
Language-Based Security

Lecture 2:
Information Flow Semantics

Stephen Chong, Harvard University

Stephen Chong, Harvard University

Road Map

2

•Intro
•Formal Methods for Security
•Language-Based Security
•Case Study: Noninterference

•Primer on Computer Security

•Information Flow
•Semantics
•Enforcement
•Beyond confidentiality

•Enforcing Language Abstractions

Stephen Chong, Harvard University

Sensitive Information

•Many systems handle a variety of sensitive
information

•How do we ensure that the system is handling
the information securely?

3

Stephen Chong, Harvard University

Access Control Isn’t Enough

•Access control can restrict who can access
information

•But it (typically) doesn’t restrict what happens to
the information after access

•If “handling information securely” means, e.g.,
only certain entities should learn about the
information, then access control is close, but not
exactly aligned

4

Stephen Chong, Harvard University

Information Flow

•An extensional specification of information
security
•Define security in terms of the observable

behavior of the system
•Not in terms of the implementation details, such

as code patterns, mechanisms, etc.
• i.e., the “intension” of the system

•(Enforcement of an extensional security condition
will, of course, depend on implementation details.
We will examine enforcement of info flow later.)

5

Stephen Chong, Harvard University 6

Semantics of Information Flow

Stephen Chong, Harvard University

Strong Dependency

•Cohen (1976) introduced strong dependency
•Essentially, the key definition of noninterference used today

•Intuition: information flows from one entity A to another
entity B when B depends on or is influenced by A

•Definition: Consider a (deterministic) system H whose
inputs include entity A and whose outputs include
entity B. Output B strongly depends on input A if there
exist two executions of H where the inputs differ only
for entity A and the output B differs.

•Security is the absence of certain strong dependencies

7

Stephen Chong, Harvard University

Strong Dependency Example

•In the setting of IMP, with 2 security levels
•Context Γ maps variables to {Low, High}
•Write σ1 =Low σ2 if states σ1 and σ2 are equal on all

low variables
•For all x, if Γ(x) = Low then σ1(x) = σ2(x)

•Definition: Program c is noninterfering if:
 For all σ1, σ2, σ’1, σ’2,
 if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 then σ’1 =Low σ’2

•i.e., no strong dependencies from high inputs to low outputs
8

Stephen Chong, Harvard University 9

Real computer
system

Model of
computer

system

Reason
about
model

Stephen Chong, Harvard University

Beyond NonInterference for IMP

•In general, formulating an info flow property for a
system involves choosing
•The entities under consideration
• e.g., who is involved, what’s an input, what’s an output, ...

•The conditions under which flows between these entities
are allowed or forbidden.

•Much research on info flow over the last 5
decades has considered focused on different threat
models, computational models, and conditions
that determine whether flows are allowed

10

Stephen Chong, Harvard University

Beyond NonInterference for IMP

•Computational model indicates the entities that are
manipulated during system executions

•Threat model indicates the entities with which the
adversaries interact.

•Specifying allowed or forbidden flows between entities
amounts to stipulating allowed or forbidden flows
between the system and the adversaries

•We will explore the space of information flow
properties by varying the computational model, the
threat model, and the expressiveness of the conditions
to specify restrictions on info flows

11

Stephen Chong, Harvard University

Lecture Roadmap

•Labels and Flow Relations
•Threat model

•Termination, Timing, and
Interaction

•Computational ability

•Computational model
•Nondeterminism
•Probability
•Concurrency

•Reclassification
•Quantitative info flow

12

Stephen Chong, Harvard University

Labels

•Syntactic objects associated with entities of a system
•E.g., Secret, Public
•E.g., Trusted, Untrusted
•E.g., Alice, Bob, Charlie, ...
•E.g., (Level, Compartment) where

 Level ∈ { Public, Confidential, Secret, TopSecret} and
 Compartment ∈ { Nuclear, Cryptography, Biological, ...}

•Info-flow policy might described allowed (or forbidden)
flows between entities based on labels

•Labels might have rich structure but don’t themselves
describe policies
•Labels represent restrictions on how associated entities can be used

