
Language-Based Security

Lecture 4:
Enforcing Language Abstractions

Stephen Chong, Harvard University

Stephen Chong, Harvard University

Road Map

2

•Intro
•Formal Methods for Security
•Language-Based Security
•Case Study: Noninterference

•Primer on Computer Security

•Information Flow
•Semantics
•Enforcement
•Beyond confidentiality

•Enforcing Language Abstractions

Stephen Chong, Harvard University

Enforcing Language Abstractions

•Programming Languages are a very useful abstraction!
•Programmers reason about systems using that abstraction

•But language abstractions can be violated
•When compiled down to lower-level abstractions and composed with other code

•Due to “strange” language features, e.g.,
• reflection
• unsafe code

• dynamic code (e.g., eval)

• foreign-function calls
• ...

•...

•If language abstractions violated then language-level reasoning may not
hold 😔

•Variety of existing techniques to enforce language abstractions

3

Stephen Chong, Harvard University

No Executable Data

•Prevent execution of unauthorized code
•E.g.,

•Do not have an eval operator in your language
•But limited forms of reflection are often useful!

•Database interface: use prepared statements instead of
arbitrary strings
• Prevents SQL injection attacks

4

Stephen Chong, Harvard University

Enforce Memory Safety

•Fat pointers
•Pointers to memory include upper and lower bounds
• Prevents buffer overflow

•Software Fault Isolation (SFI)
•Low-level rewriting/restriction of code execution to ensure it

(approximately) matches intended execution
•Key idea: confine what code can execute and what memory can be

accessed
•E.g., Control Flow Integrity (CFI): ensure jumps only to suitable code targets
•Maybe aligned on 32-byte boundaries, maybe a list of permitted addresses

•E.g., ensure that all memory access is aligned and restricted to appropriate
segment

•Lots of low-level tricks to be efficient

•...
5

Stephen Chong, Harvard University

Compilation

•Those previous techniques are mainly ad hoc, and don’t
actually guarantee enforcement of language semantics

•Let’s think about compilation from high-level language to
low-level language
•Discrepancy between language abstractions of low-level and high-

level

6

1:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

As an example, consider the Java code of Listing 1, which is translated into the C code of
Listing 2—for the sake of brevity, both code snippets have been simpli�ed to a minimum.

1 package Bank;
2
3 public class Account{
4 private int balance = 0;
5
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the
size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.
This violation occurs because there is a discrepancy between what abstractions the source

language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful
abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 67].
In order to withstand the danger posed by exploitable target languages, secure compilation

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality
they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker
contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

As an example, consider the Java code of Listing 1, which is translated into the C code of
Listing 2—for the sake of brevity, both code snippets have been simpli�ed to a minimum.

1 package Bank;
2
3 public class Account{
4 private int balance = 0;
5
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the
size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.
This violation occurs because there is a discrepancy between what abstractions the source

language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful
abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 67].
In order to withstand the danger posed by exploitable target languages, secure compilation

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality
they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker
contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Patrignani et al., ACM Comput. Surv. 51(6), 2019.

Stephen Chong, Harvard University

Secure Compilation

•The goal of secure compilation is to develop
compiler techniques that preserve security
properties of program components
•i.e., program components that are composed with

other (potentially malicious) components

7

Stephen Chong, Harvard University

Full Abstraction

•Various formal statements of what secure
compilation means

•One common approach is full abstraction
•Compiler is fully abstract when it translates

equivalent source-level components into
equivalent target-level ones
•Preserves and reflects observational equivalence

between source and target programs

8

Stephen Chong, Harvard University

Contexts

•To define full abstraction, we first define contexts
and contextual equivalence

•A context ℂ is a program with a hole (denoted
[·]) that can be filled with a program component
P, generating a whole program ℂ[P]
•You can think of a context ℂ as a function from

component to whole program

•Contexts can model external code that is
interacting with a component

9

Stephen Chong, Harvard University

Context Examples

•In an ML-like language:

•Plugging in the component fun x -> x + 7
gives us the whole program

10

let f = [·] in
f 0

let f = fun x -> x + 7 in
f 0

Stephen Chong, Harvard University

Context Examples

•In Java:

•Composing with component from earlier gives us
whole program:

11

Formal Approaches to Secure Compilation 1:9

3.1 Contextual Equivalence
Contextual equivalence (also known as observational equivalence) provides a notion of observation
of the behaviour of a component (generally divergence) and states when two components exhibit
the same observable behaviour. The notion of contextual equivalence (De�nition 3.3 below) relies
on the de�nition of context and of divergence (De�nition 3.1 and 3.2). This section also discusses
the pros and cons of contextual equivalence (Section 3.1.1).

De�nition 3.1 (Context). A context C is a program with a hole (denoted by [·]), which can be
�lled by a component P , generating a new whole program: C[P].

Contexts can be used to model the external code that can interact with a speci�c piece of software
(in this case, the hole-�lling component P). Based on the language of P , contexts can assume a variety
of forms. For example, if P is the �-calculus expression �x .(xx), a context is another �-calculus
expression with a hole, such as (��.(��)) [·] or [·] (��.(��)). In this case, if P is plugged in the hole
of either context, the resulting whole program is (��.(��)) (�x .(xx)), which is commonly known
as �, the diverging term. Analogously, when P is the Java code of Listing 1 contexts are other Java
programs which refer to (and use) the classes P de�nes, such as the Java code in Listing 6.

1 package main;
2 import Bank.Account;
3
4 public class Main{
5 public static void main(String [] args){
6 Account acc = new Account();
7 }
8 }

Listing 6. Example of a Java context interacting with the code of Listing 1.

From a semantics perspective, plugging a component in a context makes the program whole, so
its behaviour can be observed via its operational semantics. A di�erent way to close the term would
be via system-level semantics [55]. In this kind of approach, the context (called the opponent) is
not constrained by the syntax of a language as is the case with contextual equivalence, so it can
model a powerful attacker to the code. Since this approach has not been used in secure compilation
work we do not discuss it further.

De�nition 3.2 (Divergence). A component P diverges if it performs an unbound number of
reduction steps. We denote that P diverges as P* .

De�nition 3.3 (Contextual equivalence [110]). Two components P1 and P2 are contextually equiv-
alent if they are interchangeable in any context without a�ecting the observable behaviour of the
program: P1 'ctx P2 , 8C. C[P1]* () C[P2]* .

For strictly-terminating languages, the requirement that both programs diverge or both terminate
must be replaced with the requirement that both terminate yielding equal values of ground type
(e.g., integers or bools).

Using contextual equivalence, only what can be observed by the context is of any relevance; this
changes from language to language, as di�erent languages have di�erent functionality. Contexts can
model malicious attackers that interoperate with the secure software (the hole-�lling component
P), possibly mounting attacks such as those described in Section 2.

Contextual equivalence can be used to model security properties of source code, as described by
Example 3.4 below, for various examples from Section 2.

Example 3.4 (Security properties via contextual equivalence). The code snippet of Example 2.1
described con�dentiality properties. That code is presented alongside a new snippet in Figure 1

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:2 Marco Patrignani, Amal Ahmed, and Dave Clarke

As an example, consider the Java code of Listing 1, which is translated into the C code of
Listing 2—for the sake of brevity, both code snippets have been simpli�ed to a minimum.

1 package Bank;
2
3 public class Account{
4 private int balance = 0;
5
6 public void deposit(int amount) {
7 this.balance += amount;
8 }
9 }

Listing 1. Example of Java source code.

1 typedef struct account_t {
2 int balance = 0;
3 void (⇤deposit) (struct Account⇤, int) = deposit_f;
4 } Account;
5
6 void deposit_f(Account⇤ a, int amount) {
7 a!balance += amount;
8 return;
9 }

Listing 2. C code obtained from compiling the Java code of Listing 1.

When the Java code in Listing 1 interacts with other Java code, the latter cannot access the contents
of balance since it is a private �eld. However, when the Java code is compiled into the C code in
Listing 2 and then interacts with arbitrary C code, the latter can access the contents of balance by
doing simple pointer arithmetic. Given a pointer to a C Account struct, an attacker can add the
size (in words) of an int to it and read the contents of balance, e�ectively violating a con�dentiality
property that the source program had.
This violation occurs because there is a discrepancy between what abstractions the source

language o�ers and what abstraction the target language has. This discrepancy is both inevitable
and dangerous. The inevitability stems from the fact that source languages provide powerful
abstractions whose goal is allowing a programmer to write better code. The danger stems from the
fact that source-level abstractions can be used to enforce security properties, but target languages
that do not preserve such security properties are vulnerable to attacks. Unfortunately, most target
languages cannot preserve the abstractions of their source-level counterparts [1, 67].
In order to withstand the danger posed by exploitable target languages, secure compilation

techniques can be adopted. Secure compilation is a discipline that studies compilers (or, more
generally, compilation schemes) that preserve the security properties of source languages in their
compiled, target-level counterparts. Secure compilation is concerned with the security of partial
programs (also called components in this paper) since attackers are modelled as the environment such
programs interact with. Partial programs are programs that do not implement all the functionality
they require to operate. Instead, they are linked together with an environment (often also called
a context) that provides the missing functionality in order to create a runnable whole program.
An open environment is used to model possible attackers to the component, which is not possible
when whole programs are considered.

Secure compilers use a variety of techniques to protect compiled components from attacker
contexts. Once devised, such compilers must be proven to be secure, i.e., they must be proven to
conform to some criterion that implies secure compilation. As we discuss later in this survey, a

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Stephen Chong, Harvard University

Contextual Equivalence

•Write P⇓o if (whole) program P produces
observation o
•e.g., diverges
•e.g., terminates with output 42

•Two components P1 and P2 are contextually
equivalent if for all contexts ℂ,and observations
o, ℂ[P1]⇓o if and only if ℂ[P2]⇓o
•Written P1 ≃ctx P2

12

•Are these OCaml programs contextually
equivalent?

•No, here is a context that distinguishes them

•One program diverges, one evaluates to 1
Stephen Chong, Harvard University

Example

13

let rec factorial n =
 match n with
 | 0 -> 1
 | _ -> n * factorial (n - 1)

let rec factorial n =
 if n <= 0 then 1
 else n * factorial (n - 1)

[·]
factorial -1

•Are these OCaml programs contextually
equivalent?

•Yes, can’t distinguish their behavior using
(standard) OCaml contexts

Stephen Chong, Harvard University

Example

14

let sum_to_n n =
 let result = ref 0 in
 for i = 1 to n do
 result := !result + i
 done;
 !result

let rec sum_to_n n =
 if n <= 0 then 0
 else n + sum_to_n (n - 1)

•Are these Java programs contextually equivalent?

Stephen Chong, Harvard University

Example

15

1:10 Marco Patrignani, Amal Ahmed, and Dave Clarke

(relevant di�erences in side-by-side snippets are coloured in red). If the two snippets are contex-
tually equivalent, then the value of secret is con�dential to the code. In fact, the two snippets
assign di�erent values to secret, so if they are contextually equivalent, then secret must not be
discernible by external code.

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Example 2.2 described integrity properties. Figure 2 presents that code
alongside other code that checks whether the variable secret has been modi�ed during the
callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it
were allocated globally, its integrity would need to be checked at each lookup of its value. If these
code snippets are contextually equivalent, then secret cannot be modi�ed during the callback.

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4 if (secret == 0) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4
5 return 0;
6
7
8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Example 2.3 described memory size properties. Figure 3 presents that code
alongside other code that does not allocate n new Objects. In Example 2.3, external code could
disrupt the execution �ow by over�owing the memory. If these code snippets are contextually
equivalent, then the memory size does not a�ect the computation.

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

The code snippet of Example 2.4 describes memory allocation properties. Figure 4 presents that
code alongside other code that returns the second allocated object instead of the �rst one. If these
code snippets are contextually equivalent, then the memory allocation order is invisible to an
attacker, as she is unable to distinguish between objects based on their allocation order.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 Marco Patrignani, Amal Ahmed, and Dave Clarke

(relevant di�erences in side-by-side snippets are coloured in red). If the two snippets are contex-
tually equivalent, then the value of secret is con�dential to the code. In fact, the two snippets
assign di�erent values to secret, so if they are contextually equivalent, then secret must not be
discernible by external code.

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 0;
5 return 0;
6 }

1 private secret : Int = 0;
2
3 public setSecret() : Int {
4 secret = 1;
5 return 0;
6 }

Fig. 1. These code snippets express confidentiality properties.

The code snippet of Example 2.2 described integrity properties. Figure 2 presents that code
alongside other code that checks whether the variable secret has been modi�ed during the
callback. Since secret is allocated on the stack, returning from function proxy will erase it; if it
were allocated globally, its integrity would need to be checked at each lookup of its value. If these
code snippets are contextually equivalent, then secret cannot be modi�ed during the callback.

