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Formal Methods for Security

•Modeling computer systems to understand and 
enforce security guarantees

5

Real computer 
system

Model of 
computer 

system

Reason  
about  
model

E.g., enforcement mechanisms, 
defense mechanisms, ...

E.g., specifying security, proving 
the system satisfies  (or violates) 
security, ...



Stephen Chong, Harvard University

Formal Methods

•Approaches to reasoning about computational 
entities  
•Logical or mathematical descriptions 
•Enable drawing reliable conclusions about behavior  

•Enable modeling, verifying, and synthesizing 
computer systems.  

•Can be usefully applied with varying degrees of 
rigor
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Security

•Often described as “making sure bad things don’t 
happen” in computer systems 

•Distinct from functional correctness 
•i.e., making sure the system does the right thing when 

provided with appropriate input 

•Many aspects to it 
•Authentication, authority, confidentiality, integrity, 

availability, abstraction violation, non-repudiation, ... 

•We will examine some of these later
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Advantages of Formal Methods

•Clear and explicit statement of what we mean by 
security 

•Modeling often requires explicating threat model, 
assumptions, goals, ... 
•Lead to clarity and insight  

•Formal methods can lead to proofs of security 
•Up to the assumptions of the model, computer system 

guaranteed to be secure! 
•Against entire classes of attacks! 
•Even against as-yet-unknown attacks! 
•Contrast with the “patch latest vulnerability” mentality
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Disadvantages of Formal Methods

•Security guarantees only as good as model 
•Precisely phrasing a security guarantee can lead 

to difficult/unintuitive/opaque security 
guarantees 

•Applying formal methods can be expensive 
•Difficult, requires significant expertise, time-

consuming, ...
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Language-Based Security

•Use of Programming Language concepts and 
techniques to reason about and enforce security 

•Great fit for formal methods for security!

10



Stephen Chong, Harvard University

Language-Based Reasoning

•PL has rich tradition of  
simple formal models of  
languages 
•Lambda calculus, Pi calculus,  

Imperative calculi,  
labeled transition systems, ... 

•Also often good models for computer systems
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Language-Based Reasoning

•Techniques for reasoning and proofs in calculi 
translate to techniques for reasoning and proofs 
about security
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PL Enforcement Techniques

•Enforcement mechanisms in  
PL-based models often  
translate to useful real  
mechanisms 
•Because we use PL to  

implement systems 

•E.g., type systems, reference monitors, static 
analyses, ...
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Abstraction Enforcement

•Aspects of security of system relies on 
correctness/security of application code 

•But if system execution doesn’t obey application 
code, hard to reason correctly about security 
•E.g., buffer overflow errors injecting arbitrary 

computation 
•E.g., linking to arbitrary binary libraries
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Case Study: Noninterference

•Setting: a computer system that handles 
information of varying sensitivity 
•E.g., Military Multi-Level Security (MLS) 
•Data labeled e.g., “Nuclear Confidential”, “Signals Top 
Secret”, “Crypto Unclassified” 

•E.g., Web app with different users 

•Key security idea: a user/adversary should not 
learn information inappropriately 

• (We will be examining this in much more depth later)

15
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Input, Output, and Observation

•Let’s consider a simplified setting, just two security levels, 
Low and High 
•Think “public information” for Low and “secret information” for High 

•Key idea, diagrammatically:
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A Simple Model

•Let’s model the computer system with a simple 
imperative language (IMP)

18

Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

IMP: a simple imperative language

Lecture 5 Tuesday, February 7, 2023

We shall now consider a more realistic programming language, one where we can assign values to vari-

ables and execute control constructs such as if and while. The syntax for this simple imperative language,

called IMP, is as follows:

arithmetic expressions a 2 Aexp a ::= x | n | a1 + a2 | a1 ⇥ a2

boolean expressions b 2 Bexp b ::= true | false | a1 < a2

commands c 2 Com c ::= skip | x := a | c1; c2

| if b then c1 else c2

| while b do c

1 Small-step operational semantics

We’ll first give a small-step operational semantics for IMP. The configurations in this language are of the

form hc,�i, hb,�i, and ha,�i, where � is a store. The final configurations are of the form hskip,�i, htrue,�i,

hfalse,�i, and hn,�i. There are three different small-step operational semantics relations, one each for

commands, boolean expressions, and arithmetic expressions.

�!Com ✓ Com ⇥ Store ⇥ Com ⇥ Store

�!Bexp ✓ Bexp ⇥ Store ⇥ Bexp ⇥ Store

�!Aexp ✓ Aexp ⇥ Store ⇥ Aexp ⇥ Store

For brevity, we will overload the symbol �! and use it to refer to all of these relations. Which relation

is being used will be clear from context.

