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Sensitive Information

•Many systems handle a variety of sensitive 
information 

•How do we ensure that the system is handling 
the information securely?
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Access Control Isn’t Enough 

•Access control can restrict who can access 
information 

•But it (typically) doesn’t restrict what happens to 
the information after access 

•If “handling information securely” means, e.g., 
only certain entities should learn about the 
information, then access control is close, but not 
exactly aligned

4
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Information Flow

•An extensional specification of information 
security 
•Define security in terms of the observable 

behavior of the system 
•Not in terms of the implementation details, such 

as code patterns, mechanisms, etc. 
• i.e., the “intension” of the system 

•(Enforcement of an extensional security condition 
will, of course, depend on implementation details. 
We will examine enforcement of info flow later.)

5
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Semantics of Information Flow
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Strong Dependency

•Cohen (1976) introduced strong dependency 
•Essentially, the key definition of noninterference used today 

•Intuition: information flows from one entity A to another 
entity B when B depends on or is influenced by A 

•Definition: Consider a (deterministic) system H whose 
inputs include entity A and whose outputs include 
entity B. Output B strongly depends on input A if there 
exist two executions of H where the inputs differ only 
for entity A and the output B differs. 

•Security is the absence of certain strong dependencies

7
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Strong Dependency Example

•In the setting of IMP, with 2 security levels 
•Context Γ maps variables to {Low, High} 
•Write σ1 =Low σ2 if states σ1 and σ2 are equal on all 

low variables 
•For all x, if Γ(x) = Low then  σ1(x) = σ2(x) 

•Definition: Program c is noninterfering if: 
     For all σ1, σ2, σ’1, σ’2,  
         if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
         then σ’1 =Low σ’2 

•i.e., no strong dependencies from high inputs to low outputs
8
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Beyond NonInterference for IMP

•In general, formulating an info flow property for a 
system involves choosing 
•The entities under consideration 
• e.g., who is involved, what’s an input, what’s an output, ... 

•The conditions under which flows between these entities 
are allowed or forbidden. 

•Much research on info flow over the last 5 
decades has considered focused on different threat 
models, computational models, and conditions 
that determine whether flows are allowed

10
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Beyond NonInterference for IMP

•Computational model indicates the entities that are 
manipulated during system executions 

•Threat model indicates the entities with which the 
adversaries interact.  

•Specifying allowed or forbidden flows between entities 
amounts to stipulating allowed or forbidden flows 
between the system and the adversaries 

•We will explore the space of information flow 
properties by varying the computational model, the 
threat model, and the expressiveness of the conditions 
to specify restrictions on info flows

11
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Lecture Roadmap

•Labels and Flow Relations 
•Threat model 

•Termination, Timing, and 
Interaction 

•Computational ability 

•Computational model 
•Nondeterminism 
•Probability 
•Concurrency 

•Reclassification 
•Quantitative info flow
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Labels

•Syntactic objects associated with entities of a system 
•E.g., Secret, Public 
•E.g., Trusted, Untrusted 
•E.g., Alice, Bob, Charlie, ... 
•E.g., (Level, Compartment) where  

     Level ∈ { Public, Confidential, Secret, TopSecret} and   
     Compartment ∈ { Nuclear, Cryptography, Biological, ...}  

•Info-flow policy might described allowed (or forbidden) 
flows between entities based on labels 

•Labels might have rich structure but don’t themselves 
describe policies 
•Labels represent restrictions on how associated entities can be used

13
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Flow Relations

•Info flow policy often represented as flow 
relation ⊑ on a set Λ of labels 
•If ℓ1⊑ℓ2 then info is allowed to flow from ℓ1 to ℓ2 

•What structure should flow relation ⊑ have? 
•Reflexive, i.e., for all ℓ∈Λ we have ℓ⊑ℓ 
•Transitive? 
• i.e., for all ℓ1,ℓ2, ℓ3∈Λ, if ℓ1⊑ℓ2 and ℓ2⊑ℓ3 then ℓ1⊑ℓ3 

