Harvard John A. Paulson
School of Engineering
and Applied Sciences

OREGON T
PROGRAMMING
LANGUAGES
SUMMER &r

SCHOOL unzversrry

Language-Based Security

Lecture 3:
Information Flow Enforcement

Stephen Chong, Harvard University

Road M

*Intro
e Formal Methods for Security
e|anguage-Based Security
e Case Study: Noninterference

* Primer on Computer Security
e |Information Flow

e Semantics

e Enforcing Language Abstractions

Stephen Chong, Harvard University 2

Enforcement of Information Flow

From Semantics To Enforcement

*We have discussed semantics of information flow
*Very carefully separated from enforcement
mechanism

e|.e., defining our notion of security without how we
are going to enforce it

e et’s consider how to enforce noninterference,
i.e., control the flow of information in systems

Dimensions of Enforcement

e Enforcement mechanisms differ on granularity and when enforcement occurs

e Granularity:

* Coarse grained mechanisms track information at granularity of computational
containers

 Contains both code and data
« Different granularity of containers, e.g., process, function, block scope, ...

*Fine grained mechanisms track information at level of values/variables
*\When does enforcement happen?
e Static mechanisms enforce security before execution

e Dynamic mechanisms enforce security during execution
* (Hybrid mechanisms use a combination)

e|n this lecture, we will look briefly at:
e Security type system (static fine-grained)
eFine-grained information-security monitor (dynamic fine-grained)

e Coarse-grained information-security monitor (dynamic coarse-grained)

Security-Typed Language

e Type system to enforce (fine-grained) information
flow

*|et’s see the key ideas in IMP
* Two judgments:

F I_ €. Tg F’ pc I— C
| \
Labeled type
Context I maps Expression ;33:/\”“ | bool
vars to labeled (boolean or S

t , . Label is upper bound on info
ypes, T arithmetic) that influences the value

Iyping o

' €.7Ty

' n:int, [' - true:bool | ' - false:bool | I'Ez:T(x)

Fl_altintgl F|_a22intg2 Py F|_a1:intg1 Fl_aglintgl
— 11 2

- ¢ =01 4o
I'-a; +as:Inty, I' a1 < as:booly,

Stephen Chong, Harvard University 7

Typing of Commands

I',pcc

Context I' maps
vars to labeled

types, 1

Command

/ A
pce N

Program counter level
(1) a lower bound on the side
effects of ¢
(2) an upper bound on the info
that affects whether this
command is executed

I',pc = c

I'Fe:ry, C.UpcC 4, I''pckc1 I',pck co
: ['(x) =70,
I', pc - skip I''pckHz:=¢€ I',pct c1;co
I'=b:bool, TI''pclllcy T,pcldlF co I'=b:bool, TI' pcUlFc
I', pc - if b then ¢, else c; I', pc - while b do ¢

Stephen Chong, Harvard University 9

Exa

I'Fe:ry, leUpc l,

sec := pub + 42; I'(z) = e,

I''pcEx:=e€
—— —

I' - pub:intL ['42:int;
I' = pub + 42:inty, LULCH
I', L F sec := pub + 42

' Fsec:inty ['F42:int;
I' - sec +42:inty HUuLCL
I'L - pub :=sec + 42

Stephen Chong, Harvard University 10

Example

—

I'-b:bool, I'pcUltcy T',pcUlF co
I', pc I if b then ¢, else ¢

1f (sec < 0)

T — E—

: [I' H —sec:inty HUHCH
[' - sec < 0:booly I', H - sec := —sec I', H + skip
[', L - if sec < 0 then sec := —sec else skip

1f (sec </0)

; I'-42:int;, HULCL
I' - sec < 0:booly I')H F pub := 42 I', H I skip
I', L - if sec < 0 then pub := 42 else skip

Stephen Chong, Harvard University 11

Soundness of Type System

e Theorem: For all programs c, if I', L ~ c then c is noninterfering,

l.e.,
For all 01, Oy, 0’1, 0’2, £
if 01 =¢ 02 and <c,01){ 0’1 and {(c,02)| 0"
then 0’1 =¢ 07
* Proof:

_ots of techniques possible for proving relational properties
Direct proof based on induction (on large step operational semantics)

Logical relations

e “Squared” language approach (Due to Pottier & Simonet, 2003)

* Create a language IMP2 where one execution of an IMP2 represents 2 IMP
executions

Another Type

ex=x|n|()|ee|Ar:T,0l.e

input from ¢ | output e to N ,

let x = e1 1N eo Latent effect program counter label
R pe —= e|s lower bound of side effects of
o :=unit ‘ Int ‘ T1 — T2 function body
e|s the pc label used to type check
T ..=0y function body
V Labeled type.