13

Stephen Chong, Harvard University

Flow Relations

•Info flow policy often represented as flow
relation ⊑ on a set Λ of labels
•If ℓ1⊑ℓ2 then info is allowed to flow from ℓ1 to ℓ2

•What structure should flow relation ⊑ have?
•Reflexive, i.e., for all ℓ∈Λ we have ℓ⊑ℓ
•Transitive?
• i.e., for all ℓ1,ℓ2, ℓ3∈Λ, if ℓ1⊑ℓ2 and ℓ2⊑ℓ3 then ℓ1⊑ℓ3

•Reflexive and transitive is a pre-order
•If we add antisymmetry, it is a partial order

14

Stephen Chong, Harvard University

Lattice

•Denning (1978) argues for a join-semi-lattice relation
•i.e., a least-upper bound operation ⊔
•Upper bound: ∀ ℓ1,ℓ2∈Λ, ℓ1⊑ℓ1⊔ℓ2 and ℓ2⊑ℓ1⊔ℓ2

• Least upper bound: ∀ ℓ1,ℓ2,ℓ3∈Λ, if ℓ1⊑ℓ3 and ℓ2⊑ℓ3 then ℓ1⊔ℓ2⊑ℓ3

•Why?
•Given data a and b, labeled respectively ℓa and ℓb
•What should be label of operation a⊕b ?

•Should be upper bound
•Should be least upper bound, otherwise the following may not

work (where ℓd1 and ℓd2 are both upper bounds of ℓa and ℓb)
• c = a⊕b; d1 = c; d2 = c

15

Stephen Chong, Harvard University

From Labels to NI

16

Confidential

Public

Alice

⊥

Bob Chuck

Devon

⊤•Here is a more general version of
noninterference:
•Lattice (Λ, ⊑) of security levels

{Alice}

∅

{Bob} {Chuck}

{Alice,Bob}

{Alice,Bob,Chuck}

{Alice,Chuck}
{Bob,Chuck}

Stephen Chong, Harvard University

From Labels to NI

17

•Here is a more general version of
noninterference:
•Lattice (Λ, ⊑) of security levels

•Here is a more general version of
noninterference:
•Lattice (Λ, ⊑) of security levels

•Context Γ is function from variables to Λ
•Write σ1 =ℓ σ2 if states σ1 and σ2 are equal on all low

variables: For all x, if Γ(x) ⊑ ℓ then σ1(x) = σ2(x)
•Definition: Program c is noninterfering if:

 For all σ1, σ2, σ’1, σ’2, ℓ∈Λ
 if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 then σ’1 =ℓ σ’2

Stephen Chong, Harvard University

Lecture Roadmap

•Labels and Flow Relations
•Threat model

•Termination, Timing, and
Interaction

•Computational ability

•Computational model
•Nondeterminism
•Probability
•Concurrency

•Reclassification
•Quantitative info flow

18

Stephen Chong, Harvard University

Threat Model

•How adversary interacts with system

•Stronger threat model → more interactions → more
opportunities for information flow to/from adversary

•Information channels convey information
•Lampson (1973) categorizes them as:
•legitimate channels (e.g., files, console, network messages,

...) and
•covert channels (e.g., execution time, heat emission, noise

emission, resource exhaustion, power consumption, ...)
• side channels are covert channels exploited by passive
adversary who simply observes the channel

19

Stephen Chong, Harvard University

Termination

•Earlier definition of NI is termination-insensitive
•Implicitly assumes that attacker ignores all executions

that fail to terminate

•So while (high > 0) do skip satisfies
noninterference

20

• Definition: Program c is noninterfering if:
 For all σ1, σ2, σ’1, σ’2, ℓ∈Λ
 if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 then σ’1 =ℓ σ’2

Stephen Chong, Harvard University

Termination-Sensitivity

•Can modify security condition to account for
termination channel
•Key idea: termination behavior is determined by low inputs
• Either both executions terminate or both executions diverge

•Definition: Program c is termination-sensitive
noninterfering if:
 For all σ1, σ2, ℓ, if σ1 =ℓ σ2 then either

‣ exists σ’1, σ’2. ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2 and
 σ’1 =ℓ σ’2

or

‣ both executions diverge
21

•Can the adversary observe how long an execution takes?
•Timing sensitivity

•Termination sensitivity is an extreme example of timing sensitivity
•Several ways of thinking about timing

•Number of steps the
computational model takes
•But suffers from big gap
between model and reality

•External timing (“Wall clock time”)
•Actually very hard to capture
accurately in a model, as it depends
on many low-level system details
‣Memory hierarchy, microarchitecture details, ...