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4 if (secret == 0) {
5 return 0;
6 }
7 return 1;
8 }

1 public proxy(callback : Unit ! Unit)
: Int {

2 var secret = 0;
3 callback();
4
5 return 0;
6
7
8 }

Fig. 2. These code snippets express integrity properties.

The code snippet of Example 2.3 described memory size properties. Figure 3 presents that code
alongside other code that does not allocate n new Objects. In Example 2.3, external code could
disrupt the execution �ow by over�owing the memory. If these code snippets are contextually
equivalent, then the memory size does not a�ect the computation.

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2 for (Int i = 0; i < n; i++){
3 new Object();
4 }
5 callback();
6 // security-relevant code
7 return 0;
8 }

1 public kernel(n : Int, callback : Unit
! Unit) : Int {

2
3
4
5 callback();
6 // security-relevant code
7 return 0;
8 }

Fig. 3. These code snippets express unbounded memory size properties.

The code snippet of Example 2.4 describes memory allocation properties. Figure 4 presents that
code alongside other code that returns the second allocated object instead of the �rst one. If these
code snippets are contextually equivalent, then the memory allocation order is invisible to an
attacker, as she is unable to distinguish between objects based on their allocation order.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Stephen Chong, Harvard University

Contextual Equivalence

•Often definitions of contextual equivalence limited to
whether program terminates or diverges
•Can convert other behavior into termination/divergence
• E.g., have a context that diverges if the component returns 42, terminates
otherwise

•Note: cannot capture timing channels

•Key idea is that contexts are capturing a notion of
observability
•Contextual equivalence means the components are indistinguishable

•Reasoning about contexts is typically very hard!
•Can use other equivalences (e.g., trace-based, bisimilarity, ...) so long

as they are exactly as precise as contextual equivalence

16

Stephen Chong, Harvard University

Full Abstraction

• A compiler is fully abstract if it preserves and reflects
contextual equivalence:
For all P1, P2, P1 ≃ctx P2 if and only if [[P1]] ≃ctx [[P2]]

17

Source components
contextually equivalent

Compiled components
contextually equivalent

Stephen Chong, Harvard University

Full Abstraction

• A compiler is fully abstract if it preserves and reflects
contextual equivalence:
For all P1, P2, P1 ≃ctx P2 if and only if [[P1]] ≃ctx [[P2]]

• Reflection is backward direction: follows from compiler
correctness (assuming determinism)
• i.e., if [[P1]] ≃ctx [[P2]] then P1 ≃ctx P2

• e.g., not satisfied by compiling every program to “return 42;”

• Preservation is forward direction: implies target language can
not make any additional distinctions between P1 and P2

• i.e., if P1 ≃ctx P2 then [[P1]] ≃ctx [[P2]]
• i.e., source-level abstractions are preserved

18

Stephen Chong, Harvard University

Achieving Full Abstraction

•May require back translation: proving any target-language
context can be expressed as a source-language context

•Statically:
•Use a typed target language, and show the compilation preserves

typing

•Dynamically:
•Use cryptography in target language
•Insert runtime checks
•Must ensure attacker cannot avoid/tamper with these checks

•Use security architectures
•Address-space layout randomization
• Trusted Execution Environments, e.g., Intel’s SGX, ARM’s TrustZone, ...

19

Stephen Chong, Harvard University

Beyond Full Abstraction

•Full abstraction preserves (and reflects) contextual
equivalence

•But they may not be the only property we are
interested in preserving

•What about safety and liveness properties?
•What about hyperproperties?

•E.g., noninterference-like security guarantees

•Full abstraction not strong enough to enforce these
•And may be too hard to enforce if all you care about

is, e.g., safety and not contextual equivalence
20

Stephen Chong, Harvard University

Full Abstraction Not Enough

•Consider a compiler that translates programs of
the form
to
•i.e., checks if input is a boolean, and if so behaves

correctly, but is insecure on other inputs

•Is fully abstract!
•But doesn’t preserve safety property “Never

output 42”
•E.g., when compiling

21

Theorem 5.1. Assuming a determinate source language and a
determinate and input total small-step semantics for the target
language, R2rXP⇒ RTEP.

In the other direction, we adapt an existing counterexam-
ple [57] to show that RTEP (and, hence, for determinate
languages also OEP) does not imply RSP or any of the criteria
above it in Figure 1. Fundamentally, RTEP only requires
preserving equivalence of behavior. Consequently, an RTEP
compiler can insert code that violates any security property, as
long as it doesn’t alter these equivalences [57]. Worse, even
when the RTEP compiler is also required to be correct (i.e.,
TP, SCC, and CCC from §2.1), the compiled program only
needs to properly deal with interactions with target contexts
that behave like source ones, and can behave insecurely when
interacting with target contexts that have no source equivalent.

Theorem 5.2. There exists a compiler between two determin-
istic languages that satisfies RTEP, TP, SCC, and CCC, but
that does not satisfy RSP.

Proof. Consider a source language where a partial program
receives a natural number or boolean from the context, and
produces a number output, which is the only event. We
compile to a restricted language that only has numbers by
mapping booleans true and false to 0 and 1 respectively. The
compiler’s only interesting aspect is that it translates a source
function P = f(x:Bool) "→ e that inputs booleans to P↓ =
f(x:Nat) "→if x<2 then e↓ else if x<3 then f(x) else 42.
The compiled function checks if its input is a valid boolean (0
or 1). If so, it executes e↓. Otherwise, it behaves insecurely,
silently diverging on input 2 and outputting 42 on inputs 3 or
more. This compiler does not satisfy RSP since the source
program f(x:Bool)"→0 robustly satisfies the safety property
“never output 42”, but the program’s compilation does not.

On the other hand, it is easy to see that this compiler is
correct since a compiled program behaves exactly like its
source counterpart on correct inputs. It is also easily seen
to satisfy RTEP, since the additional behaviors added by the
compiler (silently diverging on input 2 and outputting 42 on
inputs 3 or more) are independent of the source code (they
only depend on the type), so these cannot be used by any
target context to distinguish two compiled programs.

In the appendix, we use the same counterexample compila-
tion chain to also show that RTEP does not imply the robust
preservation of (our variant of) liveness properties. We also
use a simple extension of this compilation chain to show that
RTEP does not imply RTINIP either. The idea is similar: we
add a secret external input to the languages and when receiving
an out of bounds argument the compiled code simply leaks the
secret input, which breaks RTINIP, but not RTEP.

6 Proof Techniques for RrHP and RFrXP

This section demonstrates that the criteria we introduce can
be proved by adapting existing back-translation techniques.
We introduce a statically typed source language and a similar
dynamically typed target one (§6.1), as well as a simple

translation between the two (§6.2). We then describe the
essence of two very different secure compilation proofs for
this compilation chain, both based on techniques originally
developed for showing fully abstract compilation. The first
proof shows (a typed variant of) RrHP (§6.3), the strongest
criterion from Figure 1, using a context-based back-translation,
which provides a “universal embedding” of a target con-
text into a source context [56]. The second proof shows
a slightly weaker criterion, Robust Finite-relational relaXed
safety Preservation (RFrXP; §6.4), but which is still very
useful, as it implies robust preservation of arbitrary safety and
hypersafety properties as well as RTEP. This second proof
relies on a trace-based back-translation [43, 59], extended
to produce a context from a finite set of finite execution
prefixes. These finiteness restrictions are offset by a more
generic proof technique that only depends on the context-
program interaction (e.g., calls and returns), while ignoring
all other language details. For space reasons, we leave the
details of the proofs for the appendix.

6.1 Source and Target Languages
The two languages we consider are simple first-order lan-
guages with named procedures and boolean and natural values.
The source language Lτ is typed while the target language Lu

is untyped. A program in either language is a collection of
function definitions, each function body is a pure expression
that can perform comparison and natural operations (⊕),
conditional branching, recursive calls, and use let-in bindings.
Expressions can also read naturals from the environment and
write naturals to the environment, both of which generate trace
events. Lu has all the features of Lτ and adds a primitive
e has τ to dynamically check whether an expression e has
type τ . A context C can call functions and perform general
computation on the returned values, but it cannot directly gen-
erate read and write e events, as those are security-sensitive.
Since contexts are single expressions, we disallow callbacks
from the program to the context: thus calls go from context
to program, and returns from program to context.

Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f : τ → τ

Functions F ::= f(x : τ) : τ "→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x : τ = e in e | if e then e else e

| call f e | read | write e | fail
Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f

Functions F ::= f(x) "→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x = e in e | if e then e else e

| call f e | read | write e | fail | e has τ

Labels λ ::= ϵ | α
Actions α ::= read n | write n | ⇓ | ⇑ | ⊥

266

Theorem 5.1. Assuming a determinate source language and a
determinate and input total small-step semantics for the target
language, R2rXP⇒ RTEP.

In the other direction, we adapt an existing counterexam-
ple [57] to show that RTEP (and, hence, for determinate
languages also OEP) does not imply RSP or any of the criteria
above it in Figure 1. Fundamentally, RTEP only requires
preserving equivalence of behavior. Consequently, an RTEP
compiler can insert code that violates any security property, as
long as it doesn’t alter these equivalences [57]. Worse, even
when the RTEP compiler is also required to be correct (i.e.,
TP, SCC, and CCC from §2.1), the compiled program only
needs to properly deal with interactions with target contexts
that behave like source ones, and can behave insecurely when
interacting with target contexts that have no source equivalent.

Theorem 5.2. There exists a compiler between two determin-
istic languages that satisfies RTEP, TP, SCC, and CCC, but
that does not satisfy RSP.

Proof. Consider a source language where a partial program
receives a natural number or boolean from the context, and
produces a number output, which is the only event. We
compile to a restricted language that only has numbers by
mapping booleans true and false to 0 and 1 respectively. The
compiler’s only interesting aspect is that it translates a source
function P = f(x:Bool) "→ e that inputs booleans to P↓ =
f(x:Nat) "→if x<2 then e↓ else if x<3 then f(x) else 42.
The compiled function checks if its input is a valid boolean (0
or 1). If so, it executes e↓. Otherwise, it behaves insecurely,
silently diverging on input 2 and outputting 42 on inputs 3 or
more. This compiler does not satisfy RSP since the source
program f(x:Bool)"→0 robustly satisfies the safety property
“never output 42”, but the program’s compilation does not.

On the other hand, it is easy to see that this compiler is
correct since a compiled program behaves exactly like its
source counterpart on correct inputs. It is also easily seen
to satisfy RTEP, since the additional behaviors added by the
compiler (silently diverging on input 2 and outputting 42 on
inputs 3 or more) are independent of the source code (they
only depend on the type), so these cannot be used by any
target context to distinguish two compiled programs.

In the appendix, we use the same counterexample compila-
tion chain to also show that RTEP does not imply the robust
preservation of (our variant of) liveness properties. We also
use a simple extension of this compilation chain to show that
RTEP does not imply RTINIP either. The idea is similar: we
add a secret external input to the languages and when receiving
an out of bounds argument the compiled code simply leaks the
secret input, which breaks RTINIP, but not RTEP.

6 Proof Techniques for RrHP and RFrXP

This section demonstrates that the criteria we introduce can
be proved by adapting existing back-translation techniques.
We introduce a statically typed source language and a similar
dynamically typed target one (§6.1), as well as a simple

translation between the two (§6.2). We then describe the
essence of two very different secure compilation proofs for
this compilation chain, both based on techniques originally
developed for showing fully abstract compilation. The first
proof shows (a typed variant of) RrHP (§6.3), the strongest
criterion from Figure 1, using a context-based back-translation,
which provides a “universal embedding” of a target con-
text into a source context [56]. The second proof shows
a slightly weaker criterion, Robust Finite-relational relaXed
safety Preservation (RFrXP; §6.4), but which is still very
useful, as it implies robust preservation of arbitrary safety and
hypersafety properties as well as RTEP. This second proof
relies on a trace-based back-translation [43, 59], extended
to produce a context from a finite set of finite execution
prefixes. These finiteness restrictions are offset by a more
generic proof technique that only depends on the context-
program interaction (e.g., calls and returns), while ignoring
all other language details. For space reasons, we leave the
details of the proofs for the appendix.

6.1 Source and Target Languages
The two languages we consider are simple first-order lan-
guages with named procedures and boolean and natural values.
The source language Lτ is typed while the target language Lu

is untyped. A program in either language is a collection of
function definitions, each function body is a pure expression
that can perform comparison and natural operations (⊕),
conditional branching, recursive calls, and use let-in bindings.
Expressions can also read naturals from the environment and
write naturals to the environment, both of which generate trace
events. Lu has all the features of Lτ and adds a primitive
e has τ to dynamically check whether an expression e has
type τ . A context C can call functions and perform general
computation on the returned values, but it cannot directly gen-
erate read and write e events, as those are security-sensitive.
Since contexts are single expressions, we disallow callbacks
from the program to the context: thus calls go from context
to program, and returns from program to context.

Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f : τ → τ

Functions F ::= f(x : τ) : τ "→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x : τ = e in e | if e then e else e

| call f e | read | write e | fail
Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f

Functions F ::= f(x) "→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x = e in e | if e then e else e

| call f e | read | write e | fail | e has τ

Labels λ ::= ϵ | α
Actions α ::= read n | write n | ⇓ | ⇑ | ⊥

266

Theorem 5.1. Assuming a determinate source language and a
determinate and input total small-step semantics for the target
language, R2rXP⇒ RTEP.

In the other direction, we adapt an existing counterexam-
ple [57] to show that RTEP (and, hence, for determinate
languages also OEP) does not imply RSP or any of the criteria
above it in Figure 1. Fundamentally, RTEP only requires
preserving equivalence of behavior. Consequently, an RTEP
compiler can insert code that violates any security property, as
long as it doesn’t alter these equivalences [57]. Worse, even
when the RTEP compiler is also required to be correct (i.e.,
TP, SCC, and CCC from §2.1), the compiled program only
needs to properly deal with interactions with target contexts
that behave like source ones, and can behave insecurely when
interacting with target contexts that have no source equivalent.

Theorem 5.2. There exists a compiler between two determin-
istic languages that satisfies RTEP, TP, SCC, and CCC, but
that does not satisfy RSP.

Proof. Consider a source language where a partial program
receives a natural number or boolean from the context, and
produces a number output, which is the only event. We
compile to a restricted language that only has numbers by
mapping booleans true and false to 0 and 1 respectively. The
compiler’s only interesting aspect is that it translates a source
function P = f(x:Bool) "→ e that inputs booleans to P↓ =
f(x:Nat) "→if x<2 then e↓ else if x<3 then f(x) else 42.
The compiled function checks if its input is a valid boolean (0
or 1). If so, it executes e↓. Otherwise, it behaves insecurely,
silently diverging on input 2 and outputting 42 on inputs 3 or
more. This compiler does not satisfy RSP since the source
program f(x:Bool)"→0 robustly satisfies the safety property
“never output 42”, but the program’s compilation does not.

On the other hand, it is easy to see that this compiler is
correct since a compiled program behaves exactly like its
source counterpart on correct inputs. It is also easily seen
to satisfy RTEP, since the additional behaviors added by the
compiler (silently diverging on input 2 and outputting 42 on
inputs 3 or more) are independent of the source code (they
only depend on the type), so these cannot be used by any
target context to distinguish two compiled programs.

In the appendix, we use the same counterexample compila-
tion chain to also show that RTEP does not imply the robust
preservation of (our variant of) liveness properties. We also
use a simple extension of this compilation chain to show that
RTEP does not imply RTINIP either. The idea is similar: we
add a secret external input to the languages and when receiving
an out of bounds argument the compiled code simply leaks the
secret input, which breaks RTINIP, but not RTEP.

6 Proof Techniques for RrHP and RFrXP

This section demonstrates that the criteria we introduce can
be proved by adapting existing back-translation techniques.
We introduce a statically typed source language and a similar
dynamically typed target one (§6.1), as well as a simple

translation between the two (§6.2). We then describe the
essence of two very different secure compilation proofs for
this compilation chain, both based on techniques originally
developed for showing fully abstract compilation. The first
proof shows (a typed variant of) RrHP (§6.3), the strongest
criterion from Figure 1, using a context-based back-translation,
which provides a “universal embedding” of a target con-
text into a source context [56]. The second proof shows
a slightly weaker criterion, Robust Finite-relational relaXed
safety Preservation (RFrXP; §6.4), but which is still very
useful, as it implies robust preservation of arbitrary safety and
hypersafety properties as well as RTEP. This second proof
relies on a trace-based back-translation [43, 59], extended
to produce a context from a finite set of finite execution
prefixes. These finiteness restrictions are offset by a more
generic proof technique that only depends on the context-
program interaction (e.g., calls and returns), while ignoring
all other language details. For space reasons, we leave the
details of the proofs for the appendix.

6.1 Source and Target Languages
The two languages we consider are simple first-order lan-
guages with named procedures and boolean and natural values.
The source language Lτ is typed while the target language Lu

is untyped. A program in either language is a collection of
function definitions, each function body is a pure expression
that can perform comparison and natural operations (⊕),
conditional branching, recursive calls, and use let-in bindings.
Expressions can also read naturals from the environment and
write naturals to the environment, both of which generate trace
events. Lu has all the features of Lτ and adds a primitive
e has τ to dynamically check whether an expression e has
type τ . A context C can call functions and perform general
computation on the returned values, but it cannot directly gen-
erate read and write e events, as those are security-sensitive.
Since contexts are single expressions, we disallow callbacks
from the program to the context: thus calls go from context
to program, and returns from program to context.

Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f : τ → τ

Functions F ::= f(x : τ) : τ "→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x : τ = e in e | if e then e else e

| call f e | read | write e | fail
Programs P ::= I;F Contexts C ::= e

Types τ ::= Bool | Nat Interfaces I ::= f

Functions F ::= f(x) "→ ret e

Expressions e ::= x | true | false | n ∈ N | e⊕ e | e ≥ e

| let x = e in e | if e then e else e

| call f e | read | write e | fail | e has τ

Labels λ ::= ϵ | α
Actions α ::= read n | write n | ⇓ | ⇑ | ⊥

266

Stephen Chong, Harvard University

Robust Trace Preservation

22

theorems formally or informally mentioned in the paper were
also mechanized in the Coq proof assistant and are marked
with ; this development has around 4400 lines of code and
is available at https://github.com/secure-compilation/
exploring-robust-property-preservation

2 Robustly Preserving Trace Properties
In this section we look at robustly preserving classes of trace
properties, and first study the robust preservation of all trace
properties and its relation to correct compilation (§2.1). We
then look at robustly preserving safety properties (§2.2), which
are the trace properties that can be falsified by a finite trace
prefix (e.g., a program never performs a certain dangerous
system call). These criteria are grouped in the Trace Properties
yellow area in Figure 1. We also carefully studied the robust
preservation of liveness properties, but it turns out that the
very definition of liveness is highly dependent on the specifics
of the program execution traces, which makes that part more
technical. For saving space and avoiding a technical detour, we
relegate to the appendix the details of our CompCert-inspired
trace model, as well as the part about liveness.

2.1 Robust Trace Property Preservation (RTP)

Like all secure compilation criteria we study in this paper,
the RTP criterion below is a generic property of an arbitrary
compilation chain, which includes a source and a target lan-
guage, each with a notion of partial programs (P) and contexts
(C) that can be linked together to produce whole programs
(C[P]), and each with a trace-producing semantics for whole
programs (C[P] !!! t). The sets of partial programs and of
contexts of the source and target languages are unconstrained
parameters of our secure compilation criteria; our criteria make
no assumptions about their structure, or whether the program
or the context gets control initially once linked and executed
(e.g., the context could be an application that embeds a library
program or the context could be a library that is embedded
into an application program).1 The traces produced by the
source and target semantics2 are arbitrary for RTP, but for
RSP we have to consider traces with a specific structure
(finite or infinite sequences of events drawn from an arbitrary
set). Intuitively, traces capture the interaction between a whole
program and its external environment, including for instance
user input, output to a terminal, network communication,
system calls, etc. [48, 51]. As opposed to a context, which
is just a piece of a program, the environment’s behavior is not
(and often cannot be) modeled by the programming language,
beyond the (often nondeterministic) interaction events that we
store in the trace. Finally, a compilation chain includes a

1One limitation of our formal setup, is that for simplicity we assume that
any partial program can be linked with any context, irrespective of their
interfaces (e.g., types or specs). One can extend our criteria to take interfaces
into account, as we illustrate in the appendix for the example in §6.

2In this paper we assume for simplicity that traces are exactly the same
in both the source and target language, as is also the case in the CompCert
verified C compiler [51]. We hope to lift this restriction in the future (§8).

compiler: the compilation of a partial source program P is
a partial target program we write P↓.3

The responsibility of enforcing secure compilation does not
have to rest just with the compiler, but may be freely shared
by various parts of the compilation chain. In particular, to
help enforce security, the target-level linker could disallow
linking with a suspicious context (e.g., one that is not well-
typed [1, 6, 7, 56]) or could always allow linking but introduce
protection barriers between the program and the context (e.g.,
by instrumenting the program [28, 56] or the context [4, 72,
73] to introduce dynamic checks). Similarly, the semantics of
the target language can include various protection mechanisms
(e.g., processes with different virtual address spaces [62], pro-
tected enclaves [59], capabilities [23, 68, 74], etc.). Finally, the
compiler might have to refrain from aggressive optimizations
that would break security [14, 30, 67]. Our secure compilation
criteria are agnostic to the concrete enforcement mechanism
used by the compilation chain to protect the compiled program
from the adversarial target context.

Trace properties are defined simply as sets of allowed
traces [50]. A whole program C[P] satisfies a trace property π
when the set of traces produced by C[P] is included in the set
π or, formally, {t | C[P] !!! t} ⊆ π. More interestingly, we
say that a partial program P robustly satisfies [39, 49, 71]
a trace property π when P linked with any (adversarial)
context C satisfies π. Armed with this, Robust Trace Property
Preservation (RTP) is defined as the preservation of robust
satisfaction of all trace properties. So if a partial source
program P robustly satisfies a trace property π ∈ 2Trace (wrt.
all source contexts) then its compilation P↓ must also robustly
satisfy π (wrt. all target contexts). If we unfold all intermediate
definitions, a compilation chain satisfies RTP iff:

RTP : ∀π ∈ 2Trace. ∀P. (∀CS t.CS [P]!!! t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]!!! t⇒ t ∈ π)

This definition directly captures which properties (specifi-
cally, all trace properties) of the source are robustly preserved
by the compilation chain. However, in order to prove that a
compilation chain satisfies RTP we propose an equivalent ()
“property-free” characterization, which we call RTC (for
“RTP Characterization”):

RTC : ∀P. ∀CT. ∀t. CT [P↓]!!! t⇒∃CS.CS [P]!!! t

RTC requires that, given a compiled program P↓ and a target
context CT which together produce an attack trace t, we can
generate a source context CS that causes trace t to be produced
by P. When proving that a compilation chain satisfies RTC we
can pick a different context CS for each t and, in fact, try to
construct CS from trace t or from the execution CT [P↓]!!! t.

We present similar property-free characterizations for each
of our criteria (Figure 1). However, for criteria stronger than
RTP, a single context CS will have to work for more than
one trace. In general, the shape of the property-free character-

3For easier reading, we use a blue, sans-serif font for source elements, an
orange,bold font for target elements and a black, italic font generically
for elements of either language.

259

A trace-based property

Compilation of program P

•A compiler satisfies RTP iff compilation preserves
every trace-based property:

Stephen Chong, Harvard University

Robust Trace Preservation

•An equivalent “property-free” characterization:

23

theorems formally or informally mentioned in the paper were
also mechanized in the Coq proof assistant and are marked
with ; this development has around 4400 lines of code and
is available at https://github.com/secure-compilation/
exploring-robust-property-preservation

2 Robustly Preserving Trace Properties
In this section we look at robustly preserving classes of trace
properties, and first study the robust preservation of all trace
properties and its relation to correct compilation (§2.1). We
then look at robustly preserving safety properties (§2.2), which
are the trace properties that can be falsified by a finite trace
prefix (e.g., a program never performs a certain dangerous
system call). These criteria are grouped in the Trace Properties
yellow area in Figure 1. We also carefully studied the robust
preservation of liveness properties, but it turns out that the
very definition of liveness is highly dependent on the specifics
of the program execution traces, which makes that part more
technical. For saving space and avoiding a technical detour, we
relegate to the appendix the details of our CompCert-inspired
trace model, as well as the part about liveness.

2.1 Robust Trace Property Preservation (RTP)

Like all secure compilation criteria we study in this paper,
the RTP criterion below is a generic property of an arbitrary
compilation chain, which includes a source and a target lan-
guage, each with a notion of partial programs (P) and contexts
(C) that can be linked together to produce whole programs
(C[P]), and each with a trace-producing semantics for whole
programs (C[P] !!! t). The sets of partial programs and of
contexts of the source and target languages are unconstrained
parameters of our secure compilation criteria; our criteria make
no assumptions about their structure, or whether the program
or the context gets control initially once linked and executed
(e.g., the context could be an application that embeds a library
program or the context could be a library that is embedded
into an application program).1 The traces produced by the
source and target semantics2 are arbitrary for RTP, but for
RSP we have to consider traces with a specific structure
(finite or infinite sequences of events drawn from an arbitrary
set). Intuitively, traces capture the interaction between a whole
program and its external environment, including for instance
user input, output to a terminal, network communication,
system calls, etc. [48, 51]. As opposed to a context, which
is just a piece of a program, the environment’s behavior is not
(and often cannot be) modeled by the programming language,
beyond the (often nondeterministic) interaction events that we
store in the trace. Finally, a compilation chain includes a

1One limitation of our formal setup, is that for simplicity we assume that
any partial program can be linked with any context, irrespective of their
interfaces (e.g., types or specs). One can extend our criteria to take interfaces
into account, as we illustrate in the appendix for the example in §6.