(Label is upper bound on info that
influences value of base type o)

. J

Stephen Chong, Harvard University 13

Another

ex=x|n|()|ere|Ax:7, Ll e
| input from ¢ | output e to ¢

|letx =eq inesy

o z=unit |int| 7, 25 F,pc I_ e.T
T =0y
[ypekx:T(x) Upc I, pc - n:int,, I, pcF () :unit,,

\ 1

A
Oy VA= Ty 10/

Stephen Chong, Harvard University 14

Another Type

ex=x|n|()|ere|Ax:7, Ll e
| input from ¢ | output e to ¢

|letx =eq inesy

o z=unit |int| 7, 25 Fg pc I_ €. T Info leading to
TH=0¢ decision to execute
the function body
[pek x:T'(x) U pe I, pc - n:int,, I, pcF () :unit,,
F[x — T],Z e:t’ Iypcker: (T LAEN ™), D,pckey:Tm £ UpcE pey
F,pCFAZUZT,Z.GI(TLT/)pC [',pct ey ex:7" Upc
pcCf — Input is a side effect at level ¢,

so pc must be a lower bound

I', pc = input from £:inty ;.

Stephen Chong, Harvard University 15

Another T

ex=x|n|()|ere|Ax:7, Ll e
| input from ¢ | output e to ¢

|letx =eq inesy

o z=unit |int| 7, 25 F,pc I_ e.T
T =0y
[ypekx:T(x) Upc I, pc - n:int,, I, pcF () :unit,,
[z 7],k et T,pcter:(t 251, T,pckes:T £ UpeL per
F,pCFAxlT,f.ei(TLT/)pC [,pck ey ex:7 Upc
pcC/ Ipcke:T T <7 oc<o (Y
[, pc F input from £:inty . Cpcke:1 o < oy,

Stephen Chong, Harvard University 16

Another Ty

ex=x|nl|()|ere | Ax:T, Ll e
| input from ¢ | output e to ¢

|letx =eqinesy F,pCI_ e:T

o:x=unit|int| NS

T =0y
[peck x:T'(x) U pe I, pc - n:int,, [, pcF () :unit,,
Lz —71],lF et I'pct ey: (T—>T)gl I'pctes:Tm 41 UpcC pey
F,pC|—)\ZEZT,€.€Z(TL>T/)pC [pcterex:7 Upe
pcC/ I pcke:T T <7 o <o (Y
I', pc = input from £:inty ;. I .pcke:71’ o¢ < o),
1 < T T < T pc’ T pc

pC
T — Ty < ’HTQ

Stephen Chong, Harvard University 17

Other Language Features

e Can extend basic ideas of security type system
for other language features

e References (i.e., first-class memory)

* Exceptions

e Track information flow associated with normal termination
or exceptional termination

e First-class Labels

Fine-Grained Dynamic Enforcement

* Dynamic enforcement techniques monitor and

restrict execution atr

Untime

* Mechanism modifies program behavior! It is an

information channel!

e Need to be aware of what information it reveals by

(not) intervening
* May need to adapt the

security condition to account

for additional observations

Dynamic Info Flow Tracking

e Flow-Insensitive:

4)
pc u [(pub+42) C [(sec) ? pc L

LulLCH ° sec H

pub ~ L

Dynamic Info Flow Tracking

e Flow-Insensitive:

4)
pc u ['(pub+7) C [(pub) ? pc L

LulLCL) sec» H
pub ~ L

Dynamic Info Flow Tracking

e Flow-Insensitive:

4)
pc u l'(sec) C [(pub) ? pc L

LuHCL) sec» H
pub ~ L

Dynamic Info Flow Tracking

e Flow-Insensitive:

a N
[(sec>0)=H pcw L

sec» H

pub ~ L

1f (sec>0) then
sec := 42

else
skip;
pub := 0

Dynamic Info Flow Tracking

e Flow-Insensitive:

4)
[(sec>0)=H pcre HuU L

sec H
pub ~ L

1f (sec>0) then
sec := 42

else
skip;
pub := 0

Dynamic Info Flow Tracking

e Flow-Insensitive:

4)
pcul(42)C I (sec) ? pcr Hu L
(HLIL)ULEH ° sec» H
pub P~ L

1f (sec>0) then
sec := 42

else
skip;

pub := 0

Dynamic Info Flow Tracking

e Flow-Insensitive:

4)
pc u(0) C I (pub) ? pcr L
LulLCL ® Secl—)H
pub ~ L

1f (sec>0) then
sec := 42

else
skip;

pub := 0

Dynamic Info Flow Tracking

e Flow-Insensitive:

4)
pcul(sec>0)=H pcw L

sec» H

pub ~ L

if (sec>0) then
pub := 42

else

skip

Dynamic Info Flow Tracking

e Flow-Insensitive:

-

pcul(sec>0)=H pcre HuU L

sec» H

pub ~ L

if (sec>0) then
pub := 42

else

skip

Dynamic Info Flow Tracking

e Flow-Insensitive:

-

~

pcul(42)C I (pub) ? pcr Hu L

(HUL)ULEL ® sec» H
pubr L

if (sec>0) then
pub := 42

else

skip

Flow-5ensitive Dynamic

e Natural thing to do is allow the security context
to be flow sensitive

ei.e., the mapping from vars to security levels can
change during execution

e(Can do a similar thing with a flow-sensitive type
system)

* Accepts more programs!

Flow-5ensitive Dynamic

pcwr L

cuUl(sec)=H
P () sec H

pub ~ L

X [

X = secC;
X = 0;
output sec to L

Flow-5ensitive Dynamic

pcwr L

cuUl(sec)=H
P () sec H

pub ~ L
X H

X = secC;
X = 0;
output sec to L

Flow-5ensitive Dynamic

pcwr L

sec» H

pub ~ L
X H

X = secC;
X = 0;
output sec to L

Flow-5ensitive Dynamic

pcwr L
sec H

pub ~ L

X [

X = secC;
X = 0;
output sec to L

Flow-5ensitive Dynamic

4)
pc u [(sec)E L ? pew L
LuHEL S secr [
pub ~ L
X L

X = secC;
X = 0;
output sec to L

Flow-5ensitive Dynamic

-
pcul(sec>0)=H

1f (sec > 0)
X = 1
else
skip;
output x to L

Flow-5ensitive Dynamic

-

pcul(sec>0)=H pern HUL

sec» H

pub ~ L

X [

1f (sec > 0)
X = 1
else
skip;
output x to L

Flow-5ensitive Dynamic

pcul(0)=H per HUL

sec» H

pub ~ L

1f (sec > 0)
X = 1

else
skip;
output x to L

Flow-5ensitive Dynamic

pcul(0)=H per HUL

sec» H

pub ~ L

1f (sec > 0)
X = 1

else
skip;
output x to L

Flow-5ensitive Dynamic

-
pcur(x)EL? per L
LUHEL sec » H

pub ~ L

X H

1f (sec > 0)
X =1
else

Flow-5ensitive Dynamic

-
pcul(sec>0)=H

1f (sec > 0)
X = 1
else
skip;
output x to L

Flow-5ensitive Dynamic

-

pcul(sec>0)=H pern HUL

sec» H

pub ~ L

X [

1f (sec > 0)
X = 1
else
skip;
output x to L

Flow-5ensitive Dynamic

pcr Hu L
sec H

pub ~ L

1f (sec > 0)
X = 1

else
skip;
output x to L

Flow-5ensitive Dynamic

pcr L

pcu l'(x) CI(L) ? sec~ H

e This is an impliciti(aka indirect) flow! |® pub L
e [f we allow it, on some executions we

Xxp L

will leak information.

¢ So called “half-bit” leak.
e Can combine 2 “half-bit” leaks to
reliably leak a bit!