The evaluation rules for arithmetic and boolean expressions are similar to the ones we’ve seen before.

However, note that since the arithmetic expressions no longer contain assignment, arithmetic and boolean

expressions can not update the store.
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IMP Semantics

•Store σ is a function from variables to ints
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Lecture 5 IMP: a simple imperative language

2 Large-step operational semantics for IMP

We define large-step evaluation relations for arithmetic expressions, boolean expressions, and commands.

The relation for arithmetic expressions relates an arithmetic expression and store to the integer value that

the expression evaluates to. For boolean expressions, the final value is in Bool = {true, false}. For com-

mands, the final value is a store.

+Aexp ✓ Aexp ⇥ Store ⇥ Int

+Bexp ✓ Bexp ⇥ Store ⇥ Bool

+Com ✓ Com ⇥ Store ⇥ Store

Again, we overload the symbol + and use it for any of these three relations; which relation is intended

will be clear from context. We also use infix notation, for example writing hc,�i + �0 if (c,�,�0) 2+Com.

Arithmetic expressions.

hn,�i + n hx,�i + n
where �(x) = n

ha1,�i + n1 ha2,�i + n2

ha1 + a2,�i + n
where n = n1 + n2

ha1,�i + n1 ha2,�i + n2

ha1 ⇥ a2,�i + n
where n = n1 ⇥ n2

Boolean expressions.

htrue,�i + true hfalse,�i + false

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + true
where n1 < n2

ha1,�i + n1 ha2,�i + n2

ha1 < a2,�i + false
where n1 � n2

Commands.

SKIP
hskip,�i + �

ASG
ha,�i + n

hx := a,�i + �[x 7! n]
SEQ

hc1,�i + �0 hc2,�0i + �00

hc1; c2,�i + �00
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IMP Semantics
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Lecture 5 IMP: a simple imperative language
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SEQ

hc1,�i + �0 hc2,�0i + �00

hc1; c2,�i + �00

IF-T
hb,�i + true hc1,�i + �0

hif b then c1 else c2,�i + �0 IF-F
hb,�i + false hc2,�i + �0

hif b then c1 else c2,�i + �0

WHILE-F
hb,�i + false

hwhile b do c,�i + �
WHILE-T

hb,�i + true hc,�i + �0 hwhile b do c,�0i + �00

hwhile b do c,�i + �00

It’s interesting to see that the rule for while loops does not rely on using an if command (as we needed
in the case of small-step semantics). Why does this rule work?

2.1 Command equivalence

The small-step operational semantics suggest that the loop while b do c should be equivalent to the com-
mand if b then (c;while b do c) else skip. Can we show that this indeed the case when the language is
defined using the above large-step evaluation?
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Security Condition

•Inputs are the store before the program executes, outputs are 
the final store 

•Let’s designate a subset of the variables as “Low”, meaning 
the attacker can observe them, and the rest as “High” 

•Context Γ will be a function from variables to {Low, High} 
•Write σ1 =Low σ2 if states σ1 and σ2 are equal on all low 

variables 
•For all x, if Γ(x) = Low then  σ1(x) = σ2(x) 

•Definition: Program c is noninterfering if: 
     For all σ1, σ2, σ’1, σ’2,  
         if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
         then σ’1 =Low σ’2 

21



y := x + 42;
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Examples

22

✘ x := x + y;
y := y + 42;

✔

if (x > 0)
  y := 1
else
  y := 0

✘ y := 0;
if (x > 0)
  y := 1

Γ(x)=High
Γ(y)=Low

✘
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Examples
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while (x > 0) do skip✔Γ(x)=High
Γ(y)=Low

y := 0;
while (x > 0) do y := 1

✔
y := encrypt(x)✘
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Road Map

•Intro 
•Formal Methods for Security 
•Language-Based Security 
•Case Study: Noninterference 

•Primer on Computer Security 

•Information Flow 
•Semantics 
•Enforcement 
•Beyond confidentiality 

•Enforcing Language Abstractions
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Road Map
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Primer on Computer Security 

•Some of the key concepts in computer security 
•Some of which may crop up in future lectures
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Primer Outline

•Policy 
•Enforcement 
•Trust 
•Threat Model 
•Some good security 

principles

28
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Policy vs Enforcement 

•Policy is (or leads to) the security guarantee we want to 
achieve 

•Enforcement is how we achieve the security guarantee 
•Sometime called the mechanism 

•Threat model (aka adversary model, attacker model): 
assumptions about the abilities and/or motivations of the attacker 

