Harvard John A. Paulson
School of Engineering
and Applied Sciences

OREGON T
PROGRAMMING
LANGUAGES
SUMMER &r

SCHOOL unzversrry

Language-Based Security

Lecture 2;
Information Flow Semantics

Stephen Chong, Harvard University

Road Ma

*Intro
e Formal Methods for Security
e|anguage-Based Security
e Case Study: Noninterference

* Primer on Computer Security

e Enforcement
*Beyond confidentiality

e Enforcing Language Abstractions

Stephen Chong, Harvard University 2

Sensitive Inf

* Many systems handle a variety of sensitive
information

* How do we ensure that the system is handling
the information securely?

Stephen Chong, Harvard University 3

Access Control Isn’'t Enough

e Access control can restrict who can access
information

eBut it (typically) doesn’t restrict what happens to
the information after access

e|f “handling information securely” means, e.g.,
only certain entities should learn about the
information, then access control is close, but not
exactly aligned

Information Flow

* An extensional specification of information
security

e Define security in terms of the observable
behavior of the system

e Not in terms of the implementation details, such
as code patterns, mechanisms, etc.

*i.e., the “intension” of the system

* (Enforcement of an extensional security condition
will, of course, depend on implementation details.
We will examine enforcement of info flow later.)

Semantics of Information Flow

Strong Dependency

e Cohen (1976) introduced strong dependency

e Essentially, the key definition of noninterference used today

e |ntuition: information flows from one entity A to another
entity B when B depends on or is influenced by A

* Definition: Consider a (deterministic) system H whose
inputs include entity A and whose outputs include

entity B. Output B strongly depends on input A if there
exist two executions of H where the inputs differ only

for entity A and the output B differs.
e Security is the absence of certain strong dependencies

Strong Dependency Example

*|n the setting of IMP, with 2 security levels
e Context I' maps variables to {Low, High}
* Write 61 =10w 02 if states o1 and o2 are equal on all
low variables
eFor all x, if I'(x) = Low then o1(x) = o2(x)
* Definition: Program c is noninterfering if:
For all o1, 02, 6'1 0’3,
if 61 =Low 02 and (c,c1)| 0’1 and {c,02)| 0”2
then 6’1 =Low 62

e i.e., no strong dependencies from high inputs to low outputs

Model of EI
computer <
system | =

Real computer
system

_.

Beyond NonlInterference for IMP

*In general, formulating an info flow property for a
system involves choosing

e The entities under consideration

*e.g., who is involved, what’s an input, what’s an output, ...

e The conditions under which flows between these entities
are allowed or forbidden.

e Much research on info flow over the last 5
decades has considered focused on different threat
models, computational models, and conditions
that determine whether flows are allowed

Beyond NonlInterference for IMP

e Computational model indicates t

manipulated during system executions

ne entities that are

e Threat model indicates the entities with which the
adversaries interact.

e Specitying allowed or forbidden flows between entities

amounts to stipulating allowec

betwee
e\We wi

properti

n the system and the adversaries

explore the space of information flow

threat model, and t
to specity restrictio

es by varying the computational model, t

ne expressiveness of the cond

ns on info flows

or forbidden flows

AlS

1itions

Lecture Roadmap

e Threat model

e Termination, Timing, and
Interaction

e Computational ability

e Computational model

e Nondeterminism
* Probability
e Concurrency

e Reclassification

e Quantitative info flow

12

[abels

* Syntactic objects associated with entities of a system

.g., Secret, Public
.g., Trusted, Untrusted
.g., Alice, Bob, Charlie, ...

.g., (Level, Compartment) where
Level € { Public, Confidential, Secret, TopSecret} and

Compartment € { Nuclear, Cryptography, Biological, ...}

e Info-flow policy might described allowed (or forbidden)
flows between entities based on labels

e abels might have rich structure but don’t themselves

describe policies

e abels represent restrictions on how associated entities can be used

Flow Relations

*Info flow policy often represented as flow
relation C on a set A of labels

o|f £/1C¢> then info is allowed to flow from €1 to ¢

e \What structure sho

e Reflexive, i.e., for al

e [ransitive’?

uld flow relation C have?

fe A we have ¢C¢

i.e., forall €1,6», €3€A, if (156, and €265 then ¢1C¢3
e Reflexive and transitive is a pre-order

e|f we add antisymmetry, it is a partial order

[Lattice

* Denning (1978) argues for a join-semi-lattice relation

ei.e., a least-upper bound operation L

* Upper

* | east u

*\Why?