2In this paper we assume for simplicity that traces are exactly the same
in both the source and target language, as is also the case in the CompCert
verified C compiler [51]. We hope to lift this restriction in the future (§8).

compiler: the compilation of a partial source program P is
a partial target program we write P↓.3

The responsibility of enforcing secure compilation does not
have to rest just with the compiler, but may be freely shared
by various parts of the compilation chain. In particular, to
help enforce security, the target-level linker could disallow
linking with a suspicious context (e.g., one that is not well-
typed [1, 6, 7, 56]) or could always allow linking but introduce
protection barriers between the program and the context (e.g.,
by instrumenting the program [28, 56] or the context [4, 72,
73] to introduce dynamic checks). Similarly, the semantics of
the target language can include various protection mechanisms
(e.g., processes with different virtual address spaces [62], pro-
tected enclaves [59], capabilities [23, 68, 74], etc.). Finally, the
compiler might have to refrain from aggressive optimizations
that would break security [14, 30, 67]. Our secure compilation
criteria are agnostic to the concrete enforcement mechanism
used by the compilation chain to protect the compiled program
from the adversarial target context.

Trace properties are defined simply as sets of allowed
traces [50]. A whole program C[P] satisfies a trace property π
when the set of traces produced by C[P] is included in the set
π or, formally, {t | C[P] !!! t} ⊆ π. More interestingly, we
say that a partial program P robustly satisfies [39, 49, 71]
a trace property π when P linked with any (adversarial)
context C satisfies π. Armed with this, Robust Trace Property
Preservation (RTP) is defined as the preservation of robust
satisfaction of all trace properties. So if a partial source
program P robustly satisfies a trace property π ∈ 2Trace (wrt.
all source contexts) then its compilation P↓ must also robustly
satisfy π (wrt. all target contexts). If we unfold all intermediate
definitions, a compilation chain satisfies RTP iff:

RTP : ∀π ∈ 2Trace. ∀P. (∀CS t.CS [P]!!! t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]!!! t⇒ t ∈ π)

This definition directly captures which properties (specifi-
cally, all trace properties) of the source are robustly preserved
by the compilation chain. However, in order to prove that a
compilation chain satisfies RTP we propose an equivalent ()
“property-free” characterization, which we call RTC (for
“RTP Characterization”):

RTC : ∀P. ∀CT. ∀t. CT [P↓]!!! t⇒∃CS.CS [P]!!! t

RTC requires that, given a compiled program P↓ and a target
context CT which together produce an attack trace t, we can
generate a source context CS that causes trace t to be produced
by P. When proving that a compilation chain satisfies RTC we
can pick a different context CS for each t and, in fact, try to
construct CS from trace t or from the execution CT [P↓]!!! t.

We present similar property-free characterizations for each
of our criteria (Figure 1). However, for criteria stronger than
RTP, a single context CS will have to work for more than
one trace. In general, the shape of the property-free character-

3For easier reading, we use a blue, sans-serif font for source elements, an
orange,bold font for target elements and a black, italic font generically
for elements of either language.

259

theorems formally or informally mentioned in the paper were
also mechanized in the Coq proof assistant and are marked
with ; this development has around 4400 lines of code and
is available at https://github.com/secure-compilation/
exploring-robust-property-preservation

2 Robustly Preserving Trace Properties
In this section we look at robustly preserving classes of trace
properties, and first study the robust preservation of all trace
properties and its relation to correct compilation (§2.1). We
then look at robustly preserving safety properties (§2.2), which
are the trace properties that can be falsified by a finite trace
prefix (e.g., a program never performs a certain dangerous
system call). These criteria are grouped in the Trace Properties
yellow area in Figure 1. We also carefully studied the robust
preservation of liveness properties, but it turns out that the
very definition of liveness is highly dependent on the specifics
of the program execution traces, which makes that part more
technical. For saving space and avoiding a technical detour, we
relegate to the appendix the details of our CompCert-inspired
trace model, as well as the part about liveness.

2.1 Robust Trace Property Preservation (RTP)

Like all secure compilation criteria we study in this paper,
the RTP criterion below is a generic property of an arbitrary
compilation chain, which includes a source and a target lan-
guage, each with a notion of partial programs (P) and contexts
(C) that can be linked together to produce whole programs
(C[P]), and each with a trace-producing semantics for whole
programs (C[P] !!! t). The sets of partial programs and of
contexts of the source and target languages are unconstrained
parameters of our secure compilation criteria; our criteria make
no assumptions about their structure, or whether the program
or the context gets control initially once linked and executed
(e.g., the context could be an application that embeds a library
program or the context could be a library that is embedded
into an application program).1 The traces produced by the
source and target semantics2 are arbitrary for RTP, but for
RSP we have to consider traces with a specific structure
(finite or infinite sequences of events drawn from an arbitrary
set). Intuitively, traces capture the interaction between a whole
program and its external environment, including for instance
user input, output to a terminal, network communication,
system calls, etc. [48, 51]. As opposed to a context, which
is just a piece of a program, the environment’s behavior is not
(and often cannot be) modeled by the programming language,
beyond the (often nondeterministic) interaction events that we
store in the trace. Finally, a compilation chain includes a

1One limitation of our formal setup, is that for simplicity we assume that
any partial program can be linked with any context, irrespective of their
interfaces (e.g., types or specs). One can extend our criteria to take interfaces
into account, as we illustrate in the appendix for the example in §6.

2In this paper we assume for simplicity that traces are exactly the same
in both the source and target language, as is also the case in the CompCert
verified C compiler [51]. We hope to lift this restriction in the future (§8).

compiler: the compilation of a partial source program P is
a partial target program we write P↓.3

The responsibility of enforcing secure compilation does not
have to rest just with the compiler, but may be freely shared
by various parts of the compilation chain. In particular, to
help enforce security, the target-level linker could disallow
linking with a suspicious context (e.g., one that is not well-
typed [1, 6, 7, 56]) or could always allow linking but introduce
protection barriers between the program and the context (e.g.,
by instrumenting the program [28, 56] or the context [4, 72,
73] to introduce dynamic checks). Similarly, the semantics of
the target language can include various protection mechanisms
(e.g., processes with different virtual address spaces [62], pro-
tected enclaves [59], capabilities [23, 68, 74], etc.). Finally, the
compiler might have to refrain from aggressive optimizations
that would break security [14, 30, 67]. Our secure compilation
criteria are agnostic to the concrete enforcement mechanism
used by the compilation chain to protect the compiled program
from the adversarial target context.

Trace properties are defined simply as sets of allowed
traces [50]. A whole program C[P] satisfies a trace property π
when the set of traces produced by C[P] is included in the set
π or, formally, {t | C[P] !!! t} ⊆ π. More interestingly, we
say that a partial program P robustly satisfies [39, 49, 71]
a trace property π when P linked with any (adversarial)
context C satisfies π. Armed with this, Robust Trace Property
Preservation (RTP) is defined as the preservation of robust
satisfaction of all trace properties. So if a partial source
program P robustly satisfies a trace property π ∈ 2Trace (wrt.
all source contexts) then its compilation P↓ must also robustly
satisfy π (wrt. all target contexts). If we unfold all intermediate
definitions, a compilation chain satisfies RTP iff:

RTP : ∀π ∈ 2Trace. ∀P. (∀CS t.CS [P]!!! t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]!!! t⇒ t ∈ π)

This definition directly captures which properties (specifi-
cally, all trace properties) of the source are robustly preserved
by the compilation chain. However, in order to prove that a
compilation chain satisfies RTP we propose an equivalent ()
“property-free” characterization, which we call RTC (for
“RTP Characterization”):

RTC : ∀P. ∀CT. ∀t. CT [P↓]!!! t⇒∃CS.CS [P]!!! t

RTC requires that, given a compiled program P↓ and a target
context CT which together produce an attack trace t, we can
generate a source context CS that causes trace t to be produced
by P. When proving that a compilation chain satisfies RTC we
can pick a different context CS for each t and, in fact, try to
construct CS from trace t or from the execution CT [P↓]!!! t.

We present similar property-free characterizations for each
of our criteria (Figure 1). However, for criteria stronger than
RTP, a single context CS will have to work for more than
one trace. In general, the shape of the property-free character-

3For easier reading, we use a blue, sans-serif font for source elements, an
orange,bold font for target elements and a black, italic font generically
for elements of either language.

259

•A compiler satisfies RTP iff compilation preserves
every trace-based property:

•A compiler satisfies RSP iff compilation preserves
every trace-based safety property:

Stephen Chong, Harvard University

Robust Safety Preservation

•An equivalent “property-free” characterization:

24

ization explains what information can be used to produce the
source context CS when proving a compilation chain secure.

Relation to compiler correctness RTC is similar to “back-
ward simulation” (TC), a standard compiler correctness crite-
rion [51]. Let W denote a whole program.

TC : ∀W. ∀t. W↓!!! t⇒W!!! t

Maybe slightly less known is that this property-free character-
ization of correct compilation also has an equivalent property-
full characterization as the preservation of all trace properties:
TP : ∀π ∈ 2Trace. ∀W.

(∀t.W!!! t⇒ t ∈ π)⇒ (∀t. W↓!!! t⇒ t ∈ π)

The major difference compared to RTP is that TP only
preserves the trace properties of whole programs and does
not consider adversaries. In contrast, RTP allows linking a
compiled partial program with arbitrary target contexts and
protects the program so that all robustly satisfied trace proper-
ties are preserved. In general, RTP and TP are incomparable.
However, RTP strictly implies TP when whole programs (W)
are a subset of partial programs (P) and, additionally, the
semantics of whole programs is independent of any linked
context (i.e., ∀W t C. W !!! t ⇐⇒ C[W] !!! t, which
happens, intuitively, when the whole program starts execution
and, being whole, never calls into the context).

More compositional criteria for compiler correctness have
also been proposed [45, 55]. At a minimum such criteria
allow linking with contexts that are the compilation of source
contexts [45], which can be formalized as follows:

SCC : ∀P. ∀CS. ∀t. CS↓ [P↓]!!! t⇒ CS [P]!!! t

More permissive criteria allow linking with any target context
that behaves like some source context [55], which in our
setting can be written as:

CCC : ∀P CT CS t. CT≈CS ∧CT [P↓]!!! t⇒ CS [P]!!! t

Here ≈ relates equivalent partial programs in the target and the
source, and could, for instance, be instantiated with a cross-
language logical relation [6, 55]. RTP is incomparable to SCC
and CCC. On the one hand, RTP allows linking with arbitrary
target-level contexts, which is not allowed by SCC and CCC,
and requires inserting strong protection barriers. On the other
hand, in RTP all source-level reasoning has to be done with
respect to an arbitrary source context, while with SCC and
CCC one can reason about a known source context.

2.2 Robust Safety Property Preservation (RSP)

Robust safety preservation is an interesting criterion for secure
compilation because it is easier to achieve and prove than most
criteria of Figure 1, while still being quite expressive [39, 71].

Recall that a trace property is a safety property if, within
any (possibly infinite) trace that violates the property, there
exists a finite “bad prefix” that violates it. We write m ≤ t
for the prefix relation between a finite trace prefix m and a
trace t. Using this we define safety properties in the usual

way [10, 50, 66]:

Safety " {π ∈ 2Trace | ∀t ̸∈ π. ∃m ≤ t. ∀t′ ≥ m. t′ ̸∈ π}

The definition of RSP simply restricts the preservation of
robust satisfaction from all trace properties in RTP to only
safety properties; otherwise the definition is exactly the same:

RSP : ∀π ∈ Safety. ∀P. (∀CS t.CS [P]!!! t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]!!! t⇒ t ∈ π)

One might wonder how safety properties can be robustly
satisfied in the source, given that execution traces can contain
events emitted not just by the partial program but also by the
adversarial context, which could trivially emit “bad events”
and, hence, violate any safety property. A first alternative is
for the semantics of the source language to simply prevent
the context from producing any events, maybe other than
termination, or, at least, prevent the context from producing
any events the safety properties of interest consider bad. The
compilation chain has then to “sandbox” the context to restrict
the events it can produce [72, 73]. A second alternative is
for the source semantics to record enough information in the
trace so that one can determine the origin of each event—the
partial program or the context. Then, safety properties in which
the context’s events are never bad can be robustly satisfied.
With this second alternative, the obtained global guarantees
are weaker, e.g., one cannot enforce that the whole program
never makes a dangerous system call, but only that the partial
program cannot be tricked by the context into making it.