•Trusted Computing Base (TCB): components of the system that 
are trusted 

•Goal: given the assumptions of the threat model and assuming 
components in the TCB work correctly, the enforcement 
mechanism should ensure the desired security guarantee.
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Policy

•“A security policy is a statement of what is, and 
what is not, allowed” 
•[Bishop] 

•“Security policies legislate behavior by people, 
computers, executing programs, communications 
channels, and other system entities capable of 
taking action.” 
•[Schneider] 
•Refer to such entities as principals
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Information Security

•Foundation of computer security is CIA 
•Confidentiality 
•Integrity 
•Availability
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Confidentiality

•The concealment of information or resources 
•Access control mechanisms support confidentiality 

•E.g., cryptography, discretionary access control, ... 

•But may be concerned not just with restricting access to 
information, but also with restricting propagation of and 
knowledge of information. 

•Note: sometimes the existence of information itself is 
confidential 
•E.g., What resources a client is using is confidential, but so is the 

existence of the client 
•E.g., Contents of message from employee to HR is confidential, but 

so is the fact that a message was sent at all 
32
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Integrity

•Trustworthiness of data or resources 
•Often about preventing improper or unauthorized changes 

•Includes: 
•Data integrity (i.e. content of information) 
•Contamination, supression 

•Origin integrity (aka authentication) 

•Mechanisms to support integrity typically either prevention or 
detection 

•Prevention: prevent unauthorized changes to data 
•Detection: determine when data/resources no longer trustworthy 

•In many settings, integrity is dual to confidentiality 
•Cryptography, information flow, ...

33
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Availability

•Ability to use information or resource as desired 
•Attacks to block availability often called denial 

of service attacks
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Privacy

•Related to the confidentiality of personal 
information 

•May also include right of individuals to control 
or influence what info about them is collected, 
stored, shared 

•Often broader societal question 
•Many laws and regulations
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Non-Repudiation

•A party that took an action is unable to plausibly 
deny that they did so 

•E.g., 
•After signing a document, can not deny that they did 

so 
•After sending a message, can not deny that the 

message was sent by them 

•Related to integrity
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Example: Electronic Voting

•Desirable properties for electronic voting 
•Verifiability: The final tally is verifiably correct 

•Voter/individual verifiability: Each voter can check that their own 
vote is included in the tally 

•Universal verifiability: Anyone can check that all votes cast are 
counted, that only authorized votes are counted, and that no votes 
are changed during counting 

•Coercion Resistance: Voters cannot prove whether or how 
they voted 
•Might involve ability to repudiate! 

•Availability: the voting system should be available to voters 
during the voting period
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Example: Noninterference

•Here is the security condition from earlier: 
•Context Γ is function from variables to {Low, High} 
•Write σ1 =Low σ2 if states σ1 and σ2 are equal on all low 

variables: For all x, if Γ(x) = Low then  σ1(x) = σ2(x) 
•Definition: Program c is noninterfering if: 

     For all σ1, σ2, σ’1, σ’2,  
         if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
         then σ’1 =Low σ’2  

•What is and isn’t allowed here? What are we 
trying to achieve? 
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Primer Outline

•Policy 
•Enforcement 
•Trust 
•Threat Model 
•Some good security 

principles
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Enforcement

•Mechanism by which we ensure a system satisfies a security policy 

•Many kinds of mechanisms 
•Cryptography 

•Type systems 

•Program Analyses 

•Program Rewriting, Runtime Monitors, Inlined Reference Monitors 

•APIs and frameworks 
• E.g. access control frameworks 

•Language abstractions 
• E.g., information hiding 

•Patterns/idioms 
• E.g., escaping SQL strings 

•Intrusion Detection Systems 

•Firewalls 

•...
40
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What is a good mechanism?

•Correct (i.e., actually achieves the desired security policy) 
•Hard or impossible to get wrong 

•Examples for and against? 

•Can not be subverted or bypassed, aka complete mediation 
•By attacker, developer, etc.  

•Easy to use (possibly even transparent to developer) 
•Separates policy and mechanism 

•i.e., what we want to achieve from how we achieve it 

•Useful 
•Most secure system is one that doesn’t turn on... 