bound: V £1,62eA, (L1C61ut> and LHEL Ul

oper bound: V ¢1,6,,3EA, if £t1E£3 and £,C¢3 then €1U6E(

e Given data a and b, labeled respectively ¢, and €5
*\What should be label of operation a®b ¢

*Should be upper bound

*Should be least upper bound, otherwise the following may not
work (where £4; and €42 are both upper bounds of £, and ¢p)

cc=a®b;dl =c;d2=c

From Labe

e Here is a more general version of

-
noninterference: /

. . Devon
e Lattice (A, C) of security levels / \

Alice Bob Chuck

Confidential \\
\ e

Public

Q
(Top Secret, {nuclear,crypto}) / ‘ \
s Nl {Alic‘e} (Bob)} (Chuck}

(Top Secret, {nuclear}) (Secret, {nuclear,crypto}) (Top Secret, {crypto}) |

(Secret, {nuclear}) (Top Secret, {}) (Secret, {crypto}) {AI ice, Bo b} {BO b) Chuc k}

/ {Alice,Chuck]}
(Secret, {}) ‘ /

Stephen Chong, Harvard University {AIiCG,BOb,ChUCk} 16

From Labels to NI

e Here is a more general version of
noninterference:

e | attice (A, C) of security levels
e Context I' is function from variables to A

*Write 61 =¢ o7 if states 61 and o2 are equal on all low
variables: For all x, if I'(x) C € then o1(x) = 62(x)

* Definition: Program c is noninterfering if:
For all o1, 02, 6’1 6'2, €eA

if o1 =¢ 02 and {c,o1)| 0’1 and <{c,o2)| 0”2

then 6’1 =¢ 6”2

Lecture Roadmap

e| abels and Flow Relations

e Computational model

e Nondeterminism
* Probability
e Concurrency

e Reclassification

e Quantitative info flow

18

Threat Model

e How adversary interacts with system

* Stronger threat model = more interactions = more
opportunities for information flow to/from adversary

 Information channels convey information
e .ampson (1973) categorizes them as:
*|egitimate channels (e.g., files, console, network messages,

...) and
* covert channels (e.g., execution time, heat emission, noise
emission, resource exhaustion, power consumption, ...)

- side channels are covert channels exploited by passive
adversary who simply observes the channel

Termination

e Earlier definition of NI is termination-insensitive

e Implicitly assumes that attacker ignores all executions
that fail to terminate

clad ah. & . 8. o WS o i L o A P
¥ Definition: Program c is noninterfering if .
| For all 61, 02, 6’1 0’2, teA
if 01 =¢ 62 and <{c,o1){ 6’1 and {(c,02){ 0”2
then 6’1 = 6"2

eSowhile (high > 0) do skip satisfies
noninterference

Termination-Sensitivity

e Can modify security condition to account for
termination channel

*Key idea: termination behavior is determined by low inputs

» Either both executions terminate or both executions diverge

 Definition: Program c is termination-sensitive
noninterfering if:
For all 61, o2, ¢, if 61 =¢ 62 then either
» exists 6’1 6’2, {c,o1{o’1 and {c,02)| 0’2 and
6’1 =¢G"2
or
» both executions diverge

Time

e Can the adversary observe how long an execution takes?
* Timing sensitivity
e Termination sensitivity is an extreme example of timing sensitivity

Several ways of thinking about timing
~

e Number of steps the
computational model takes

* But suffers from big gap

. e Conceptually, can add new
between model and reality P Yr

variable to state, T, which

increases during execution

* Actually very hard to capture and is low-observable
accurately in a model, as it depends

on many low-level system details
_ » Memory hierarchy, microarchitecture details, ...

e External timing (“Wall clock time”)

L

" elnternal timing

* E.g., thread running in the same system that

) . e Concurrency (see later
can detect which event happens first y ()

—
Stephen Chong, Harvard University 29

Interaction

¢ So far we have used a “batch”-like model of
computation

* Systems gets input, does all computation and produces
output on termination

* Most systems are interactive

* Adversary may make observations during executions

e Adversary (and others) may provide inputs during
execution

e Requires different computational model to
express

Interaction

e Assume IMP with x := input from {and output x to ¢
e Semantics {c,6)—"{c’,6") where trace 71 is a sequence of events

etu=¢ | t-in(n,) | t-out(n, ¢
*|ntuitively: {c,0) takes one or more steps to {c’,0’) producing trace 1

e |nteractive noninterference: if initial memories are low
equivalent and low inputs are identical, then the traces are low-
equivalent (i.e., low inputs and outputs are the same)

 Definition: Program c is noninterfering if:
For all 61, 02, 6’1 0’2, T1, T2, EA
if {c,o1)—mu(skip, o’1) and {c,62)—®{skip, 6’2
and 61 =¢ 62 and inputs(t1) =¢ inputs(t2)
then 11 =¢ 12

Progress Sensi

e Can the attacker observe whether program is
making progress (i.e., will produce another
event)?