The equivalent () property-free characterization for RSP
requires one to back-translate a program (P), a target context
(CT), and a finite bad trace prefix (CT [P↓] !!! m) into a
source context (CS) producing the same finite trace prefix (m)
in the source (CS [P]!!! m):

RSC : ∀P. ∀CT. ∀m. CT [P↓]!!! m⇒ ∃CS.CS [P]!!! m

Syntactically, the only change with respect to RTC is the
switch from whole traces t to finite trace prefixes m. As for
RTC, we can pick a different context CS for each execution
CT [P↓] !!! m. (In our formalization we define W !!! m
generically as ∃t≥m. W !!! t.) The fact that for RSC these
are finite execution prefixes can significantly simplify the back-
translation into source contexts (as we show in §6.4).

It is trivially true that RTP implies RSP, since the former
robustly preserves all trace properties while the latter only
robustly preserves safety properties. We have also proved that
RTP strictly implies RSP.

Theorem 2.1. RTP⇒ RSP, but RSP ̸⇒ RTP

Proof sketch. As explained above, RTP ⇒ RSP is trivial.
Showing strictness requires constructing a counterexample
compilation chain to the reverse implication. We take any
target language that can produce infinite traces. We take the
source language to be a variant of the target with the same
partial programs, but where we extend whole programs and
contexts with a bound on the number of events they can
produce before being terminated. Compilation simply erases

260

ization explains what information can be used to produce the
source context CS when proving a compilation chain secure.

Relation to compiler correctness RTC is similar to “back-
ward simulation” (TC), a standard compiler correctness crite-
rion [51]. Let W denote a whole program.

TC : ∀W. ∀t. W↓!!! t⇒W!!! t

Maybe slightly less known is that this property-free character-
ization of correct compilation also has an equivalent property-
full characterization as the preservation of all trace properties:
TP : ∀π ∈ 2Trace. ∀W.

(∀t.W!!! t⇒ t ∈ π)⇒ (∀t. W↓!!! t⇒ t ∈ π)

The major difference compared to RTP is that TP only
preserves the trace properties of whole programs and does
not consider adversaries. In contrast, RTP allows linking a
compiled partial program with arbitrary target contexts and
protects the program so that all robustly satisfied trace proper-
ties are preserved. In general, RTP and TP are incomparable.
However, RTP strictly implies TP when whole programs (W)
are a subset of partial programs (P) and, additionally, the
semantics of whole programs is independent of any linked
context (i.e., ∀W t C. W !!! t ⇐⇒ C[W] !!! t, which
happens, intuitively, when the whole program starts execution
and, being whole, never calls into the context).

More compositional criteria for compiler correctness have
also been proposed [45, 55]. At a minimum such criteria
allow linking with contexts that are the compilation of source
contexts [45], which can be formalized as follows:

SCC : ∀P. ∀CS. ∀t. CS↓ [P↓]!!! t⇒ CS [P]!!! t

More permissive criteria allow linking with any target context
that behaves like some source context [55], which in our
setting can be written as:

CCC : ∀P CT CS t. CT≈CS ∧CT [P↓]!!! t⇒ CS [P]!!! t

Here ≈ relates equivalent partial programs in the target and the
source, and could, for instance, be instantiated with a cross-
language logical relation [6, 55]. RTP is incomparable to SCC
and CCC. On the one hand, RTP allows linking with arbitrary
target-level contexts, which is not allowed by SCC and CCC,
and requires inserting strong protection barriers. On the other
hand, in RTP all source-level reasoning has to be done with
respect to an arbitrary source context, while with SCC and
CCC one can reason about a known source context.

2.2 Robust Safety Property Preservation (RSP)

Robust safety preservation is an interesting criterion for secure
compilation because it is easier to achieve and prove than most
criteria of Figure 1, while still being quite expressive [39, 71].

Recall that a trace property is a safety property if, within
any (possibly infinite) trace that violates the property, there
exists a finite “bad prefix” that violates it. We write m ≤ t
for the prefix relation between a finite trace prefix m and a
trace t. Using this we define safety properties in the usual

way [10, 50, 66]:

Safety " {π ∈ 2Trace | ∀t ̸∈ π. ∃m ≤ t. ∀t′ ≥ m. t′ ̸∈ π}

The definition of RSP simply restricts the preservation of
robust satisfaction from all trace properties in RTP to only
safety properties; otherwise the definition is exactly the same:

RSP : ∀π ∈ Safety. ∀P. (∀CS t.CS [P]!!! t⇒ t ∈ π)⇒
(∀CT t.CT [P↓]!!! t⇒ t ∈ π)

One might wonder how safety properties can be robustly
satisfied in the source, given that execution traces can contain
events emitted not just by the partial program but also by the
adversarial context, which could trivially emit “bad events”
and, hence, violate any safety property. A first alternative is
for the semantics of the source language to simply prevent
the context from producing any events, maybe other than
termination, or, at least, prevent the context from producing
any events the safety properties of interest consider bad. The
compilation chain has then to “sandbox” the context to restrict
the events it can produce [72, 73]. A second alternative is
for the source semantics to record enough information in the
trace so that one can determine the origin of each event—the
partial program or the context. Then, safety properties in which
the context’s events are never bad can be robustly satisfied.
With this second alternative, the obtained global guarantees
are weaker, e.g., one cannot enforce that the whole program
never makes a dangerous system call, but only that the partial
program cannot be tricked by the context into making it.

The equivalent () property-free characterization for RSP
requires one to back-translate a program (P), a target context
(CT), and a finite bad trace prefix (CT [P↓] !!! m) into a
source context (CS) producing the same finite trace prefix (m)
in the source (CS [P]!!! m):

RSC : ∀P. ∀CT. ∀m. CT [P↓]!!! m⇒ ∃CS.CS [P]!!! m

Syntactically, the only change with respect to RTC is the
switch from whole traces t to finite trace prefixes m. As for
RTC, we can pick a different context CS for each execution
CT [P↓] !!! m. (In our formalization we define W !!! m
generically as ∃t≥m. W !!! t.) The fact that for RSC these
are finite execution prefixes can significantly simplify the back-
translation into source contexts (as we show in §6.4).

It is trivially true that RTP implies RSP, since the former
robustly preserves all trace properties while the latter only
robustly preserves safety properties. We have also proved that
RTP strictly implies RSP.

Theorem 2.1. RTP⇒ RSP, but RSP ̸⇒ RTP

Proof sketch. As explained above, RTP ⇒ RSP is trivial.
Showing strictness requires constructing a counterexample
compilation chain to the reverse implication. We take any
target language that can produce infinite traces. We take the
source language to be a variant of the target with the same
partial programs, but where we extend whole programs and
contexts with a bound on the number of events they can
produce before being terminated. Compilation simply erases

260

Finite trace prefix
(Intuitively, the “bad” trace)

•A compiler satisfies RHP iff compilation
preserves every trace-based hyperproperty:

Stephen Chong, Harvard University

Robust Hyperproperty Preservation

•Equivalent “property-free” characterizations:

25

this bound. This compilation chain satisfies RSP (equivalently,
RSC) but not RTP. To show that it satisfies RSC, we simply
back-translate a target context CT and a finite trace prefix m to
a source context (CT, length(m)) that uses the length of m as
the allowed bound, so this context can still produce m in the
source without being prematurely terminated. However, this
compilation chain does not satisfy RTP, since in the source
all executions are finite and, hence, no infinite target trace can
be simulated by any source context.

3 Robustly Preserving Hyperproperties
So far, we have studied the robust preservation of trace prop-
erties, which are properties of individual traces of a program.
In this section we generalize this to hyperproperties, which are
properties of multiple traces of a program [24]. A well-known
hyperproperty is noninterference [11, 38, 53, 76], which usu-
ally requires considering two traces of a program that differ
on secret inputs. Another hyperproperty is bounded mean re-
sponse time over all executions. We study robust preservation
of many subclasses of hyperproperties: all hyperproperties
(§3.1), subset-closed hyperproperties (§3.2), hypersafety and
K-hypersafety (§3.3), and hyperliveness (§3.5). These criteria
are in the red area in Figure 1.

3.1 Robust Hyperproperty Preservation (RHP)

While trace properties are sets of traces, hyperproperties are
sets of sets of traces [24]. We call the set of traces of a whole
program W the behavior of W : Behav (W) = {t | W !!! t}.
A hyperproperty is a set of allowed behaviors. Program W
satisfies hyperproperty H if the behavior of W is a member
of H , i.e., Behav (W) ∈ H , or, equivalently, {t | W !!! t} ∈
H . Contrast this to W satisfying trace property π, which
holds if the behavior of W is a subset of the set π, i.e.,
Behav (W) ⊆ π, or, equivalently, ∀t. W !!! t ⇒ t ∈ π.
So while a trace property determines whether each individual
trace of a program should be allowed or not, a hyperproperty
determines whether the set of traces of a program, its behavior,
should be allowed or not. For instance, the trace property
π123 = {t1, t2, t3} is satisfied by programs with behaviors
such as {t1}, {t2}, {t2, t3}, and {t1, t2, t3}, but a program
with behavior {t1, t4} does not satisfy π123. A hyperproperty
like H1+23 = {{t1}, {t2, t3}} is satisfied only by programs
with behavior {t1} or with behavior {t2, t3}. A program with
behavior {t2} does not satisfy H1+23, so hyperproperties can
express that if some traces (e.g., t2) are possible then some
other traces (e.g., t3) should also be possible. A program
with behavior {t1, t2, t3} also does not satisfy H1+23, so
hyperproperties can express that if some traces (e.g., t2 and
t3) are possible then some other traces (e.g., t1) should not
be possible. Finally, trace properties can be easily lifted to
hyperproperties: A trace property π becomes the hyperproperty
[π] = 2π , the powerset of π.

We say that a partial program P robustly satisfies a hy-
perproperty H if it satisfies H for any context C. Given this

we define RHP as the preservation of robust satisfaction of
arbitrary hyperproperties:

RHP : ∀H ∈ 22
Trace

. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

The equivalent () characterization of RHP is RHC :

RHC : ∀P. ∀CT. ∃CS. Behav (CT [P↓]) = Behav (CS [P])

RHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]!!!t ⇐⇒ CS [P]!!!t

This requires that, for every partial program P and target
context CT, there is a (back-translated) source context CS

that perfectly preserves the set of traces of CT [P↓] when
linked to P. There are two differences from RTP: (1) the
∃CS and ∀t quantifiers are swapped, so the back-translated
CS must work for all traces t, and (2) the implication in
RTC (⇒) became a two-way implication in RHC (⇐⇒),
so compilation has to perfectly preserve the set of traces. In
particular the compiler cannot refine behavior (remove traces),
e.g., it cannot implement nondeterministic scheduling via a
deterministic scheduler.

In the following subsections we study restrictions of RHP to
various subclasses of hyperproperties. To prevent duplication
we define RHP(X) to be the robust satisfaction of a class X
of hyperproperties (so RHP above is simply RHP(22

Trace
)):

RHP(X) : ∀H ∈ X. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

3.2 Robust Subset-Closed Hyperproperty Preservation
(RSCHP)

If one restricts robust preservation to only subset-closed hy-
perproperties then refinement of behavior is again allowed.
A hyperproperty H is subset-closed, written H∈SC, if for
any two behaviors b1⊆b2, if b2∈H then b1∈H . For instance,
the lifting [π] of any trace property π is subset-closed,
but the hyperproperty H1+23 above is not. It can be made
subset-closed by allowing all smaller behaviors: HSC

1+23 =
{∅, {t1}, {t2}, {t3}, {t2, t3}} is subset-closed.

Robust Subset-Closed Hyperproperty Preservation
(RSCHP) is simply defined as RHP(SC). The equivalent ()
property-free characterization of RSCHC simply gives up the
⇐ direction of RHC:

RSCHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]!!! t⇒ CS [P]!!! t

The most interesting subclass of subset-closed hyperproper-
ties is hypersafety, which we discuss next. The appendix also
studies K-subset-closed hyperproperties [52], which can be
seen as generalizing K-hypersafety below.

3.3 Robust Hypersafety Preservation (RHSP)
Hypersafety is a generalization of safety that is very important
in practice, since several important notions of noninterference
are hypersafety, such as termination-insensitive noninterfer-
ence [11, 35, 64], observational determinism [53, 63, 76], and
nonmalleable information flow [20].

