Harvard John A. Paulson
School of Engineering
and Applied Sciences

OREGON
PROGRAMMING
LANGUAGES
SUMMER ar
SCHOOL untversIty

Lo

Language-Based Security

Lecture 4:
Enforcing Language Abstractions

Stephen Chong, Harvard University

Road Map

*Intro
e Formal Methods for Security
e|anguage-Based Security
e Case Study: Noninterference

* Primer on Computer Security

e Information Flow
e Semantics
e Enforcement
eBeyond confidentiality

{ e Enforcing Language Abstractions }

Stephen Chong, Harvard University 9

Enforcing Language Abstractions

e Programming Languages are a very useful abstraction!

* Programmers reason about systems using that abstraction

e But language abstractions can be violated
*When compiled down to lower-level abstractions and composed with other code

e Due to “strange” language features, e.g.,
- reflection
» unsafe code

» dynamic code (e.g., eval)

- foreign-function calls

e|f language abstractions violated then language-level reasoning may not

hold &

e Variety of existing techniques to enforce language abstractions

No Executable Data

e Prevent execution of unauthorized code
°f.g,

*Do not have an eval operator in your language
* But limited forms of reflection are often useful!

e Database interface: use prepared statements instead of
arpitrary strings

* Prevents SQL injection attacks

Enforce Memory Safety

e Fat pointers
 Pointers to memory include upper and lower bounds

* Prevents buffer overflow

e Software Fault Isolation (SFI)

| ow-level rewriting/restriction of code execution to ensure it
(approximately) matches intended execution

eKey idea: confine what code can execute and what memory can be
accessed

oE.g., Control Flow Integrity (CFl): ensure jumps only to suitable code targets
* Maybe aligned on 32-byte boundaries, maybe a list of permitted addresses

°E.g., ensure that all memory access is aligned and restricted to appropriate
segment

¢ | ots of low-level tricks to be efficient

Compilation

* Those previous techniques are mainly ad hoc, and don’t
actually guarantee enforcement of language semantics

e et’s think about compilation from high-level language to
low-level language

e Discrepancy between language abstractions of low-level and high-

level
package Bank; typedef struct account_t {
int balance = 0;

public class Account{ void (*deposit) (struct Account™, int) = deposit_f;

private int balance = 0; } Account;

public void deposit(int amount) { void deposit_f(Account™ a, int amount) {

this.balance += amount; a—balance += amount;

} return;

} }

Patrignani et al., ACM Comput. Surv. 51(6), 2019.

Secure Compilation

* The goal of secure compilation is to develop
compiler techniques that preserve security
properties of program components

°i.e., program components that are composed with
other (potentially malicious) components

Full Abstraction

e VVarious formal statements of what secure
compilation means

* One common approach is full abstraction

e Compiler is fully abstract when it translates

€q
€(

uivalent source-level components into

uivalent target-level ones

*Preserves and reflects observational equivalence
between source and target programs

Contexts

e To define full abstraction, we first define contexts
and contextual equivalence

* A context C is a program with a hole (denoted
[-]) that can be filled with a program component

P, generating a whole program C|[P]

*You can think of a context C as a function from
component to whole program

e Contexts can model external code that is
interacting with a component

Context Exa

°In an ML-like language:

*Plugging in the component fun x -> x + 7
gives us the whole program

let £ = fun x -> x + 7 in
f 0

Stephen Chong, Harvard University 10

Context Exa

PY In Java- package main;

import Bank.Account;

public class Main{
public static void main(String [] args){
Account acc = new Account();

}
/

e Composing with component from earlier gives us
whole program: ,.ckage sank:

public class Account{
private int balance = 0;

public void deposit(int amount) {
this.balance += amount;

}
}

L —— L

Stephen Chong, Harvard University 11

Contextual Equivalence

e Write Plo if (whole) program P produces
observation o
ee.g., diverges
°e.g., terminates with output 42

* Two components P; and P> are contextually
equivalent if for all contexts €,and observations
o, C[Pi1]{o it and only if C[P2]|lo
e \Written P1 =cx P>