),

Flow-5ensitive Dynamic

pcu l'(x) CI(L)

e This is an implicit (aka indirect) flow!

e [f we al
will lea
® SO ca

ow It, on some executions we
kK information.

led “half-bit” leak.

e Can combine 2 “half-bit” leaks to

output y to L

No-Sensitive U

* Austin and Flanagan (2009)
*Don't raise level of variables when pc is high

ei.e., only raise level of variable x if currently pc CI'(x)

e Some slightly more permissive variations are
possible

Stephen Chong, Harvard University 46

Dynamic vs Static

* Flow-insensitive dynamic tracking can be more precise (for
termination-insensitive NI) than flow-insensitive type system

* Flow-sensitive dynamic tracking and flow-sensitive type
system are incomparable (for termination-insensitive NI)

* Hybrid systems combine static and dynamic techniques

Russo & Sabelfeld 2010

(a) Flow-insensitive analysis (b) Flow-sensitive analysis (c) Flow-sensitive analysis, hybrid
monitors

Figure 2. Relation between programs accepted by type systems and monitors

Other Fine-Grained Enforcement
Mechanisms

e Dataflow analyses

* Abstract interpretation

* Program dependence graphs/program slicing
* Program rewriting

e Symbolic execution

* Relational program logics

Coarse-Grain Info Flow Control

e Computation containers track what information comes into container
e Think process, or maybe object
e Maintain a high-water mark: highest security level seen
e All info in container is treated as potentially tainted with high water mark

e Coarse-grained enforcement is typically dynamic (with maybe some
static techniques to enforce the interfaces of the containers)

e w
Level: M
4)
Level: L
23 19
_ Y
\
fLevel: H
D
42
_ J
_ Y

Coarse-Grain Info Flow Control

e Computation containers track what information comes into container
e Think process, or maybe object
e Maintain a high-water mark: highest security level seen
e All info in container is treated as potentially tainted with high water mark

e Coarse-grained enforcement is typically dynamic (with maybe some
static techniques to enforce the interfaces of the containers)

~

-
Level: M
4)

Level: M _lﬁ _lﬁ
23 19

Bﬁ q y

1

fLevel: H

D

42

Coarse-Grain Info Flow Control

e Computation containers track what information comes into container
e Think process, or maybe object
e Maintain a high-water mark: highest security level seen
e All info in container is treated as potentially tainted with high water mark

e Coarse-grained enforcement is typically dynamic (with maybe some
static techniques to enforce the interfaces of the containers)

~

-
Level: M
4)

Level: H _lﬁ _lﬁ
23 19

Bﬁ 9 y

a \

fLevel: H

D

42

Coarse-Grain Info Flow Control

e Computation containers track what information comes into container
e Think process, or maybe object
e Maintain a high-water mark: highest security level seen
e All info in container is treated as potentially tainted with high water mark

e Coarse-grained enforcement is typically dynamic (with maybe some
static techniques to enforce the interfaces of the containers)

e w
Level: M
4)
Level: L
23 19
_ Y
\
fLevel: H
D
42
_ J
_ Y

Coarse-Grain Info Flow Control

e Computation containers track what information comes into container
e Think process, or maybe object
e Maintain a high-water mark: highest security level seen
e All info in container is treated as potentially tainted with high water mark

e Coarse-grained enforcement is typically dynamic (with maybe some
static techniques to enforce the interfaces of the containers)

(Levek M h

a4)
Level: L

Coarse-Grain Info Flow Control

4

e Computation containers track what information comes into container

e Think process, or maybe object
e Maintain a high-water mark: highest security level seen
e All info in container is treated as potentially tainted with high water mark

e Coarse-grained enforcement is typically dynamic (with maybe some
static techniques to enforce the interfaces of the containers)

~

-
Level: M
4)

Level: L _hj _hj
23 19

_ v,

fLevel: H h

D

42

Selected References

*Volpano, D., G. Smith, and C. Irvine (1996). A sound type system
for secure flow analysis. Journal of Computer Security 4(3), 167—
187.

e Austin, T. H. and C. Flanagan (2009). Efficient purely-dynamic
information flow analysis. In Proceedings of the 2009 Workshop
on Programming Languages and Analysis for Security.

e Sabelfeld, A. and A. Russo (2009). From dynamic to static and
back: Riding the roller coaster of information- flow control
research. In Proceedings of Andrei Ershov International
Conference on Perspectives of System Informatics, pp. 352-365.