•Internal timing
• E.g., thread running in the same system that
can detect which event happens first

Stephen Chong, Harvard University

Time

22

• Conceptually, can add new
variable to state, T, which
increases during execution
and is low-observable

• Concurrency (see later)

Stephen Chong, Harvard University

Interaction

•So far we have used a “batch”-like model of
computation
•Systems gets input, does all computation and produces

output on termination

•Most systems are interactive
•Adversary may make observations during executions
•Adversary (and others) may provide inputs during

execution

•Requires different computational model to
express

23

Stephen Chong, Harvard University

Interaction

24

•Assume IMP with x := input from ℓ and output x to ℓ
•Semantics ⟨c,σ⟩⟶τ ⟨c’,σ’⟩ where trace τ is a sequence of events

• τ ::= ε | τ ⋅ in(n, ℓ) | τ ⋅ out(n, ℓ)
•Intuitively: ⟨c,σ⟩ takes one or more steps to ⟨c’,σ’⟩ producing trace τ

•Interactive noninterference: if initial memories are low
equivalent and low inputs are identical, then the traces are low-
equivalent (i.e., low inputs and outputs are the same)

•Definition: Program c is noninterfering if:
 For all σ1, σ2, σ’1, σ’2, τ1, τ2, ℓ∈Λ
 if ⟨c,σ1⟩⟶τ1 ⟨skip, σ’1⟩ and ⟨c,σ2⟩⟶τ2 ⟨skip, σ’2⟩
 and σ1 =ℓ σ2 and inputs(τ1) =ℓ inputs(τ2)
 then τ1 =ℓ τ2

Stephen Chong, Harvard University

Progress Sensitivity

•Can the attacker observe whether program is
making progress (i.e., will produce another
event)?

•Analogous to termination sensitivity, but for non-
batch programs

25

Stephen Chong, Harvard University

Program Code

•Does the attacker know the code? Can they modify/
provide code?

•Noninterference typically (implicitly) assumes attacker
knows code

•Some models allow attacker to provide code (but this
can typically be simulated by any attacker-provided
input)

26

• Definition: Program c is noninterfering if:
 For all σ1, σ2, σ’1, σ’2, ℓ
 if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 then σ’1 =ℓ σ’2

Stephen Chong, Harvard University

Attacker’s Computational Ability

•What can the attacker compute?
•E.g., does the following satisfy noninterference?

•Some versions of noninterference assume
computational limits on attacker

27

Γ(msg1) = Low
Γ(msg2) = Γ(key) = High
output encrypt(msg1, key) to Low
output msg1 to Low
output encrypt(msg2, key) to Low

Stephen Chong, Harvard University

Views of a System

•More generally, may define what the attacker can observe as a view
of the system, a function from the system state (or history) to the
attacker’s observations

•E.g., attacker sees a subset of the state of the system
•Appropriate for a distributed system where some machines are compromised

•E.g., attacker sees power consumption of system
•Definition: Program c is noninterfering if:

 For all σ1, σ2, τ1, τ2, ℓ∈Λ
 if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓τ1 and ⟨c,σ2⟩⇓τ2
 then view(ℓ, τ1) = view(ℓ, τ2)

•(Haven’t defined relation ⟨c,σ⟩⇓τ. Think of τ of as being the history of the
computation, includes events, states, ..., anything we want to model as
observable)

28

Stephen Chong, Harvard University

Threat Model Summary

•Many different versions of non-interference
handle different threat models

•From Kozyri et al.