Example

e Are these OCaml programs contextually
equivalent?

let rec factorial n = let rec factorial n =
match n with if n <= 0 then 1

| 0 > 1 else n * factorial (n - 1)
| ->n * factorial (n - 1)

*No, here is a context that distinguishes them

[*]
factorial -1

*One program diverges, one evaluates to 1

Example

e Are these OCaml programs contextually
equivalent?

let sum to n n = let rec sum to n n =

let result = ref 0 in if n <= 0 then 0
for 1 = 1 to n do else n + sum to n (n - 1)

result := l!result + 1
done;
lresult

*Yes, can’t distinguish their behavior using
(standard) OCaml contexts

E

* Are these Java programs contextually equivalent?

private secret : Int = 0; private secret : Int = 0;
public setSecret() : Int { public setSecret() : Int {
secret = 0; secret = 1;
return 0; return 0;
} }
5 — —————— 15— =

Stephen Chong, Harvard University 15

Contextual Equivalence

e Often definitions of contextual equivalence limited to
whether program terminates or diverges

e Can convert other behavior into termination/divergence

* E.g., have a context that diverges if the component returns 42, terminates
otherwise

* Note: cannot capture timing channels

eKey idea is that contexts are capturing a notion of
observability

e Contextual equivalence means the components are indistinguishable

e Reasoning about contexts is typically very hard!

e Can use other equivalences (e.g., trace-based, bisimilarity, ...) so long
as they are exactly as precise as contextual equivalence

Full Abst

e A compiler is fully abstract if it preserves and reflects

contextual equivalence:
Forall Pi, P, Pi=wx P2 ifandonlyit [[Pi]l=cx [P2]

/A 7

Source components Compiled components
contextually equivalent contextually equivalent

Stephen Chong, Harvard University 17

Full Abstraction

e A compiler is fully abstract if it preserves and reflects

contextual equivalence:

cor all P, P2, Pi=axP2 ifandonly it [[Pi]l=cx [P2]

* Reflection is backward direction: follows from compiler

correctness (assuming determinism)
o i.e., if [Pil=cx [P2] then Pi=cx P>

* e.g., not satisfied by compi

e Preservation is forward c
not make any additional

Ing every program to “return 42;”

irection: implies target language can
distinctions between P and P>

e j.e., if Pi=cx P2 then [P1] =cx [P2]

e i.e., source-level abstractions are preserved

Achieving Full Abstraction

* May require back translation: proving any target-language
context can be expressed as a source-language context

e Statically:

e Use a typed target language, and show the compilation preserves
typing
e Dynamically:
e Use cryptography in target language
*|nsert runtime checks
* Must ensure attacker cannot avoid/tamper with these checks

e Use security architectures
» Address-space layout randomization
* Trusted Execution Environments, e.g., Intel’s SGX, ARM'’s TrustZone, ...

Beyond Full Abstraction

e Full abstraction preserves (and reflects) contextual
equivalence

e But they may not be the only property we are
interested in preserving

oW
oW

nat abou

- safety and liveness properties?

nat abou

- hyperproperties?

*E.g., noninterference-like security guarantees

e Full abstraction not strong enough to enforce these

* And may be too hard to enforce if all you care about
is, e.g., safety and not contextual equivalence

Full Abstraction Not Enough

e Consider a compiler that translates programs of
the form f(x:Bool) e
o el

ei.e., checks if input is a boolean, and if so behaves
correctly, but is insecure on other inputs

e|s fully abstract!

e But doesn’t preserve safety property “Never
output 42"

°E.g., when compiling f(x:Bool)—0

Robust Trace Pr

e A compiler satisfies RTP iff compilation preserves
every trace-based property:

Vi € 274 YP. (YCs t.Cs[P] ~ t =t €) =
A (VCrp t.Cr [P~ t =t € 7)

[A trace-based property] /\

[Compilation of program P]

Stephen Chong, Harvard University 22

Robust Trace Pr

e A compiler satisfies RTP iff compilation preserves
every trace-based property:

Vi € 274 WP, (VCs t.Cs [P~ t =t €m) =
(VCr t.Cr [P~ t =t € m)

* An equivalent “property-free” characterization:
VP. VC+. Vt. C+r [PJ,] ~ 1 =dCq. Cq [P] ~ 1

Stephen Chong, Harvard University 23

Robust Safety Preservation

e A compiler satisfies RSP iff compilation preserves
every trace-based safety property:

RSP : Vr € Safety. VP. (VCs t.Cs [Pl ~t=tewm) =
(VCr t. Pl ~t=1temn)

* An equivalent “property-free” characterization:
VP. VCr. Vm. Pl| ~» m = dCs. Cs |[P| ~» m

/

Finite trace prefix
(Intuitively, the “bad” trace)

Robust Hyperproperty P

* A compiler satisfies RHP iff compilation
preserves every trace-based hyperproperty:

RHP: VH €22, VP. (VCs.Behav (Cs[P]) € H) =
(\V/CT Behav (CT [P\H) - H)

e Equivalent “property-free” characterizations:

VP. YCr. 3Cs. Behav (Cr [P}]) = Behav (Cg [P])

VP. VCr. dCs. Vi. Cr |Pl| »t < (g |P] ~t

Stephen Chong, Harvard University 25

Relational
Hyperproperties
Criteria (§4)

Hyperproperties
Criteria (§3)

Trace

Properties
Criteria (§2)

Robust Relational Hyperproperty

Preservation (RrHP) \ Robust Relational Property
| Preservation (RrTP) > Robust Relational relaXed safety
Robust K -Relational Hyperproperty Preservation (RrXP) N
Preservation (RKrHP) \ o Robust Relational Safety
| . Robust F1n1te—Relqt10nal relaXed Preservation (RrSP)
Robust 2-Relational Hyperproperty Robust K -Re.latlonal Property safety Preservation (RFrXP)
Preservation (R2rHP) Preservation (RKrTP) \ ‘
| :
, Robust K-Relational relaXed Robust Finite-Relational
Robust 2-Relational Property safety Preservation (RKrXP) Safety Preservation (RFrSP)

Preservation (R2rTP) \ |

J , . Robust 2-Relational relaXed
N etermmaq " safety Preservation (R2rXP)

A
Robust Trace Equivalence Full
Preservation (RTEP)

Robust Hyperproperty
Preservation (RHP)

Robust K'-Relational Safety
Preservation (RKrSP)

Preservation (RSCHP)

|
Robust K'-Subset-Closed Hyperproperty

Preservation (RKSCHP)

| \ |
Robust 2-Subset-Closed Hyperproperty Robust K-Hypersafety Preservation (RKHSP)

Preservation (R2SCHP) ¢

abstraction

Robust 2-Relational Safety

Robust Hypersafety Preservation (RHSP)
Preservation (R2rSP)

Robust 2-Hypersafety Preservation (R2HSP) —

Robust Trace Property Preservation (RTP)
¢ \ Robust Termination-Insensitive
Noninterference Preservation

Robust Dense Property Preservation (RDP) Robust Safety Property Preservation (RSP) (RTINIP)

Fig. 1: Partial order with the secure compilation criteria studied in this paper. Criteria higher in the diagram imply the lower
ones to which they are connected by edges. Criteria based on trace properties are grouped in a yellow area, those based on
hyperproperties are in a red area, and those based on relational hyperproperties are in a blue area. Criteria with an italics name
preserve a single property that belongs to the class they are connected to; the dotted edge requires an additional determinacy
assumption. Finally, each edge with a thick arrow denotes a strict implication that we have proved as a separation result.

Abate et al., CSF 2019.

References/Further Reading

e Patrignani, M., A. Ahmed, and D. Clarke (2019, feb).