* Analogous to termination sensitivity, but for non-
batch programs

Stephen Chong, Harvard University 25

Program Code

e Does the attacker know the code? Can they modity/
orovide code?

e Noninterference typically (implicitly) assumes attacker
Knows code

Jado L St o e R W L ol 2 P
[Definition: Program c is noninterfering if: .

| For all o1, 02, 6’1 6'2, €
if 01 =¢ 62 and <{c,o1){ 0’1 and {(c,02)| 0”2

then 6’1 =¢ o’

e Some models allow attacker to provide code (but this
can typically be simulated by any attacker-provided
Input)

Attacker’s Computational Ability

*\What can the attacker compute?

°L.g,

eSom

CoIr

does the following satisty noninterference?

[(msgl) Low
[(msg2) [(key) = High

output encrypt(msgl, key) to Low
output msgl to Low
output encrypt(msg2, key) to Low

e versions of noninterference assume
putational limits on attacker

Views of a System

* More generally, may define what the attacker can observe as a view
of the system, a function from the system state (or history) to the
attacker’s observations

oE.g., attacker sees a subset of the state of the system

e Appropriate for a distributed system where some machines are compromised
*E.g., attacker sees power consumption of system

e Definition: Program c is noninterfering if:
For all o1, 62, 11 12, £€A
if 61 =¢ 62 and <{c,c1>{t1 and {(c,62) |12
then view(¢, t1) = view(¢, 12)
e (Haven't defined relation {(c,o>{t. Think of t of as being the history of the

computation, includes events, states, ..., anything we want to model as
observable)

Threat Model Summary

* Many different versions of non-interference
handle different threat models

* From Kozyri et al.

The adversary can:

Example security conditions

Observe termination

Termination-sensitive noninterference

Observe time

Time-sensitive noninterference

Observe output stream

Progress-sensitive noninterference

and provide input stream

Reactive noninterference, GMNI, non-
inference, generalized noninference

and use input strategies

Nondeducibility on strategies

and be a concurrently
executed program

P_BNDC

Write program code

Noninterference against active adver-
sary

Observe views of system behavior

Nondeducibility, Opaqueness

Lecture Roadmap

o[abels and F
e Threat mode

Interaction

e f[ermination,

ow Relations

Timing, and

e Computational ability

e Reclassification

e Quantitative info flow

30

Computational Model

e Computational model abstracts system
functionality

e Tightly coupled with threat model
e Computational model captures implementation

details of a system, at varying levels of
faithfulness

Nondeterminism

*So far we have considered deterministic systems

e Noninterference doesn’t hold for nondeterministic
system

eE.g., with nondeterministic choice operator
ail az, program
low := 42 [7
may not satisfy NI
e |ntuitively, we don’t know how nondeterminism is
resolved; may depend on secret information

¢ So-called refinement attack

Generalized Noninterference

e |ntuition: secret inputs do not constrain public outputs
ei.e., all possible Low behaviors are possible with any High
INnputs
* Definition: Program c satisfies
generalized noninterference if:
For all o1, 0», 0’1, 0’5,
if 01 =L.ow 02 and <c,01){ 0’1 and <{c,02)| 0"
then there exists 03 0’3 such that
03 =Low O1 and 03 =Hjgh 02 and
(c,03){|0'3 and 0’3 =ow O’

Observational Determinism

e But resolution of nondeterminism is useful!

e Observational determinism requires that resolution of Low
nondeterminism does not depend on secret information

°E.g., if nondeterminism is due to scheduler choices of threads/
processes, the scheduler should not depend on high information

e Definition same as deterministic NI! i.e., low view is
determined by low inputs

eFor all o1, 62, 11 12, £€A
if o1 =¢ 62 and {c,o1){t1 and {c,o2) |12
then view(¢, 11) = view((, 12)

*Pro: not subject to refinement attack

e Con: allows no public nondeterminism

Probability

* Possibilistic nondeterminism may not sufficiently model information flows if
some choices are unlikely

°tg,a :=00110 ...10999;
if (a = 0) then low := 0 1 1
else low := high mod 2

* Probabilistic noninterference requires that the distribution of low outputs is
independent of high inputs