•These may be in conflict with each other 
•E.g., to be “easy to use”, a developer may want to disable a mechanism locally if the 

enforcement mechanism is too strict 
• Like unsafe in Rust 

• cf. declassification for noninterference
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The “Gold Standard”

•Authorization 
•Authentication 
•Audit 

 
 
 

•Many aspects of enforcement rely on one or 
more of these 

42

Au comes from aurum,  
the Latin name for gold.
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Authentication

•Confirm identity of entity 
•Based on one or more of: 

•Something you know 
• E.g., password, secret 

•Something you have 
•Mobile phone, smart card, hardware authentication device 
• Physical key 

•Something you are 
•Biometric, e.g., fingerprint, iris pattern
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Authorization

•Can requested actions proceed? 
•Is the requestor authorized to do the action? 

•May rely on authentication 
•Common mechanisms include: 

•Access control mechanisms 
• E.g., Role-based access control 

•Capabilities 
•Authorization logic

44
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Audit

•Records system activity, attributing actions to 
some responsible principal 

•Supports accountability: holding people (legally) 
responsible for their actions 
•Might help enforce security policy by  
• (1) providing incentive for people to follow policy; and/or 
• (2) retroactively enforcing policy

45
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Example Authorization Mechanism: 
Discretionary Access Control

•Discretionary = up to the owner to decide access rights 
•E.g., owner of a file can set the permissions for the file 
•By contrast, with Mandatory Access Control, the system determines 

access rights 

•If we are using access control to protect actions (e.g., 
launching of missiles, opening door), may be a good 
mechanism for the policy 
•Policy (access control lists) separate from how the policy is enforced 

•If we are using access control to enforce confidentiality, may 
not be a good mechanism 
•Actual goal is preventing some entities from learning information 
•Different from whether they can open a file

46
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Primer Outline

•Policy 
•Enforcement 
•Trust 
•Threat Model 
•Some good security 

principles
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Trust

•Trust is inevitable. Need to trust something 
•Ideally, want to trust as little as possible. 

•You can only be hurt by those you trust!

48

“Draw a picture that conveys the message you can only be hurt by those you trust”
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Trusted vs Trustworthy

•Trustworthy: worthy of trust 
• Exhibits all and only expected functionality/behavior, and is 
some compelling reason to believe that is the case 

•Trusted is not the same as trustworthy 
•Trust may be misplaced 

•A component is trusted if its failure can violate the 
security goal 

•Trusted Computing Base is the set of components 
that are trusted 
•Sometimes trustworthy components are not included in 

TCB, i.e., TCB is only the trusted components that might fail
49
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Threat Model

•Aka Attacker Model, Adversary Model, ... 
•Assumptions about the ability of an adversary 
•Good to be clear and explicit about assumptions 

•Help determine whether a mechanism does or does not achieve desired security 

•E.g., what can the attacker do with respect to communication channels? 
•Observe that messages are sent? Observe length of messages? Contents of 

messages? Send messages itself? 

•E.g., does the attacker have physical access to the computer? 
•May be able to snoop on the memory bus to see what accesses are being made 
•May be able to more easily cause random bitflips 
•May be able to turn off power 
•May be able to connect devices (e.g., USB keys) 
•May be able to repeatedly try attacks without observation (e.g., smartcard)

50
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Threat Model

•E.g., can the attacker execute new programs/
code? If so, is the attacker restricted to well-typed 
programs? 

•E.g., is the attacker computationally limited? 
•An omniscient attacker can break cryptography... 

•E.g., is the attacker able to encrypt additional 
messages using the secret key?
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Security Up To Threat Model

•Recall our goal: given the assumptions of the threat 
model and assuming components in the TCB work 
correctly, the enforcement mechanism should ensure 
the desired security guarantee. 

•If threat model assumptions incorrect, system may not 
be secure 
•Generally good to assume stronger adversary 

•Evaluating whether assumptions are reasonable are 
typically beyond scope of formal methods 

•But making threat model explicit helps clarify what 
assumptions are being made
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Attack Surface

•Points where attacker can interact with system 
•Smaller the attack surface, fewer opportunities 

for attacks 
•Attack surface tightly connected with threat 

model 
•Isolating systems (or components) as much as 

possible can reduce attack surface

53
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Primer Outline

•Policy 
•Enforcement 
•Trust 
•Threat Model 
•Some good security 

principles
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Some Good Security Principles

•Defense in depth 
•Have multiple mechanisms to defend against attacks 

•Principle of Least Privilege 
•Principals should be given only the minimum privileges/authority needed to 

accomplish its task 

•Privilege Separation 
•Different actions should require different privileges 
•Supports principle of least privilege 
•But may be difficult to manage huge numbers of privileges 

•Security by obscurity is generally bad 
•i.e., security of system relying on keeping mechanism design secret is not a 

good approach 
•Yes, hiding design information makes attacking more difficult 
•But the design often leaks eventually; more scrutiny of design improves it 
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