Formal approac
fully abstract co

1ES

mpl

to secure compilation: A survey of

ation and related work. ACM

Comput. Surv. 51(6).

e Abate, C., R. Blanco, D. Garg, C. Hritcu, M.
Patrignani, and J. Thibault (2019). Journey beyond full

abstraction: Exploring robust property preservation
for secure compilation. CSF 2019, pp. 256-271. IEEE.

e Amal Ahmed OPLSS 2019 lectures: https://
www.youtube.com/watch?v=yP29TKmK3 o

https://www.youtube.com/watch?v=yP29TKmK3_o
https://www.youtube.com/watch?v=yP29TKmK3_o

Weird Machines

Butfer Overflow Exploit

e Consider the following vulnerable C code

void vulnerable function(char #*input) {
char buf[64];

argument

build

strcpy(buf, input);

e Classic buffer overflow attack: %ebp —>

e Call vulnerable_function with input that
puts x86 exploit code into buf and overwrites
return address

. other local
e Execute arbitrary code! vars, argument

build, ...

* Prevent it by ensuring non-executable
stack %esp —>

Return to libc attack

e Even if stack is non-executable, can
make use of existing code

e|ibc is on most systems; address of libc
code is guessable

°E.g., set up stack so that overwrite:

ereturn address with address of system
function in libc

eoverwrite argument build area with address
of string “/bin/sh”
* Maybe string is already in binary
* Or maybe also put that string into the payload

%ebp —>

%esp —>

unused bytes

unused
bytes

other local
vars, argument

build, ...

It Gets Worse...

e Return-Oriented Programming (ROP)

* A gadget is a short sequence of machine instructions that ends in a
return instruction

« Attackers can (automatically) identity gadgets that already exist in binaries

eKey idea of ROP: chain gadgets together

» Each gadget performs a small amount of computation, then return
instruction jumps to the next gadget

- i.e., overflow the stack to put the sequence of addresses of gadgets on the
stack

e Gadgets perform operations but may also set up the machine
for the next gadget

°E.g., one gadget might load specific value into a register; next
gadget will read the register

Weird Machines

e How do we formalize and think about these
kinds of exploits?

e Formal methods can help us understand and also
possibly prevent entire class of exploits

* Recent work on weird machines presents a
perspective on this

e Dullien, 2020

Intended Finite State Machine

*\What the programmer intends to implement

° :(Q) i}EZ) A} 5) O-)
e Set of states O
e |nitial state i

eFinal states F

|Input alphabet X

e Output alphabet A

e State transition function 6 : O xX—Q
e Output function o : OxX—A

Example: Tiny Secure Message-
Passing Server

e Small, clearly-defined security boundary, complex enough to be
Interesting

e A machine that remembers password-secret pairs for later retrieval
e Retrieval removes the pair
e Arbitrary limit of 5000 password-secret pairs

Security property: intuitively, you need to know (or guess) the
right password to obtain the secret

e Can express precisely using probabilities

e States of the FSM given by

0,
M= sk pi»si € bitszp\{0}

Pi *Pj
{(p1,51)s -+, (P5000> S5000) }

start

|

Read input password-secret pair (A)

read(p)
read(s)

|

Store pair in memory (B)
Memory <« Memory U {(p,s)}

A

: IF condition b: :
- Y(p',s") € Memory : p” # p

|Memory| < 4999
s#0,p#0

Output the requested secret (C)

Memory « {(p’,s’) € Memory | p’ + p}

print(s’)

IF condition c:

«~——— 3(p’.s’) € Memory : p = p’
: s#0

Output error message (D)

print(0)

A

IF condition d:
s=0

Q= {Apm, M e M},
z = {(p, S)lp,S € bit532},

5= Ay X (p,)

o:=Apm X (p,s)

Vp =0 :
V |Memory| = 5000 :

i:=Ap,F:=10
A :={s € bits3y}
(p,s) ¢ M
AMU(p,s) it A|M| < 4999
| As # 0

AM\(p,s) if (p, S) eM
Ay otherwise

Js’ if (p,s") e M

0if s =0V |M] = 5000

Security Property

1) The attacker chooses a probability distribution A over

([] [(
® Set u p d ga me <S [M l al finite-state transducers Ocyploit that have an input alpha-
bet Yo, = A and output alphabet Ag_,, = . This

tO C I to ra h i C means that the attacker specifies one or moxl‘oei:t finite-state
Y p

transducers that take as input the outputs of the IFSM, and

p rOtOC O I S) output words that are the input for the IFSM.