•Reflexive and transitive is a pre-order 
•If we add antisymmetry, it is a partial order

14
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Lattice

•Denning (1978) argues for a join-semi-lattice relation 
•i.e., a least-upper bound operation ⊔ 
•Upper bound: ∀ ℓ1,ℓ2∈Λ, ℓ1⊑ℓ1⊔ℓ2 and ℓ2⊑ℓ1⊔ℓ2 

• Least upper bound: ∀ ℓ1,ℓ2,ℓ3∈Λ, if ℓ1⊑ℓ3 and ℓ2⊑ℓ3 then ℓ1⊔ℓ2⊑ℓ3 

•Why? 
•Given data a and b, labeled respectively ℓa and ℓb 
•What should be label of operation a⊕b ? 

•Should be upper bound 
•Should be least upper bound, otherwise the following may not 

work (where ℓd1 and ℓd2 are both upper bounds of ℓa and ℓb) 
• c = a⊕b; d1 = c; d2 = c 

15
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From Labels to NI
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From Labels to NI
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•Here is a more general version of 
noninterference: 
•Lattice (Λ, ⊑) of security levels

•Here is a more general version of 
noninterference: 
•Lattice (Λ, ⊑) of security levels 

•Context Γ is function from variables to Λ 
•Write σ1 =ℓ σ2 if states σ1 and σ2 are equal on all low 

variables: For all x, if Γ(x) ⊑ ℓ then  σ1(x) = σ2(x) 
•Definition: Program c is noninterfering if: 

     For all σ1, σ2, σ’1, σ’2, ℓ∈Λ 
         if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
         then σ’1 =ℓ σ’2 
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Lecture Roadmap
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•Computational ability 
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Threat Model

•How adversary interacts with system 

•Stronger threat model → more interactions → more 
opportunities for information flow to/from adversary 

•Information channels convey information 
•Lampson (1973) categorizes them as: 
•legitimate channels (e.g., files, console, network messages, 

... ) and 
•covert channels (e.g., execution time, heat emission, noise 

emission, resource exhaustion, power consumption, ...) 
• side channels are covert channels exploited by passive 
adversary who simply observes the channel

19
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Termination

•Earlier definition of NI is termination-insensitive 
•Implicitly assumes that attacker ignores all executions 

that fail to terminate 
 
 
 
 

•So while (high > 0) do skip satisfies 
noninterference

20

• Definition: Program c is noninterfering if: 
     For all σ1, σ2, σ’1, σ’2, ℓ∈Λ 
         if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
         then σ’1 =ℓ σ’2
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Termination-Sensitivity

•Can modify security condition to account for 
termination channel 
•Key idea: termination behavior is determined by low inputs 
• Either both executions terminate or both executions diverge 

•Definition: Program c is termination-sensitive 
noninterfering if: 
     For all σ1, σ2, ℓ, if σ1 =ℓ σ2 then either 

‣ exists σ’1, σ’2.  ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2 and  
                σ’1 =ℓ σ’2 

or 

‣ both executions diverge
21



•Can the adversary observe how long an execution takes? 
•Timing sensitivity 

•Termination sensitivity is an extreme example of timing sensitivity 
•Several ways of thinking about timing 

•Number of steps the  
computational model takes 
•But suffers from big gap  
between model and reality 

•External timing (“Wall clock time”) 
•Actually very hard to capture  
accurately in a model, as it depends  
on many low-level system details 
‣Memory hierarchy, microarchitecture details, ... 