29

32 Threat Model

flows from view f to view g if and only if no information flows from
g to f . For example, if f is instantiated as projecting only the values
of Secret variables in a memory and g as projecting only the values
of Public variables, then nondeducibility implies that information is
not allowed to flow from Secret to Public, nor from Public to Secret.
This symmetry, which might lead to more restrictive information flow
properties than desired, could be avoided using methods proposed by
Halpern and O’Neill (2002). Focardi and Gorrieri (1995) discuss and
compare multiple instantiations of nondeducibility and noninterference.
More recently, nondeducibility has been used as a desirable security
condition in the context of cyber-physical systems (Bohrer and Platzer,
2018).

Hughes and Shmatikov (2004) propose a special instance of nonde-
ducibility, called opaqueness. As described by Schoepe and Sabelfeld
(2015), “a predicate on system behaviors is opaque if for any behavior
that satisfies the predicate, there is another behavior that is indistin-
guishable by the attacker but where the predicate no longer holds”.
Hughes and Shmatikov express anonymity, unlinkability, and privacy
guarantees in terms of opaqueness. So, given the relations that are
formed above, anonymity, unlinkability, and privacy could be inter-
preted as information flow properties.

Figure 4.1 summarizes the threat models discussed in this section,
accompanied by representative security conditions that prevent leaks
to corresponding adversaries.

The adversary can: Example security conditions
Observe termination Termination-sensitive noninterference
Observe time Time-sensitive noninterference
Observe output stream Progress-sensitive noninterference

and provide input stream Reactive noninterference, GMNI, non-
inference, generalized noninference

and use input strategies Nondeducibility on strategies
and be a concurrently
executed program

P_BNDC

Write program code Noninterference against active adver-
sary

Observe views of system behavior Nondeducibility, Opaqueness

Figure 4.1: Security conditions for di�erent threat models.

Stephen Chong, Harvard University

Lecture Roadmap

•Labels and Flow Relations
•Threat model

•Termination, Timing, and
Interaction

•Computational ability

•Computational model
•Nondeterminism
•Probability
•Concurrency

•Reclassification
•Quantitative info flow

30

Stephen Chong, Harvard University

Computational Model

•Computational model abstracts system
functionality
•Tightly coupled with threat model

•Computational model captures implementation
details of a system, at varying levels of
faithfulness

31

Stephen Chong, Harvard University

Nondeterminism

•So far we have considered deterministic systems
•Noninterference doesn’t hold for nondeterministic

system
•E.g., with nondeterministic choice operator

a1⫾ a2, program
 low := 42 ⫾ 7
may not satisfy NI

•Intuitively, we don’t know how nondeterminism is
resolved; may depend on secret information
•So-called refinement attack

32

Stephen Chong, Harvard University

Generalized Noninterference

33

•Intuition: secret inputs do not constrain public outputs
•i.e., all possible Low behaviors are possible with any High

inputs

•Definition: Program c satisfies
 generalized noninterference if:
 For all σ1, σ2, σ’1, σ’2,
 if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 then there exists σ3, σ’3 such that
 σ3 =Low σ1 and σ3 =High σ2 and
 ⟨c,σ3⟩⇓σ’3 and σ’3 =Low σ’1

Stephen Chong, Harvard University

Observational Determinism

•But resolution of nondeterminism is useful!
•Observational determinism requires that resolution of Low

nondeterminism does not depend on secret information
•E.g., if nondeterminism is due to scheduler choices of threads/

processes, the scheduler should not depend on high information

•Definition same as deterministic NI! i.e., low view is
determined by low inputs
•For all σ1, σ2, τ1, τ2, ℓ∈Λ

 if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓τ1 and ⟨c,σ2⟩⇓τ2
 then view(ℓ, τ1) = view(ℓ, τ2)

•Pro: not subject to refinement attack
•Con: allows no public nondeterminism

34

Stephen Chong, Harvard University

Probability

•Possibilistic nondeterminism may not sufficiently model information flows if
some choices are unlikely

•E.g., a := 0 ⫾ 1 ⫾ ... ⫾ 999;  
 if (a = 0) then low := 0 ⫾ 1  
 else low := high mod 2

•Probabilistic noninterference requires that the distribution of low outputs is
independent of high inputs

•Assume probabilistic semantics ⟨c,σ⟩⇓𝔇 where 𝔇 is a (sub-)distribution over
stores