According to Alpern and Schneider [10], the “bad thing”
that a safety property disallows must be finitely observable

261

this bound. This compilation chain satisfies RSP (equivalently,
RSC) but not RTP. To show that it satisfies RSC, we simply
back-translate a target context CT and a finite trace prefix m to
a source context (CT, length(m)) that uses the length of m as
the allowed bound, so this context can still produce m in the
source without being prematurely terminated. However, this
compilation chain does not satisfy RTP, since in the source
all executions are finite and, hence, no infinite target trace can
be simulated by any source context.

3 Robustly Preserving Hyperproperties
So far, we have studied the robust preservation of trace prop-
erties, which are properties of individual traces of a program.
In this section we generalize this to hyperproperties, which are
properties of multiple traces of a program [24]. A well-known
hyperproperty is noninterference [11, 38, 53, 76], which usu-
ally requires considering two traces of a program that differ
on secret inputs. Another hyperproperty is bounded mean re-
sponse time over all executions. We study robust preservation
of many subclasses of hyperproperties: all hyperproperties
(§3.1), subset-closed hyperproperties (§3.2), hypersafety and
K-hypersafety (§3.3), and hyperliveness (§3.5). These criteria
are in the red area in Figure 1.

3.1 Robust Hyperproperty Preservation (RHP)

While trace properties are sets of traces, hyperproperties are
sets of sets of traces [24]. We call the set of traces of a whole
program W the behavior of W : Behav (W) = {t | W !!! t}.
A hyperproperty is a set of allowed behaviors. Program W
satisfies hyperproperty H if the behavior of W is a member
of H , i.e., Behav (W) ∈ H , or, equivalently, {t | W !!! t} ∈
H . Contrast this to W satisfying trace property π, which
holds if the behavior of W is a subset of the set π, i.e.,
Behav (W) ⊆ π, or, equivalently, ∀t. W !!! t ⇒ t ∈ π.
So while a trace property determines whether each individual
trace of a program should be allowed or not, a hyperproperty
determines whether the set of traces of a program, its behavior,
should be allowed or not. For instance, the trace property
π123 = {t1, t2, t3} is satisfied by programs with behaviors
such as {t1}, {t2}, {t2, t3}, and {t1, t2, t3}, but a program
with behavior {t1, t4} does not satisfy π123. A hyperproperty
like H1+23 = {{t1}, {t2, t3}} is satisfied only by programs
with behavior {t1} or with behavior {t2, t3}. A program with
behavior {t2} does not satisfy H1+23, so hyperproperties can
express that if some traces (e.g., t2) are possible then some
other traces (e.g., t3) should also be possible. A program
with behavior {t1, t2, t3} also does not satisfy H1+23, so
hyperproperties can express that if some traces (e.g., t2 and
t3) are possible then some other traces (e.g., t1) should not
be possible. Finally, trace properties can be easily lifted to
hyperproperties: A trace property π becomes the hyperproperty
[π] = 2π , the powerset of π.

We say that a partial program P robustly satisfies a hy-
perproperty H if it satisfies H for any context C. Given this

we define RHP as the preservation of robust satisfaction of
arbitrary hyperproperties:

RHP : ∀H ∈ 22
Trace

. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

The equivalent () characterization of RHP is RHC :

RHC : ∀P. ∀CT. ∃CS. Behav (CT [P↓]) = Behav (CS [P])

RHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]!!!t ⇐⇒ CS [P]!!!t

This requires that, for every partial program P and target
context CT, there is a (back-translated) source context CS

that perfectly preserves the set of traces of CT [P↓] when
linked to P. There are two differences from RTP: (1) the
∃CS and ∀t quantifiers are swapped, so the back-translated
CS must work for all traces t, and (2) the implication in
RTC (⇒) became a two-way implication in RHC (⇐⇒),
so compilation has to perfectly preserve the set of traces. In
particular the compiler cannot refine behavior (remove traces),
e.g., it cannot implement nondeterministic scheduling via a
deterministic scheduler.

In the following subsections we study restrictions of RHP to
various subclasses of hyperproperties. To prevent duplication
we define RHP(X) to be the robust satisfaction of a class X
of hyperproperties (so RHP above is simply RHP(22

Trace
)):

RHP(X) : ∀H ∈ X. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

3.2 Robust Subset-Closed Hyperproperty Preservation
(RSCHP)

If one restricts robust preservation to only subset-closed hy-
perproperties then refinement of behavior is again allowed.
A hyperproperty H is subset-closed, written H∈SC, if for
any two behaviors b1⊆b2, if b2∈H then b1∈H . For instance,
the lifting [π] of any trace property π is subset-closed,
but the hyperproperty H1+23 above is not. It can be made
subset-closed by allowing all smaller behaviors: HSC

1+23 =
{∅, {t1}, {t2}, {t3}, {t2, t3}} is subset-closed.

Robust Subset-Closed Hyperproperty Preservation
(RSCHP) is simply defined as RHP(SC). The equivalent ()
property-free characterization of RSCHC simply gives up the
⇐ direction of RHC:

RSCHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]!!! t⇒ CS [P]!!! t

The most interesting subclass of subset-closed hyperproper-
ties is hypersafety, which we discuss next. The appendix also
studies K-subset-closed hyperproperties [52], which can be
seen as generalizing K-hypersafety below.

3.3 Robust Hypersafety Preservation (RHSP)
Hypersafety is a generalization of safety that is very important
in practice, since several important notions of noninterference
are hypersafety, such as termination-insensitive noninterfer-
ence [11, 35, 64], observational determinism [53, 63, 76], and
nonmalleable information flow [20].

According to Alpern and Schneider [10], the “bad thing”
that a safety property disallows must be finitely observable

261

this bound. This compilation chain satisfies RSP (equivalently,
RSC) but not RTP. To show that it satisfies RSC, we simply
back-translate a target context CT and a finite trace prefix m to
a source context (CT, length(m)) that uses the length of m as
the allowed bound, so this context can still produce m in the
source without being prematurely terminated. However, this
compilation chain does not satisfy RTP, since in the source
all executions are finite and, hence, no infinite target trace can
be simulated by any source context.

3 Robustly Preserving Hyperproperties
So far, we have studied the robust preservation of trace prop-
erties, which are properties of individual traces of a program.
In this section we generalize this to hyperproperties, which are
properties of multiple traces of a program [24]. A well-known
hyperproperty is noninterference [11, 38, 53, 76], which usu-
ally requires considering two traces of a program that differ
on secret inputs. Another hyperproperty is bounded mean re-
sponse time over all executions. We study robust preservation
of many subclasses of hyperproperties: all hyperproperties
(§3.1), subset-closed hyperproperties (§3.2), hypersafety and
K-hypersafety (§3.3), and hyperliveness (§3.5). These criteria
are in the red area in Figure 1.

3.1 Robust Hyperproperty Preservation (RHP)

While trace properties are sets of traces, hyperproperties are
sets of sets of traces [24]. We call the set of traces of a whole
program W the behavior of W : Behav (W) = {t | W !!! t}.
A hyperproperty is a set of allowed behaviors. Program W
satisfies hyperproperty H if the behavior of W is a member
of H , i.e., Behav (W) ∈ H , or, equivalently, {t | W !!! t} ∈
H . Contrast this to W satisfying trace property π, which
holds if the behavior of W is a subset of the set π, i.e.,
Behav (W) ⊆ π, or, equivalently, ∀t. W !!! t ⇒ t ∈ π.
So while a trace property determines whether each individual
trace of a program should be allowed or not, a hyperproperty
determines whether the set of traces of a program, its behavior,
should be allowed or not. For instance, the trace property
π123 = {t1, t2, t3} is satisfied by programs with behaviors
such as {t1}, {t2}, {t2, t3}, and {t1, t2, t3}, but a program
with behavior {t1, t4} does not satisfy π123. A hyperproperty
like H1+23 = {{t1}, {t2, t3}} is satisfied only by programs
with behavior {t1} or with behavior {t2, t3}. A program with
behavior {t2} does not satisfy H1+23, so hyperproperties can
express that if some traces (e.g., t2) are possible then some
other traces (e.g., t3) should also be possible. A program
with behavior {t1, t2, t3} also does not satisfy H1+23, so
hyperproperties can express that if some traces (e.g., t2 and
t3) are possible then some other traces (e.g., t1) should not
be possible. Finally, trace properties can be easily lifted to
hyperproperties: A trace property π becomes the hyperproperty
[π] = 2π , the powerset of π.

We say that a partial program P robustly satisfies a hy-
perproperty H if it satisfies H for any context C. Given this

we define RHP as the preservation of robust satisfaction of
arbitrary hyperproperties:

RHP : ∀H ∈ 22
Trace

. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

The equivalent () characterization of RHP is RHC :

RHC : ∀P. ∀CT. ∃CS. Behav (CT [P↓]) = Behav (CS [P])

RHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]!!!t ⇐⇒ CS [P]!!!t

This requires that, for every partial program P and target
context CT, there is a (back-translated) source context CS

that perfectly preserves the set of traces of CT [P↓] when
linked to P. There are two differences from RTP: (1) the
∃CS and ∀t quantifiers are swapped, so the back-translated
CS must work for all traces t, and (2) the implication in
RTC (⇒) became a two-way implication in RHC (⇐⇒),
so compilation has to perfectly preserve the set of traces. In
particular the compiler cannot refine behavior (remove traces),
e.g., it cannot implement nondeterministic scheduling via a
deterministic scheduler.

In the following subsections we study restrictions of RHP to
various subclasses of hyperproperties. To prevent duplication
we define RHP(X) to be the robust satisfaction of a class X
of hyperproperties (so RHP above is simply RHP(22

Trace
)):

RHP(X) : ∀H ∈ X. ∀P. (∀CS. Behav (CS [P]) ∈ H)⇒
(∀CT. Behav (CT [P↓]) ∈ H)

3.2 Robust Subset-Closed Hyperproperty Preservation
(RSCHP)

If one restricts robust preservation to only subset-closed hy-
perproperties then refinement of behavior is again allowed.
A hyperproperty H is subset-closed, written H∈SC, if for
any two behaviors b1⊆b2, if b2∈H then b1∈H . For instance,
the lifting [π] of any trace property π is subset-closed,
but the hyperproperty H1+23 above is not. It can be made
subset-closed by allowing all smaller behaviors: HSC

1+23 =
{∅, {t1}, {t2}, {t3}, {t2, t3}} is subset-closed.

Robust Subset-Closed Hyperproperty Preservation
(RSCHP) is simply defined as RHP(SC). The equivalent ()
property-free characterization of RSCHC simply gives up the
⇐ direction of RHC:

RSCHC : ∀P. ∀CT. ∃CS. ∀t. CT [P↓]!!! t⇒ CS [P]!!! t

The most interesting subclass of subset-closed hyperproper-
ties is hypersafety, which we discuss next. The appendix also
studies K-subset-closed hyperproperties [52], which can be
seen as generalizing K-hypersafety below.

3.3 Robust Hypersafety Preservation (RHSP)
Hypersafety is a generalization of safety that is very important
in practice, since several important notions of noninterference
are hypersafety, such as termination-insensitive noninterfer-
ence [11, 35, 64], observational determinism [53, 63, 76], and
nonmalleable information flow [20].