•Internal timing 
• E.g., thread running in the same system that  
can detect which event happens first

Stephen Chong, Harvard University

Time

22

• Conceptually, can add new 
variable to state, T, which 
increases during execution 
and is low-observable

• Concurrency (see later)
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Interaction

•So far we have used a “batch”-like model of 
computation 
•Systems gets input, does all computation and produces 

output on termination 

•Most systems are interactive 
•Adversary may make observations during executions 
•Adversary (and others) may provide inputs during 

execution 

•Requires different computational model to 
express

23
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Interaction
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•Assume IMP with x := input from ℓ and output x to ℓ 
•Semantics ⟨c,σ⟩⟶τ ⟨c’,σ’⟩ where trace τ is a sequence of events 

• τ ::= ε   |   τ ⋅ in(n, ℓ)   |   τ ⋅ out(n, ℓ) 
•Intuitively: ⟨c,σ⟩ takes one or more steps to ⟨c’,σ’⟩ producing trace τ 

•Interactive noninterference: if initial memories are low 
equivalent and low inputs are identical, then the traces are low-
equivalent (i.e., low inputs and outputs are the same) 

•Definition: Program c is noninterfering if: 
     For all σ1, σ2, σ’1, σ’2, τ1, τ2, ℓ∈Λ 
         if ⟨c,σ1⟩⟶τ1 ⟨skip, σ’1⟩ and ⟨c,σ2⟩⟶τ2 ⟨skip, σ’2⟩  
                       and σ1 =ℓ σ2 and inputs(τ1) =ℓ inputs(τ2)  
         then τ1 =ℓ τ2 
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Progress Sensitivity

•Can the attacker observe whether program is 
making progress (i.e., will produce another 
event)? 

•Analogous to termination sensitivity, but for non-
batch programs

25
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Program Code

•Does the attacker know the code? Can they modify/
provide code? 

•Noninterference typically (implicitly) assumes attacker 
knows code 

•Some models allow attacker to provide code (but this 
can typically be simulated by any attacker-provided 
input)

26

• Definition: Program c is noninterfering if: 
     For all σ1, σ2, σ’1, σ’2, ℓ 
         if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
         then σ’1 =ℓ σ’2
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Attacker’s Computational Ability

•What can the attacker compute? 
•E.g., does the following satisfy noninterference? 

•Some versions of noninterference assume 
computational limits on attacker

27

Γ(msg1) = Low
Γ(msg2) = Γ(key) = High
output encrypt(msg1, key) to Low
output msg1 to Low
output encrypt(msg2, key) to Low



Stephen Chong, Harvard University

Views of a System

•More generally, may define what the attacker can observe as a view 
of the system, a function from the system state (or history) to the 
attacker’s observations 

•E.g., attacker sees a subset of the state of the system 
•Appropriate for a distributed system where some machines are compromised 

•E.g., attacker sees power consumption of system 
•Definition: Program c is noninterfering if: 

     For all σ1, σ2, τ1, τ2, ℓ∈Λ 
         if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓τ1 and ⟨c,σ2⟩⇓τ2  
         then view(ℓ, τ1) = view(ℓ, τ2) 

•(Haven’t defined relation ⟨c,σ⟩⇓τ. Think of τ of as being the history of the 
computation, includes events, states, ..., anything we want to model as 
observable)

28
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Threat Model Summary

•Many different versions of non-interference 
handle different threat models 

•From Kozyri et al.

29

32 Threat Model

flows from view f to view g if and only if no information flows from
g to f . For example, if f is instantiated as projecting only the values
of Secret variables in a memory and g as projecting only the values
of Public variables, then nondeducibility implies that information is
not allowed to flow from Secret to Public, nor from Public to Secret.
This symmetry, which might lead to more restrictive information flow
properties than desired, could be avoided using methods proposed by
Halpern and O’Neill (2002). Focardi and Gorrieri (1995) discuss and
compare multiple instantiations of nondeducibility and noninterference.
More recently, nondeducibility has been used as a desirable security
condition in the context of cyber-physical systems (Bohrer and Platzer,
2018).

Hughes and Shmatikov (2004) propose a special instance of nonde-
ducibility, called opaqueness. As described by Schoepe and Sabelfeld
(2015), “a predicate on system behaviors is opaque if for any behavior
that satisfies the predicate, there is another behavior that is indistin-
guishable by the attacker but where the predicate no longer holds”.
Hughes and Shmatikov express anonymity, unlinkability, and privacy
guarantees in terms of opaqueness. So, given the relations that are
formed above, anonymity, unlinkability, and privacy could be inter-
preted as information flow properties.