•Add your favorite probabilistic operators to the language

•Probabilistic Noninterference: For all σ1, σ2, 𝔇1, 𝔇2, ℓ∈Λ
 if σ1 =ℓ σ2 and ⟨c,σ1⟩⇓𝔇1 and ⟨c,σ2⟩⇓𝔇2
 then 𝔇1|ℓ = 𝔇2|ℓ

•(Where 𝔇|ℓ projects the distribution over stores to a distribution over the low-observable
part of the store)

35

Stephen Chong, Harvard University

Concurrency

•When modeling concurrency, information might flow by
•Interaction between threads
• E.g., race conditions are a source of nondeterminism

•Scheduling choices
•Memory model
• Sequential consistency, Total Store Order, Partial Store Order, ...

•Relatedly, speculative execution is source of real
information leaks
•E.g., Spectre and Meltdown attacks

•Don’t really need a new definition of noninterference
•Other than extending our language and semantics to support

concurrency
36

Stephen Chong, Harvard University

Lecture Roadmap

•Labels and Flow Relations
•Threat model

•Termination, Timing, and
Interaction

•Computational ability

•Computational model
•Nondeterminism
•Probability
•Concurrency

•Reclassification
•Quantitative info flow

37

Stephen Chong, Harvard University

Reclassification

•In practice, noninterference is too restrictive
•Information does not keep the same label throughout execution

•May need to declassify information
•i.e., weaken confidentiality requirements
•e.g., credit card number is confidential, but last 4 digits can be printed on

receipt
•e.g., when a physician is assigned to a patient, they can see the patient’s

records
•e.g., after a sealed-bid auction is concluded, the confidential bids may be

made publics

•May need to erase information
•i.e., strengthen confidentiality requirements
•e.g., after transaction, merchant should no longer hold credit card information
•e.g., when submarine surfaces, sensitive information should be encrypted

38

Stephen Chong, Harvard University

Handling Information Appropriately

•How to declassify in a controlled way?
•Don’t want to allow all confidential information to be

released!

•Sabelfeld and Sands (2009) describe “dimensions” of
declassification:
•What info is declassified
•Who declassifies the info
•Where in the system (i.e., component) or label relation

does the declassification
•When (under what conditions) does declassification

happen?
39

•Delimited Release (Sabelfeld and Myers, 2003)
•Intuition: specifies what information may be

declassified by a set of escape hatch expressions
•Definition: Program c and set of escape hatches

{a1, ..., an} satisfies delimited release if:
 For all σ1, σ2, σ’1, σ’2,
 if σ1 =Low σ2 and ⟨c,σ1⟩⇓σ’1 and ⟨c,σ2⟩⇓σ’2
 and for all i∈1..n, σ1(ai) = σ2(ai)
 then σ’1 =Low σ’2

Stephen Chong, Harvard University

Example: Escape Hatches

40

Stephen Chong, Harvard University

Example: Intransitive NI

•Intuition: remove transitivity as a requirement for the
flow relation

•E.g.,

•Typically a trusted component is the only component
that is permitted to use intransitive flow relations (a
form of where declassification)

•Security conditions might need to consider some of the
implementation details to express this...

41

TopSecret

Secret

Public

Declass

Stephen Chong, Harvard University

Quantitative Info Flow

•There are info leaks that are undesirable but unavoidable (e.g., via side
channels)

•How to understand the magnitude of these leaks?

•Quantitative information flow uses information theory to measure leakage

•Basic idea: info leakage = initial uncertainty – remaining uncertainty

42

Secret

Public

Secret

Public

Prior belief Posterior belief

Stephen Chong, Harvard University

Quantitative Info Flow

•Different ways of measuring leakage, e.g.,
•Shannon entropy
•Bayes vulnerability
•Renyi’s min-entropy
•Not all bits are equal: gain functions can capture value of bits

•E.g., Shannon entropy
•For random variable X, H(X) is the Shannon entropy of X

• Expected number of bits to optimally encode value of X
•Uncertainty or surprise in X

•Conditional entropy H(X|Y) information in X given knowledge of Y

•Leakage = H(InSecret) – H(InSecret | InPublic, OutPublic)
43

� ` sec : intH � ` 42: intL
� ` sec+ 42: intH H t L v L

�, L ` pub := sec+ 42
Next example

.