According to Alpern and Schneider [10], the “bad thing”
that a safety property disallows must be finitely observable

261

Stephen Chong, Harvard University 26

Robust Relational Hyperproperty
Preservation (RrHP)

Robust K-Relational Hyperproperty
Preservation (RKrHP)

Robust 2-Relational Hyperproperty
Preservation (R2rHP)

Robust Relational Property
Preservation (RrTP)

Robust K-Relational Property
Preservation (RKrTP)

Robust 2-Relational Property
Preservation (R2rTP)

Robust Relational relaXed safety
Preservation (RrXP)

Robust Finite-Relational relaXed
safety Preservation (RFrXP)

Robust K-Relational relaXed
safety Preservation (RKrXP)

Robust 2-Relational relaXed
safety Preservation (R2rXP)

Robust Relational Safety
Preservation (RrSP)

Robust Finite-Relational
Safety Preservation (RFrSP)

Robust K-Relational Safety
Preservation (RKrSP)

Robust 2-Relational Safety
Preservation (R2rSP)

Robust Hyperproperty
Preservation (RHP)

Robust Subset-Closed Hyperproperty
Preservation (RSCHP)

Robust K-Subset-Closed Hyperproperty
Preservation (RKSCHP)

Robust 2-Subset-Closed Hyperproperty
Preservation (R2SCHP)

Robust Trace Property Preservation (RTP)

Robust Hypersafety Preservation (RHSP)

Robust K-Hypersafety Preservation (RKHSP)

Robust 2-Hypersafety Preservation (R2HSP)

Robust Safety Property Preservation (RSP)Robust Dense Property Preservation (RDP)

Robust Trace Equivalence
Preservation (RTEP)

Robust Termination-Insensitive
Noninterference Preservation

(RTINIP)

+ determinacy

Robust Relational Hyperproperty
Preservation (RrHP)

Robust K-Relational Hyperproperty
Preservation (RKrHP)

Robust 2-Relational Hyperproperty
Preservation (R2rHP)

Robust Relational Property
Preservation (RrTP)

Robust K-Relational Property
Preservation (RKrTP)

Robust 2-Relational Property
Preservation (R2rTP)

Robust Relational relaXed safety
Preservation (RrXP)

Robust Finite-Relational relaXed
safety Preservation (RFrXP)

Robust K-Relational relaXed
safety Preservation (RKrXP)

Robust 2-Relational relaXed
safety Preservation (R2rXP)

Robust Relational Safety
Preservation (RrSP)

Robust Finite-Relational
Safety Preservation (RFrSP)

Robust K-Relational Safety
Preservation (RKrSP)

Robust 2-Relational Safety
Preservation (R2rSP)

Robust Trace Equivalence
Preservation (RTEP)

+ determinacy

R
el

at
io

na
l

H
yp

er
pr

op
er

tie
s

C
rit

er
ia

(§
4)

Robust Hyperproperty
Preservation (RHP)

Robust Subset-Closed Hyperproperty
Preservation (RSCHP)

Robust K-Subset-Closed Hyperproperty
Preservation (RKSCHP)

Robust 2-Subset-Closed Hyperproperty
Preservation (R2SCHP)

Robust Hypersafety Preservation (RHSP)

Robust K-Hypersafety Preservation (RKHSP)

Robust 2-Hypersafety Preservation (R2HSP)

Robust Termination-Insensitive
Noninterference Preservation

(RTINIP)

H
yp

er
pr

op
er

tie
s

C
rit

er
ia

(§
3)

Robust Trace Property Preservation (RTP)

Robust Safety Property Preservation (RSP)Robust Dense Property Preservation (RDP)

Tr
ac

e
Pr

op
er

tie
s

C
rit

er
ia

(§
2)

Fig. 1: Partial order with the secure compilation criteria studied in this paper. Criteria higher in the diagram imply the lower
ones to which they are connected by edges. Criteria based on trace properties are grouped in a yellow area, those based on
hyperproperties are in a red area, and those based on relational hyperproperties are in a blue area. Criteria with an italics name
preserve a single property that belongs to the class they are connected to; the dotted edge requires an additional determinacy
assumption. Finally, each edge with a thick arrow denotes a strict implication that we have proved as a separation result.

that RTEP (and thus full abstraction), even in conjunction with
compositional compiler correctness, does not imply even the
weakest of our criteria, RSP, RDP, and RTINIP.

Finally, we show that two proof techniques originally de-
veloped for full abstraction can be readily adapted to prove
our new secure compilation criteria (§6). First, we use a
“universal embedding” [56] to prove that the strongest of our
secure compilation criteria, Robust Relational Hyperproperty
Preservation (RrHP), is achievable for a simple translation
from a statically typed to a dynamically typed first-order
language with first-order functions and I/O. Second, we use
the same simple translation to illustrate that for proving Robust
Finite-relational relaXed safety Preservation (RFrXP) we can
employ a “trace-based back-translation” [43, 59], a slightly
less powerful but more generic technique that we extend to
back-translate a finite set of finite execution prefixes into a
source context. This second technique is applicable to all
criteria implied by RFrXP, which includes robust preservation
of safety, of hypersafety, and in a determinate setting also of
trace (and thus observational) equivalence.

In summary, our paper makes five contributions:

C1. We phrase the formal security guarantees obtained by
protecting compiled programs from adversarial contexts in
terms of robustly preserving classes of properties. We are
the first to explore a large space of security criteria based
on this idea, including criteria that provide strictly stronger

security guarantees than full abstraction, and also criteria that
are easier to practically achieve and prove, which is important
for building more realistic secure compilation chains.
C2. We carefully study each new secure compilation criterion
and the non-trivial relations between them. For each criterion
we propose a property-free characterization that clarifies which
proof techniques apply. For relating the criteria, we order them
by their relative strength, show several interesting collapses,
and prove several challenging separation results.
C3. We introduce relational properties and hyperproperties,
which are new property classes of independent interest, even
outside of secure compilation.
C4. We formally study the relation between our security
criteria and full abstraction. In one direction, we show that
determinacy is enough for robustly preserving classes of rela-
tional properties and hyperproperties to imply preservation of
observational equivalence. In the other direction, we show that,
even when assuming compiler correctness, full abstraction
does not imply even our weakest criteria.
C5. We show that two existing proof techniques originally
developed for full abstraction can be readily adapted to our
new criteria, which is important since good proof techniques
are difficult to find in this space [56, 60].

The paper closes with discussions of related (§7) and future
work (§8). The online appendix at https://arxiv.org/abs/
1807.04603 contains omitted technical details. Many of the

258

Abate et al., CSF 2019.

Full
abstraction

Stephen Chong, Harvard University

References/Further Reading

•Patrignani, M., A. Ahmed, and D. Clarke (2019, feb).
Formal approaches to secure compilation: A survey of
fully abstract compilation and related work. ACM
Comput. Surv. 51(6).

•Abate, C., R. Blanco, D. Garg, C. Hritcu, M.
Patrignani, and J. Thibault (2019). Journey beyond full
abstraction: Exploring robust property preservation
for secure compilation. CSF 2019, pp. 256–271. IEEE.

•Amal Ahmed OPLSS 2019 lectures: https://
www.youtube.com/watch?v=yP29TKmK3_o

27

https://www.youtube.com/watch?v=yP29TKmK3_o
https://www.youtube.com/watch?v=yP29TKmK3_o

Stephen Chong, Harvard University 28

Weird Machines

Stephen Chong, Harvard University

Buffer Overflow Exploit

•Consider the following vulnerable C code

•Classic buffer overflow attack:
•Call vulnerable_function with input that

puts x86 exploit code into buf and overwrites
return address

•Execute arbitrary code!

•Prevent it by ensuring non-executable
stack

29

void vulnerable_function(char *input) {
 char buf[64];
 strcpy(buf, input);
}

other local
vars, argument

build, ...

%ebp

%esp

return address

argument
build

buf

exploit
code

&buf

unused bytes

Stephen Chong, Harvard University

Return to libc attack

•Even if stack is non-executable, can
make use of existing code

•libc is on most systems; address of libc
code is guessable

•E.g., set up stack so that overwrite:
•return address with address of system

function in libc
•overwrite argument build area with address

of string “/bin/sh”
•Maybe string is already in binary
•Or maybe also put that string into the payload

30

other local
vars, argument

build, ...

%ebp

%esp

return address

argument
build

buf

unused
bytes

&system

unused bytes

...

...

&”/bin/sh”

Stephen Chong, Harvard University

It Gets Worse...

•Return-Oriented Programming (ROP)
•A gadget is a short sequence of machine instructions that ends in a

return instruction
•Attackers can (automatically) identify gadgets that already exist in binaries

•Key idea of ROP: chain gadgets together
• Each gadget performs a small amount of computation, then return
instruction jumps to the next gadget
• i.e., overflow the stack to put the sequence of addresses of gadgets on the
stack

•Gadgets perform operations but may also set up the machine
for the next gadget
•E.g., one gadget might load specific value into a register; next

gadget will read the register

31

Stephen Chong, Harvard University

Weird Machines

•How do we formalize and think about these
kinds of exploits?
•Formal methods can help us understand and also

possibly prevent entire class of exploits

•Recent work on weird machines presents a
perspective on this
•Dullien, 2020

32

Stephen Chong, Harvard University

Intended Finite State Machine

•What the programmer intends to implement
• θ = (Q, i, F, Σ, Δ, δ, σ)

•Set of states Q
•Initial state i
•Final states F
•Input alphabet Σ
•Output alphabet Δ
•State transition function δ : Q×Σ→Q
•Output function σ : Q×Σ→Δ

33

Stephen Chong, Harvard University

Example: Tiny Secure Message-
Passing Server

•Small, clearly-defined security boundary, complex enough to be
interesting

•A machine that remembers password-secret pairs for later retrieval
•Retrieval removes the pair
•Arbitrary limit of 5000 password-secret pairs

•Security property: intuitively, you need to know (or guess) the
right password to obtain the secret
•Can express precisely using probabilities

•States of the FSM given by

34

community uses the term in their literature, often informally and
vaguely de�ned, and with slightly varying meanings. [2–4]

[24] discusses weird machines in proof-carrying code (PCC)
that arise when the PCC system fails to capture all necessary and
su�cient conditions for safe program execution; Contrary to the
present paper, he focuses on computations involving unexpected
control �ow and the proof-carrying-code scenario. This paper is
inspired heavily by the use of ’dueling’ �nite-state transducers in
that paper, though.

Computation (and correctness) in the presence of faults has been
studied in [25] , which introduces a lambda-calculus to calculate
correctly given hardware faults. [14] studies automatic detection
of two classes of heap corruptions in running code by keeping
multiple copies of a randomized heap.

By and large, while many academic and non-academic papers
have studied concrete exploitation instances, few have considered
foundational questions.

We will see later that weird machines arise when an abstract,
intended machine and a concrete implementation which tries to
simulate the abstract machine fails to do so. Studying equivalence
between automata which simulate each other at di�erent levels of
abstraction has been studied by themodel-checking and veri�cation
community using stuttering bisimulation extensively. [5, 10, 23]
This paper eschews the somewhat specialized language of stuttering
bisimulation to allow broader accessibility.

OVERVIEW OF THE PAPER
In order to get to the important results of the paper, a fair bit of
set-up and de�nitions are needed. The paper �rst de�nes ’the soft-
ware the developer intended to write’ and a simple computing
environment for which this software is written. This is followed
by further de�nitions that permit describing erroneous states and
distinguishing between erroneous states with and without secu-
rity implications. Finally, a precise de�nition of exploit and weird
machine is provided.

A running example is used throughout these sections. Two im-
plementations of the same software are introduced, along with
a theoretical attacker. We prove that one implementation cannot
be exploited while the other implementation can, and discuss the
underlying reasons.

Finally, we discuss the implications for exploit mitigations, control-
�ow integrity, and software security.

1 THE INTENDED FINITE-STATE MACHINE
(IFSM)

The design of any real software can be described as a potentially
very large and only implicitly speci�ed �nite state machine (or
transducer, if output is possible)2. This FSM transitions between
individual states according to inputs, and outputs data when nec-
essary. Since any real software needs to run on a �nite-memory
computing device, the nonequivalence of a FSM to a Turingmachine
does not matter - any real, �nite-input software can be modelled
as a FSM (or FST) given a su�ciently large state set.

2The bisimulation community uses the concept of process, which is similar - but more
readers will be familiar with FSMs, and they serve our purpose well enough

For simplicity, we will use the notation IFSM in the rest of the
paper even when the machine under discussion is a transducer.

For situations when an IFSM needs to be speci�ed formally,
recall that a �nite-state transducer can be described by the 7-tuple
� = (Q, i, F , �,�,� ,�) that consists of the set of states Q , the initial
state i , the �nal states F , input- and output alphabets � and �, a
state transition function � : Q ⇥ � ! Q and the output function �
which maps Q ⇥ � ! �.

1.1 Software as emulators for the IFSM
Since any real-world software can be modelled as an IFSM, but has
to execute on a real-world general-purpose machine, an emulator
for the IFSM needs to be constructed. This process is normally done
by humans and called programming or development, but can be done
automatically in the rare case that the IFSM is formally speci�ed.

Why consider software as emulator for the IFSM instead of ex-
amining software as the primary object of study? The answer lies
in the very de�nition of bug or security vulnerability: When the
security issue arises from a software �aw (in contrast to a hardware
problem such as [13]) , it is impossible to even de�ne ’�aw’ without
taking into account what a bug-free version of the software would
have been. Viewing the software as a (potentially faulty) emulator
for the IFSM allows the exploration of how software faults lead to
signi�cantly larger (in the state-space sense) emulated machines.

1.2 Example IFSM: A tiny secure
message-passing server

We introduce an example IFSM with the properties of being small,
having a clearly-de�ned security boundary, and allowing for enough
complexity to be interesting. We describe the IFSM informally �rst
and subsequently give a formal example.

Informally, our example IFSM is a machine that remembers a
password-secret pair for later retrieval through re-submission of
the right password; retrieval removes the password-secret pair. We
set an arbitrary limit that the system need not remember more than
5000 password-secret pairs.