Figure 4.1 summarizes the threat models discussed in this section,
accompanied by representative security conditions that prevent leaks
to corresponding adversaries.

The adversary can: Example security conditions
Observe termination Termination-sensitive noninterference
Observe time Time-sensitive noninterference
Observe output stream Progress-sensitive noninterference

and provide input stream Reactive noninterference, GMNI, non-
inference, generalized noninference

and use input strategies Nondeducibility on strategies
and be a concurrently
executed program

P_BNDC

Write program code Noninterference against active adver-
sary

Observe views of system behavior Nondeducibility, Opaqueness

Figure 4.1: Security conditions for di�erent threat models.
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Lecture Roadmap
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Computational Model

•Computational model abstracts system 
functionality 
•Tightly coupled with threat model 

•Computational model captures implementation 
details of a system, at varying levels of 
faithfulness

31
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Nondeterminism

•So far we have considered deterministic systems 
•Noninterference doesn’t hold for nondeterministic 

system 
•E.g., with nondeterministic choice operator  

a1⫾ a2, program  
                       low := 42 ⫾ 7  
may not satisfy NI 

•Intuitively, we don’t know how nondeterminism is 
resolved; may depend on secret information 
•So-called refinement attack

32
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Generalized Noninterference

33

•Intuition: secret inputs do not constrain public outputs 
•i.e., all possible Low behaviors are possible with any High 

inputs 

•Definition: Program c satisfies 
                  generalized noninterference if: 
     For all σ1, σ2, σ’1, σ’2,  
         if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
         then there exists σ3, σ’3 such that 
              σ3 =Low σ1 and σ3 =High σ2 and 
              ⟨c,σ3⟩⇓σ’3 and σ’3 =Low σ’1 
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Observational Determinism

•But resolution of nondeterminism is useful! 
•Observational determinism requires that resolution of Low 

nondeterminism does not depend on secret information 
•E.g., if nondeterminism is due to scheduler choices of threads/

processes, the scheduler should not depend on high information 

•Definition same as deterministic NI! i.e., low view is 
determined by low inputs 
•For all σ1, σ2, τ1, τ2, ℓ∈Λ 

         if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓τ1 and ⟨c,σ2⟩⇓τ2  
         then view(ℓ, τ1) = view(ℓ, τ2) 

•Pro: not subject to refinement attack 
•Con: allows no public nondeterminism

34
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Probability

•Possibilistic nondeterminism may not sufficiently model information flows if 
some choices are unlikely 

•E.g., a := 0 ⫾ 1 ⫾ ... ⫾ 999;  
        if (a = 0) then low := 0 ⫾ 1  
        else low := high mod 2 

•Probabilistic noninterference requires that the distribution of low outputs is 
independent of high inputs 

•Assume probabilistic semantics ⟨c,σ⟩⇓𝔇 where 𝔇 is a (sub-)distribution over 
stores 

•Add your favorite probabilistic operators to the language 

•Probabilistic Noninterference: For all σ1, σ2, 𝔇1, 𝔇2, ℓ∈Λ 
         if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓𝔇1 and ⟨c,σ2⟩⇓𝔇2  
         then 𝔇1|ℓ = 𝔇2|ℓ  

•(Where 𝔇|ℓ projects the distribution over stores to a distribution over the low-observable 
part of the store)

35
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Concurrency

•When modeling concurrency, information might flow by 
•Interaction between threads 
• E.g., race conditions are a source of nondeterminism 

•Scheduling choices 
•Memory model 
• Sequential consistency, Total Store Order, Partial Store Order, ... 