*Russo, A. and A. Sabelfeld (2010). Dynamic vs. static flow-
sensitive security analysis. In Proceedings of the IEEE Computer
Security Foundations Symposium.

Beyond Confidentiality

Confidentiality a

eSo far, we have considered information flow for
confidential information

e \We can also think about information flow for
Integrity

Stephen Chong, Harvard University 57

Confidentiality a

e For confidentiality: we want to restrict flow of
secret data

e For integrity: we want to restrict flow of
untrusted data

Secret

Public

Stephen Chong, Harvard University

Confidentiality a

e For confidentiality: we want to restrict flow of
secret data

e For integrity: we want to restrict flow of
untrusted data

Untrusted Untrusted OB

Trusted

Stephen Chong, Harvard University

Noninterference

* The semantic condition is exactly the same!

* The duality between confidentiality and integrity
is the direction of “trust” in the lattice

,n-(- ; f- SN N

e e o PR TR UL 1. €~V N Rl > R L . O P s =l
[Definition: Program c is noninterfering if: .
| For all o1, 02, 6’1 6/2, €

if o1 =¢ 62 and <c,o1)| 6’1 and {(c,02){ 0”2

then o’1 =¢ o/»

Confidential Untrusted

Public Trusted

However...

* There are differences between confidentiality and
Integrity
*Code

e Many well-principled mechanisms for the integrity of code
* Code signing
* Checking of mobile code (bytecode verification, proof-carrying
code, type checking, ...)
* Sandboxing

* Not so for confidentiality

* There are impossibility results about the confidentiality of
code...

More Differences

e Termination, timing, power consumption, and
other side channels

* Maybe less severe...

* Do we care if the attacker can affect the acoustic
emanations of a CPU?

* Some covert channel attacks become availability
attacks, resource consumption attacks

Reclassification

e The dual of declassification is called
endorsement

e Declassification: making information less confidential

e Endorsement: making information more trusted

e Both move information downwards in the lattice

Confidential Untrusted

Public Trusted

Endorsement

* Aspects of declassification apply to endorsement
e What information is being endorsed?

e Who is responsible for endorsing it? Who receives the endorsed
information?

e Where in the system (or info-flow lattice) does endorsement happen
e When is information endorsed?

e Quantitative information flow: how much information is leaked
e Contamination vs suppression (Clarkson & Schneider)

e Contamination = how much untrusted input contaminates trusted
output

e Dual for confidentiality: how much secret input present in public output

e Suppression = how much trusted input is suppressed in trusted output
* No confidentiality dual!

Combining Confidentiality and Integrity

e Given a lattice for confidentiality (Ac,Ec) and a
lattice for integrity (A1,C1), we can combine them
into a single lattice (A,E) where
o A=AcxAr={ (b,)| e Ac bie AL}

o (Le, £) T (€, £ iff €. Cc £ and € Ty £/

Confidential Untrusted Secret,Untrusted

\ \ N

Public Trusted Public,Untrusted Secret, Trusted

NS

Public, Trusted

Combining Confidenti

/‘\

A,B,C

Confidentiality Levels
Who can read information?
E.g., in A,B, Alice can read it, and
Bob can read it (Charlie can not)

Stephen Chong, Harvard University

Integrity Levels
Who can write information?
E.g., in A B, Alice can write it, and
Bob can write it (Charlie can not)

66

Interaction Between
Confidentiality and Integrity

*Consider a program that secretl := ...;

declassifies some data |secret?2 := ..