.

.

� ` sec < 0:boolH

.

.

.

� ` �sec : intH H tH v H

�, H ` sec := �sec �, H ` skip
�, L ` if sec < 0 then sec := �sec else skip

Next example

.

.

.

� ` sec < 0:boolH

� ` 42: intL H t L v L

�, H ` pub := 42 �, H ` skip
�, L ` if sec < 0 then pub := 42 else skip

4.3 Robust Declassification

Inference rule for 2 point lattice

� ` e :⌧`e `e t pc v `x

�, pc ` x := e
�(x) = ⌧`x

� ` e :⌧`e pc v `x `e v `x

�, pc ` x := e
�(x) = ⌧`x

For 2 point conf and integ lattices

� ` e :⌧`from pc v `to pc v (Secret,Trusted) `from v (Secret,Trusted) integOf(`from) = integOf(`to)

�, pc ` x := declassify(e)
�(x) = ⌧`to

For principal lattice

� ` e :⌧`from pc v `to integOf(`from) = integOf(`to)

`from v `to t writersToReaders(`from) `from v `to t writersToReaders(pc)

�, pc ` x := declassify(e)
�(x) = ⌧`to

4.4 Quantitiative Info FLow

H(X) = �
X

x2X
Pr (x) log2 (Pr (x))

5 Epistemic Logic

�, ::= p primitive propositions

| ? false

| � ^ conjuction

| � _ disjuction

| �) implication

| ¬� negation

| KA� knowledge (principal A knows �)

Page 6 of 8

� ` sec : intH � ` 42: intL
� ` sec+ 42: intH H t L v L

�, L ` pub := sec+ 42
Next example

.

.

.

� ` sec < 0:boolH

.

.

.

� ` �sec : intH H tH v H

�, H ` sec := �sec �, H ` skip
�, L ` if sec < 0 then sec := �sec else skip

Next example

.

.

.

� ` sec < 0:boolH

� ` 42: intL H t L v L

�, H ` pub := 42 �, H ` skip
�, L ` if sec < 0 then pub := 42 else skip

4.3 Robust Declassification

Inference rule for 2 point lattice

� ` e :⌧`e `e t pc v `x

�, pc ` x := e
�(x) = ⌧`x

� ` e :⌧`e pc v `x `e v `x

�, pc ` x := e
�(x) = ⌧`x

For 2 point conf and integ lattices

� ` e :⌧`from pc v `to pc v (Secret,Trusted) `from v (Secret,Trusted) integOf(`from) = integOf(`to)

�, pc ` x := declassify(e)
�(x) = ⌧`to

For principal lattice

� ` e :⌧`from pc v `to integOf(`from) = integOf(`to)

`from v `to t writersToReaders(`from) `from v `to t writersToReaders(pc)

�, pc ` x := declassify(e)
�(x) = ⌧`to

4.4 Quantitiative Info FLow

H(X) = �
X

x2X
Pr (x) log2 (Pr (x))

H(X|Y) =
X

y2Y
Pr (Y = y)H(X|Y = y)

Page 6 of 8

Secret

Public

Secret

Public

Prior belief Posterior belief

Stephen Chong, Harvard University

Selected References

•Kozyri, E., S. Chong, and A. C. Myers (2022). Expressing
information flow properties. Foundations and Trends in Privacy
and Security 3(1), 1–102.

•Sabelfeld, A. and A. C. Myers (2003, January). Language-based
information-flow security. IEEE Journal on Selected Areas in
Communications 21(1), 5–19.

•Sabelfeld, A. and D. Sands (2005, June). Dimensions and
principles of declassification. In Proceedings of the 18th IEEE
Computer Security Foundations Workshop, pp. 255–269. IEEE
Computer Society.

•Alvim, M. S., K. Chatzikokolakis, A. McIver, C. Morgan, C.
Palamidessi, and G. Smith (2020). The Science of Quantitative
Information Flow. Springer.

44