•Relatedly, speculative execution is source of real 
information leaks 
•E.g., Spectre and Meltdown attacks 

•Don’t really need a new definition of noninterference  
•Other than extending our language and semantics to support 

concurrency
36
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Lecture Roadmap
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Reclassification

•In practice, noninterference is too restrictive 
•Information does not keep the same label throughout execution 

•May need to declassify information 
•i.e., weaken confidentiality requirements 
•e.g., credit card number is confidential, but last 4 digits can be printed on 

receipt 
•e.g., when a physician is assigned to a patient, they can see the patient’s 

records 
•e.g., after a sealed-bid auction is concluded, the confidential bids may be 

made publics 

•May need to erase information 
•i.e., strengthen confidentiality requirements 
•e.g., after transaction, merchant should no longer hold credit card information 
•e.g., when submarine surfaces, sensitive information should be encrypted

38



Stephen Chong, Harvard University

Handling Information Appropriately

•How to declassify in a controlled way? 
•Don’t want to allow all confidential information to be 

released! 

•Sabelfeld and Sands (2009) describe “dimensions” of 
declassification: 
•What info is declassified 
•Who declassifies the info 
•Where in the system (i.e., component) or label relation 

does the declassification 
•When (under what conditions) does declassification 

happen?
39



•Delimited Release (Sabelfeld and Myers, 2003) 
•Intuition: specifies what information may be 

declassified by a set of escape hatch expressions 
•Definition: Program c and set of escape hatches 

{a1, ..., an} satisfies delimited release if: 
     For all σ1, σ2, σ’1, σ’2,  
         if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2  
                  and for all i∈1..n, σ1(ai) = σ2(ai) 
         then σ’1 =Low σ’2 

Stephen Chong, Harvard University

Example: Escape Hatches

40
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Example: Intransitive NI

•Intuition: remove transitivity as a requirement for the 
flow relation 

•E.g.,  
 
 

•Typically a trusted component is the only component 
that is permitted to use intransitive flow relations (a 
form of where declassification) 

•Security conditions might need to consider some of the 
implementation details to express this...

41

TopSecret

Secret

Public

Declass
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Quantitative Info Flow

•There are info leaks that are undesirable but unavoidable (e.g., via side 
channels) 

•How to understand the magnitude of these leaks? 

•Quantitative information flow uses information theory to measure leakage 

•Basic idea: info leakage = initial uncertainty – remaining uncertainty

42

Secret

Public

Secret

Public

Prior belief Posterior belief
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Quantitative Info Flow

•Different ways of measuring leakage, e.g., 
•Shannon entropy 
•Bayes vulnerability 
•Renyi’s min-entropy 
•Not all bits are equal: gain functions can capture value of bits  

•E.g., Shannon entropy  
•For random variable X, H(X) is the Shannon entropy of X 

• Expected number of bits to optimally encode value of X 
•Uncertainty or surprise in X 
 
 

•Conditional entropy H(X|Y) information in X given knowledge of Y 
 
 

•Leakage = H(InSecret) – H(InSecret | InPublic, OutPublic) 
43

� ` sec : intH � ` 42: intL
� ` sec+ 42: intH H t L v L

�, L ` pub := sec+ 42
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�, H ` sec := �sec �, H ` skip
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� ` sec < 0:boolH

� ` 42: intL H t L v L

�, H ` pub := 42 �, H ` skip
�, L ` if sec < 0 then pub := 42 else skip

4.3 Robust Declassification

Inference rule for 2 point lattice

� ` e :⌧`e `e t pc v `x

�, pc ` x := e
�(x) = ⌧`x

� ` e :⌧`e pc v `x `e v `x

�, pc ` x := e
�(x) = ⌧`x

For 2 point conf and integ lattices
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�(x) = ⌧`to

4.4 Quantitiative Info FLow

H(X) = �
X

x2X
Pr (x) log2 (Pr (x))

5 Epistemic Logic
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| ? false

| � ^  conjuction

| � _  disjuction

| �)  implication

| ¬� negation

| KA� knowledge (principal A knows �)
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