X := secretl;
pub = declassify(x)

°
*7

e Suppose the attacker |secret1 := ...;
can influence which |[secret2 := ...;

1f (low input) then x := secretl
else X := secret?2
pub = declassify(x)

secret is declassified

e Attacker can cause the wrong data to be declassified

*So-called “laundering attack”

Robust Declassification

e Zdancewic and Myers (2001)

e Intuitive idea: an active attacker should not learn
more than a passive attacker

* Active attacker: provic
e Passive attacker: just o

ing low-integrity inputs

Dserving

e This implies that the data to declassify, and the
decision to declassity it, should be high integrity

Typing Rule fo
Declassifi

eRule for assignment

I'~e:mp, LeUpc/l,

F(ZIZ‘) — Ty

xr

I''pck-x:=c¢€
e Equivalent rule for assignment

F|_€: CEBCB gelzgiv
Tee pCc = — F(QE):TE

X

I''pcHx:=e€

Stephen Chong, Harvard University 69

Typing Rule for Robust
Declassification

e Equivalent rule for assignment

I'emy, pcC¥l, L.C 4,

— ['(x) =7, trusted

I''pcHx:=c¢€

e Rule for declassification

I'teiry,,, . pcEly, pcC (Secret, Trusted) {prom T (Secret, Trusted) integOf(£form,) = integOf(fy,)

Data to
declassity is

Decision to
declassify is trusted

/ [, pc - x := declassify(e) /

It is declassification only,
not endorsement

(z) = 74,

Secret,Untrusted

N

Public,Untrusted Secret, Trusted

~N 7

Public, Trusted

Typing Rule for Robust
Declassification

I'Fe:ry,,, pcCly, peC (Secret, Trusted) Lpom T (Secret, Trusted) integOf(€srom) = integOf(£y,) I(x)
T) =T,

[, pc = o := declassify(e)
Secret,Untrusted

I N
/ l \ Public,Untrusted Secret, Trusted

| %)@ o>
\ | / X \ | / \Public,Trusé

AB,C

Reader Set erter Set

eIntuition: for any principal p, if the declassification lets p read the data, p should not
have influenced it

evp. p € readers({w) — readers(fiom) = p & writers(€fom)
*vp. p € readers(fi) = p € readers({som) or p & writers(£jom)

ereaders({rom) 2 readers(€n) n writers(£som)
e readers({som) Cc readers(fi) U writers(£fom)

*som C 1o U writersTOReaders(£som)

Typing Rule for Robust
Declassification

I'Fe:ry,,, pcCly, peC (Secret, Trusted) Lpom T (Secret, Trusted) integOf(€srom) = integOf(£y,) I(x)
T) =T,

[, pc = o := declassify(e)
Secret,Untrusted

(%)
/ | \ 0 / \
A B c / AIC\ Public,Untrusted Secret, Trusted
| >O<| A'B>O<B'C
AB AC B.C L 5 Cl \ /
\AE[C/ \ L / Public, Trusted
Reader Set Writer Set

I'e:r,,,. pcEly integOf(Lyrom) = integOf(£y,)
Cirom T Lo U WritegsToReaders(ﬁfmm) Cirom T L1 U writersToReaders(pc)

F o
// ', pc - x := declassify(e) // () = o,

Data to
declassity is Decision to
trusted .
declassity is trusted

What About Endorsement?

e Equivalent of robust declassification for integrity

is transparent endorsement (Cecchetti et al.,
2017)

e |ntuitively: data and decision to endorse should
be public

e Nonmalleable info flow =
robust declassification
+ transparent endorsement

Dependency

e At its core, noninterference is about
(in)dependency

e Techniques for noninterference are also good for
dependency

*Binding-time analysis, slicing, ... (Abadi et al. 1999)

e Tracking and restricting errors in computation
(Sampson et al. 2011)

Selected References

e Zdancewic, S. and A. C. Myers (2001, June). Robust declassification. In

Proceedings of the 14th IEE
Breton, Nova Scotia, Canad

e Abadi, M., A. Banerjee, N.
dependency. In Conference

- Computer Security Foundations Workshop, Cape
a, pp- 15-23. IEEE Computer Society.

Heintze, and J. G. Riecke (1999). A core calculus of
Record of the Twenty-Sixth Annual ACM

Symposium on Principles of Programming Languages, New York, NY, USA, pp.

147-160. ACM Press.

eSampson, A., W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D.
Grossman (2011). Enerj: approxi- mate data types for safe and general low-
power computation. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI "11, New York, NY,
USA, pp. 164-174. Association for Computing Machinery.

e Cecchetti, E., A. C. Myers, and O. Arden (2017). Nonmalleable information
flow control. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 17, New York, NY, USA, pp.
1875-1891. Association for Computing Machinery.