* Assume probabilistic semantics {c,6)| D where D is a (sub-)distribution over

stores
* Add your favorite probabilistic operators to the language

e Probabilistic Noninterference: For all 61, 62, D1, D3, £eA
if 61 =¢ 02 and {c,61)| D1 and {c,62) | D
then Di|r = D¢

e (Where 9|, projects the distribution over stores to a distribution over the low-observable
part of the store)

Concurrency

*\WWhen modeling concurrency, information might flow by

Interaction between threads

* E.g., race conditions are a source of nondeterminism

e Scheduling choices

e Memory model

* Sequential consistency, Total Store Order, Partial Store Order, ...

e Relatedly, speculative execution is source of real

N

‘'ormation leaks

F.g., Spectre and Meltdown attacks

*Don't really need a new definition of noninterference

e Other than extending our language and semantics to support
concurrency

Lecture Roadmap

o[abels and F
e Threat mode

Interaction

e f[ermination,

ow Relations

Timing, and

e Computational ability

e Computational model

e Nondeterminism
* Probability
e Concurrency

37

Reclassification

*|n practice, noninterference is too restrictive
e|Information does not keep the same label throughout execution

* May need to declassify information
ei.e., weaken confidentiality requirements
ee.g., credit card number is confidential, but last 4 digits can be printed on
receipt
ee.g., when a physician is assigned to a patient, they can see the patient’s
records

ee.g., after a sealed-bid auction is concluded, the confidential bids may be
made publics

* May need to erase information
ei.e., strengthen confidentiality requirements
ee.g., after transaction, merchant should no longer hold credit card information
ee.g., when submarine surfaces, sensitive information should be encrypted

Handling Information Appropriately

e How to declassity in a controlled way?

e Don’t want to allow all confidential information to be
released!

e Sabelfe

declassi

d and Sands (2009) describe “dimensions” of
fication:

e What info is declassified
e Who declassifies the info

* Where in the system (i.e., component) or label relation
does the declassification

e When (under what conditions) does declassification
happen?

Example: Escape Hatches

* Delimited Release (Sabelfeld and Myers, 2003)

*|ntuition: specifies what information may be
declassified by a set of escape hatch expressions

* Definition: Program c and set of escape hatches
{a1, ..., an} satisfies delimited release if:
For all o1, 0y, 0’1, 0’9,
if 01 =Low 02 and <{c,01)| 0’1 and {(c,02){ 0",
and for all ie1..n, o1(ai) = 02(ai)
then 0’1 =Low 0"

Example: Intransitive NI

e ntuition: remove transitivity as a requirement for the
flow relation

. TopSecret
® E.go/ “““““ p T
A
Declass € Secret
“A Public

e Typically a trusted component is the only component
that is permitted to use intransitive flow relations (a
form of where declassification)

e Security conditions might need to consider some of the
implementation details to express this...

oT
C

Quantitative In

nere are info leaks that are undesirable but unavoidable (e.g., via side
nannels)

e How to understand the magnitude of these leaks?

e Quantitative information flow uses information theory to measure leakage

°B

asic idea: info leakage = initial uncertainty — remaining uncertainty

AN A

Prior belief Posterior belief

Secret Secret

Public

42

Quantitative 1

e Different ways of measuring leakage, e.g.,
eShannon entropy
*Bayes vulnerability
*Renyi’s min-entropy ‘
e Not all bits are equal: gain functions can capture value of blts

eE.g., Shannon entropy

e For random variable X, H(X) is the Shannon entropy of X
* Expected number of bits to optimally encode value of X
* Uncertainty or surprise in X

—) Pr(z)log, (Pr(z))

reX
e Conditional entropy H(X|Y) information in X given knowledge of Y

H(X|Y)=> Pr(Y =y)HX|Y =y)
yey

’Leakage = H(Insecret) — H(INsecret | INnpublic, Outpublic)

Stephen Chong, Harvard University

43

Selected References

eKozyri, E., S. Chong, and A. C. Myers (2022). Expressing
information flow properties. Foundations and Trends in Privacy
and Security 3(1), 1-102.

eSabelfeld, A. and A. C. Myers (2003, January). Language-based
information-flow security. IEEE Journal on Selected Areas in
Communications 21(1), 5-19.

eSabelfeld, A. and D. Sands (2005, June). Dimensions and
principles of declassification. In Proceedings of the 18th IEEE
Computer Security Foundations Workshop, pp. 255-269. IEEE
Computer Society.

e Alvim, M. S., K. Chatzikokolakis, A. Mclver, C. Morgan, C.
Palamidessi, and G. Smith (2020). The Science of Quantitative
Information Flow. Springer.