(2) Once this is done, the defender draws two elements p, s
from bits32 according to the uniform distribution.

(3) The attacker draws a finite-state transducer from his dis-
tribution and is allowed to have it interact with the IFSM
for an attacker-chosen number of steps ngetup.

(4) The defender sends his (p, s) to the IFSM.
(5) The attacker gets to have his @eyplojt interact with the IFSM
for a further attacker-chosen number of steps nexploit-

e Probability for Oexploit
to obtain secret is no
better than guessing:

setup t Mexploit |0exploit|
|bitsso] - 232

Pls € opsm| <

Emulating the IFSM

e Programmer implements/emulates the IFSM

* Assume we have a simple machine (Cook-and-
Reckhow RAM machine model)

eHarvard architecture (i.e., code is not data)
216 32-bit memory cells, treat first 6 as registers

LOAD(C, ry) :rg «— C Load a constant
ADD(rs,, rs,,rg) :rg <15, + s, Addtwo registers
or a register and constant
SUB(rs,,Ts,,¥q) :Tq < rs, —Ts, Subtract two registers

or a register and constant

ICOPY(rp,1q) g T, Indirect memory read
DCOPY(rg,rs) DTpy T Indirect memory write
INZ/JZ(r, 1,) Transfer control to

I, if r is nonzero, zero
READ(ry) :rg < input Read a value from input
PRINT(rs) :ry — output Write a value to output

Emulating the IFSM

e \Variant 1:

e Use registers/cells 0-5 as scratch

e Use cells 6-10006 a simple flat array for storing pairs

of values

* No sophisticated data structures, just search through
memory for empty pairs of memory cells

e \ariant 2

*Implement as two singly-linked lists

*Oneto
*One to

Kee

Kee

D trac

D trac

< of free space for password-secret pairs

< of currently active password-secret pairs

What is a bug?

e Can explicitly define bugs in this setting
*|FSM serves as intensional specification

e Call the implementation machine cpu

et Qcpu be the set of states of the implementation
machine

*Bug has occurred in implementation when
implementation state g € Qcpy has no clean
equivalent in [FSM

Sane and Transitory States

* Abstraction function from states Qcpu to states Qg (of the IFSM)

X0, cpu,p - Qcpu — Qg

*Set Qcpusane are the states for which a is defined
ei.e., the states that directly correspond to a state of the IFSM

* But cpu may take multiple steps to implement one step in the IFSM, i.e., may
have some transitory states
e|egitimate states needed to reach a desired target state of the IFSM
*Need to distinguish these from error states
e Call them Qcpytrans

o
@ ’@ oS, 0) =Y

A A

ol :Ql

Weird States

e Weird states (Qcpu"eird) are the states of Qcpy that are
neither sane nor transitory

O Qcpu: Qcpusane () Qcputrans () Qcpuweird
e Sources of weird states

* Human error in writing program

« Most common source! e.g., memory corruption bugs, buffer
overflows, failed invariants, ...

e Hardware faults during execution
* Bit flips, from gamma rays or Rowhammer attacks, etc

* Transcription errors
* E.g., error in program transmission (over network, from disk, etc.)

Weird Machines

Data
g N\
Input Input

e Classical view of machine:
runs program, accepts data as

. State 1 >| State 2 State 3 State 4 >| State 5
Input \ \

Instruction Instruction Instruction Instruction

. — ~ _/
e Can summarize sequence of Program
instructions, and intermediate
states /Data (Program fron}a\ttacker perspective)\
e From attacker perspective: an Input Input
unintended machine where
. . . State 1 >| State 4 >| State 5
the input data, combined with
the COde, Operates on memory Instruction(s) Instruction(s)
— _/

v .
Program (Data from attacker perspective)

Weird Machi

e |Intended machine implementation

e Emulates all state transitions of the IFSM so a state from Qcp sane gets transformed
to another state from Qcpusa"e, maybe traversing some states from Qcpytrans

e There may be an unintended machine
eStart in a weird state

e “Instructions” in the form on input transform to other weird states
 Transitions that were meant to transform valid states!

