*|solating systems (or components) as much as
possible can reduce attack surface

Primer Outline

Policy

Enforcement
Trust
Threat Model

Some good securi
principles

54

Some Good Security Principles

e Defense in depth
e Have multiple mechanisms to defend against attacks

Principle of Least Privilege

e Principals should be given only the minimum privileges/authority needed to
accomplish its task

*Privilege Separation

e Different actions should require different privileges

e Supports principle of least privilege

e But may be difficult to manage huge numbers of privileges
e Security by obscurity is generally bad

ei.e., security of system relying on keeping mechanism design secret is not a

good approach
*Yes, hiding design information makes attacking more difficult
e But the design often leaks eventually; more scrutiny of design improves it

Referen

e “Computer Security: Art and Science” by Matt
Bishop

* Draft chapters for an as-yet untititled textbook
on cybersecurity, by Fred Schneider

e https://www.cs.cornell.edu/fbs/fullist.html

Stephen Chong, Harvard University 56