. t
(Qepu > qinit> Qepyy Y Qepu 2 s N6, 0)

* Interesting properties:
*[nput as instruction stream
e Unknown state space
e Unknown computational power

* Emergent instruction set

Stephen Chong, Harvard University 43

Attacker Models

e Given method of entering some initial ginit from some particular set of
sane states {Qitiel € Qcpusane

e Exploitation is the process of:
esetup (choosing the right q;)
einstantiation (entering qinit) and
eprogramming of the weird machine

e How to model the attacker? Some possibilities:
e Arbitrary program-point, chosen-bitflip
- Attacker gets to stop program execution, choose any bit to flip
e Arbitrary program-point, chosen-bitflip, registers
» Attacker gets to stop program execution, choose any bit (except for registers) to flip
e Fixed-program point, chosen-bitflip, registers

* At specific program point(s), attacker gets to choose any bit (except for registers) to flip

Exploitability

eVariant 1: Not exploitable!

eKey idea: show that any bit-flip the attacker can do can
be achieved by a finite number of legitimate transitions

ei.e., bit-flipping stays within Qcpsane
e Show that the security property is achieved if staying
only within Qcpysane
eVariant 2: Exploitable

*Key idea: attacker sets up data structure so that a bitflip
corrupts a pointer, and a known value is treated as a
password

Where to Fro

* This provides a perspective on weird machines
e Generalizes many kinds of vulnerabilities

e But does it provide insight in how to prevent
these vulnerabilities?

Stephen Chong, Harvard University 46

Weird Machines as Insecure
Compilation

e Paykin et al. (2019)

eKey idea: an exploit is behavior in the target that
doesn’t correspond to behavior in the source

Definition (Exploit). An exploit of a vulnerable source pro-
gram V is an attacker context A from an attack class A if

Behav (C[V)) # Behav (A[[V]]) for every non-oblivious' C.

’ v C . —oblivious(C \
Exploit*(V) 2 {4 ¢ A oblivious(C) =

|| Behav (C[V)) # Behav (A[1VI),

Definition (Weird Machine). The weird machine of a vulner-

able source program V for an attack class A is the collection
of behaviors arising from exploits of V.

WMA(V) £ { Behav (A[[V]]) | 4 € Exploit*(V)]

’

Weird Machines as Insecure
Compilation

* Generalizes Dullien’s approach
e Uses vocabulary of language-based security

e Recall Robust Hyperproperty Preservation:

Theorem II1.3 (Abate et al. [9]). A compiler satisfies
RHP if and only if for all source components U° and
target contexts (", there exists a back-translated source

context C° such that B(CS[US]) —~ B(CTTUP LY.

e Exactly characterizes no weird-machine exploits!

Theorem I1I1.4. A compiler satisfies RHP if and Onéy
if it has no exploits: for all source components U,

Exploit(U°) = &.

Moral of this Lecture

*\Weird machines: application of formal methods
to understand and reason about certain
vulnerabilities

| anguage-based security connected it with
existing security definitions and on-going work
on enforcing these security definitions

Moral of this Lectur

Model of E
computer <
system =

Real computer -

system _

Stephen Chong, Harvard University L — 4 51

Moral of this Lecture Series

Model of
computer
system | =

Real computer &=

system J

—e

*PL techniques and ideas are a great fit for formal
approaches to computer security

e Useful models for systems, effective reasoning techniques,
oractical enforcement mechanisms, enforcing language
abstractions preserves reasoning, ...

e Go forth and research!

Moral of this Lecture Series

References/Further Reading

e Dullien, T. (2020). Weird machines,
exploitability, and provable unexploitability. IEEE

Transactions on Emerging Topics in Computing
3(2), 391-403.

e Paykin, J., E. Mertens, M. Tullsen, L. Maurer, B.
Razet, and S. Moore (2019). Weird machines as
insecure compilation. In Workshop on
Foundations of Computer Security.