A diagram sketching the IFSM is shown on page 3 in Figure 1.
To transform this sketch into a formally de�ned FSM, we re-

place the memory of the described machine with explicit states. We
denote the set of possible con�gurations ofMemor� withM:

M :=

8>>>><
>>>>:

;,
{(p1, s1)},
. . . ,
{(p1, s1), . . . , (p5000, s5000)}

pi , si 2 bits32\{0}
pi , pj

9>>>>=
>>>>;

The central looping stateA in the informal diagram can be replaced
by a family of states AM indexed by a memory con�gurationM 2
M. The starting con�guration transitions intoA; , and after reading
(p, s), the machine transitions into A{(p,s)} and so forth. With the
properly adjusted transitions, it is now clear that we have a proper
FST (albeit with a large number of individual states).

The formal speci�cation of the example IFSM in the 7-tuple form
� = (Q, i, F , �,�,� ,�) is as follows:

2

Stephen Chong, Harvard University 35

Read input password-secret pair (A)
read(p)
read(s)

start

Store pair in memory (B)
Memor� Memor� [{(p, s)}

Output the requested secret (C)
Memor� {(p0, s 0) 2 Memor� | p0 , p}
print(s 0)

Output error message (D)
print(0)

IF condition b:
8(p0, s 0) 2 Memor� : p0 , p

|Memor� |  4999
s , 0,p , 0

Switch by condition

IF condition c:
9(p0, s 0) 2 Memor� : p = p0

s , 0

IF condition d:
s = 0
_p = 0

_ |Memor� | = 5000

Figure 1: A diagrammatic sketch of the example IFSM

Q := {AM ,M 2M}, i := A;, F := ;
� := {(p, s)|p, s 2 bits32}, � := {s 2 bits32}

� := AM ⇥ (p, s) !

8>>>>>>>><
>>>>>>>>:

AM[(p,s) if
(p, s) < M
^|M |  4999
^s , 0

AM\(p,s) if (p, s) 2 M
AM otherwise

� := AM ⇥ (p, s) !
(
s 0 if (p, s 0) 2 M
0 if s = 0 _ |M | = 5000

1.3 Security properties of the IFSM
Not every malfunction of a program has security implications. To
distinguish between plain erroneous states and erroneous states
that have security implications, security properties of the IFSM
need to be de�ned.

Security properties are statements (possibly about probabilities)
over sequences of states, inputs, and outputs of the IFSM. They are
part of the speci�cation of the IFSM. Not every true statement is a
security property, but every security property is a true statement.

The attackers goal is always to violate a security property of the
IFSM when interacting with the emulator for the IFSM.

1.3.1 Security properties of the example IFSM. The example
IFSM should satisfy the informal notion that ”you need to know (or
guess) the right password in order to obtain a stored secret”.

Intuitively, the attacker should not be able to ’cheat’ - there
should be no way for the attacker to somehow get better-than-
guessing odds to obtain the stored secret from the IFSM.

In order to make this precise, we borrow ideas from the crypto-
graphic community, and de�ne a multi-step game where an attacker
and a defender get to take turns interacting with the machine, and
we specify that there is no way that the attacker can gain an advan-
tage.

The game mechanics are as follows:

(1) The attacker chooses a probability distribution A over
�nite-state transducers �exploit that have an input alpha-
bet ��exploit = � and output alphabet ��exploit = �. This
means that the attacker speci�es one or more �nite-state
transducers that take as input the outputs of the IFSM, and
output words that are the input for the IFSM.

(2) Once this is done, the defender draws two elements p, s
from bits32 according to the uniform distribution.

(3) The attacker draws a �nite-state transducer from his dis-
tribution and is allowed to have it interact with the IFSM
for an attacker-chosen number of steps nsetup.

(4) The defender sends his (p, s) to the IFSM.
(5) The attacker gets to have his�exploit interact with the IFSM

for a further attacker-chosen number of steps nexploit.

3

Read input password-secret pair (A)
read(p)
read(s)

start

Store pair in memory (B)
Memor� Memor� [{(p, s)}

Output the requested secret (C)
Memor� {(p0, s 0) 2 Memor� | p0 , p}
print(s 0)

Output error message (D)
print(0)

IF condition b:
8(p0, s 0) 2 Memor� : p0 , p

|Memor� |  4999
s , 0,p , 0

Switch by condition

IF condition c:
9(p0, s 0) 2 Memor� : p = p0

s , 0

IF condition d:
s = 0
_p = 0

_ |Memor� | = 5000

Figure 1: A diagrammatic sketch of the example IFSM

Q := {AM ,M 2M}, i := A;, F := ;
� := {(p, s)|p, s 2 bits32}, � := {s 2 bits32}

� := AM ⇥ (p, s) !

8>>>>>>>><
>>>>>>>>:

AM[(p,s) if
(p, s) < M
^|M |  4999
^s , 0

AM\(p,s) if (p, s) 2 M
AM otherwise

� := AM ⇥ (p, s) !
(
s 0 if (p, s 0) 2 M
0 if s = 0 _ |M | = 5000

1.3 Security properties of the IFSM
Not every malfunction of a program has security implications. To
distinguish between plain erroneous states and erroneous states
that have security implications, security properties of the IFSM
need to be de�ned.

Security properties are statements (possibly about probabilities)
over sequences of states, inputs, and outputs of the IFSM. They are
part of the speci�cation of the IFSM. Not every true statement is a
security property, but every security property is a true statement.

The attackers goal is always to violate a security property of the
IFSM when interacting with the emulator for the IFSM.

1.3.1 Security properties of the example IFSM. The example
IFSM should satisfy the informal notion that ”you need to know (or
guess) the right password in order to obtain a stored secret”.

Intuitively, the attacker should not be able to ’cheat’ - there
should be no way for the attacker to somehow get better-than-
guessing odds to obtain the stored secret from the IFSM.

In order to make this precise, we borrow ideas from the crypto-
graphic community, and de�ne a multi-step game where an attacker
and a defender get to take turns interacting with the machine, and
we specify that there is no way that the attacker can gain an advan-
tage.

The game mechanics are as follows:

(1) The attacker chooses a probability distribution A over
�nite-state transducers �exploit that have an input alpha-
bet ��exploit = � and output alphabet ��exploit = �. This
means that the attacker speci�es one or more �nite-state
transducers that take as input the outputs of the IFSM, and
output words that are the input for the IFSM.

(2) Once this is done, the defender draws two elements p, s
from bits32 according to the uniform distribution.

(3) The attacker draws a �nite-state transducer from his dis-
tribution and is allowed to have it interact with the IFSM
for an attacker-chosen number of steps nsetup.

(4) The defender sends his (p, s) to the IFSM.
(5) The attacker gets to have his�exploit interact with the IFSM

for a further attacker-chosen number of steps nexploit.

3

Stephen Chong, Harvard University

Security Property

•Set up a game (similar
to cryptographic
protocols)

•Probability for Θexploit
to obtain secret is no
better than guessing:

36

Read input password-secret pair (A)
read(p)
read(s)

start

Store pair in memory (B)
Memor� Memor� [{(p, s)}

Output the requested secret (C)
Memor� {(p0, s 0) 2 Memor� | p0 , p}
print(s 0)

Output error message (D)
print(0)

IF condition b:
8(p0, s 0) 2 Memor� : p0 , p

|Memor� |  4999
s , 0,p , 0

Switch by condition

IF condition c:
9(p0, s 0) 2 Memor� : p = p0

s , 0

IF condition d:
s = 0
_p = 0

_ |Memor� | = 5000

Figure 1: A diagrammatic sketch of the example IFSM

Q := {AM ,M 2M}, i := A;, F := ;
� := {(p, s)|p, s 2 bits32}, � := {s 2 bits32}

� := AM ⇥ (p, s) !

8>>>>>>>><
>>>>>>>>:

AM[(p,s) if
(p, s) < M
^|M |  4999
^s , 0

AM\(p,s) if (p, s) 2 M
AM otherwise

� := AM ⇥ (p, s) !
(
s 0 if (p, s 0) 2 M
0 if s = 0 _ |M | = 5000

1.3 Security properties of the IFSM
Not every malfunction of a program has security implications. To
distinguish between plain erroneous states and erroneous states
that have security implications, security properties of the IFSM
need to be de�ned.

Security properties are statements (possibly about probabilities)
over sequences of states, inputs, and outputs of the IFSM. They are
part of the speci�cation of the IFSM. Not every true statement is a
security property, but every security property is a true statement.

The attackers goal is always to violate a security property of the
IFSM when interacting with the emulator for the IFSM.

1.3.1 Security properties of the example IFSM. The example
IFSM should satisfy the informal notion that ”you need to know (or
guess) the right password in order to obtain a stored secret”.

Intuitively, the attacker should not be able to ’cheat’ - there
should be no way for the attacker to somehow get better-than-
guessing odds to obtain the stored secret from the IFSM.

In order to make this precise, we borrow ideas from the crypto-
graphic community, and de�ne a multi-step game where an attacker
and a defender get to take turns interacting with the machine, and
we specify that there is no way that the attacker can gain an advan-
tage.

The game mechanics are as follows:

(1) The attacker chooses a probability distribution A over
�nite-state transducers �exploit that have an input alpha-
bet ��exploit = � and output alphabet ��exploit = �. This
means that the attacker speci�es one or more �nite-state
transducers that take as input the outputs of the IFSM, and
output words that are the input for the IFSM.

(2) Once this is done, the defender draws two elements p, s
from bits32 according to the uniform distribution.

(3) The attacker draws a �nite-state transducer from his dis-
tribution and is allowed to have it interact with the IFSM
for an attacker-chosen number of steps nsetup.

(4) The defender sends his (p, s) to the IFSM.
(5) The attacker gets to have his�exploit interact with the IFSM

for a further attacker-chosen number of steps nexploit.

3

The probability for �exploit to obtain the defenders secret should
be no better than guessing. Let oexploit be the sequence of outputs
that the �exploit produced, and oIFSM the sequence of outputs the
IFSM produced during the game. Then our desired security property
is:

P[s 2 oIFSM] 
nsetup + nexploit

|bits32 |
=

|oexploit |
232

The probability here is given a random draw from the attacker-
speci�ed distribution over transducers. This encodes our desired
property: An attacker cannot do better than randomly guessing the
password, and the attacker cannot provide a program that does any
better.

2 A TOY COMPUTING ENVIRONMENT
The IFSM itself is a theoretical construct. In order to ’run’ the
IFSM, a programmer needs to build an emulator for the IFSM, and
this emulator needs to be built for a di�erent, general-purpose
computing environment, which will be introduced next.

For our investigation, the Cook-and-Reckhow [6] RAM machine
model is well-suited. Their machine model covers both random-
access-machine variants (Harvard architectures) and random-access-
stored-program variants (for von-Neumann-Architectures); our dis-
cussion applies equally to both, but our concrete example assumes
a Harvard architecture.

The machine model consists of a number of registers as well as
the following operations:

LOAD(C, rd) : rd C Load a constant
ADD(rs1 , rs2 , rd) : rd rs1 + rs2 Add two registers

or a register and constant
SUB(rs1 , rs2 , rd) : rd rs1 � rs2 Subtract two registers

or a register and constant
ICOPY(rp , rd) : rd rrp Indirect memory read
DCOPY(rd , rs) : rrd rs Indirect memory write
JNZ/JZ(r , Iz) Transfer control to

Iz if r is nonzero, zero
READ(rd) : rd input Read a value from input
PRINT(rs) : rd ! output Write a value to output

While the original model assumes an in�nite quantity of in�nite-
size registers, we �x the size of our registers and the number of these
registers arbitrarily. We do this for both theoretical (it simpli�es
some counting arguments later) and for practical reasons (real
machines have �nite RAM).

For the purposes of this paper, we �x the size of registers/memory
cells to be 32-bit numbers (the set of which we denote bits32), and
the number of registers/memory cells to 216. We also denote the
memory cells r0, . . . , r6 as registers. This has no e�ect at themoment,
but will be used later when we introduce attacker models.

The set of possible memory con�gurations of the machine is
denoted by Qcpu ; a program for this cpu is denoted with �, and
individual lines in this program is denoted by �i where i is the line
number.

Note that the state of the machine is fully determined by the
tuple ((q1, . . . ,q216) =: Æq, �, �i): The state of all memory cells, the

program that is running, and the line in the program the machine
will execute next.

2.1 Example IFSM: What to emulate?
There are many di�erent ways of emulating the IFSM in the toy
computing environment. Examining our informal diagram again,
emulation needs to be constructed for the three conditional edges
in the diagram (labeled b, c, and d) as well as the 3 di�erent state
modi�cations (labeled B, C, D).

2.1.1 Example IFSM emulation: Variant 1. The �rst emulator of
the example IFSM uses registers/cells 0 through 5 as scratch for
reading input, and cells 6 to 10006 as a simple �at array for storing
pairs of values. It uses no sophisticated data structures and simply
searches memory for empty pairs of memory cells, zeroing them in
order to release them.

Full source code for the emulator can be found on page 13 in
�gure 5.

2.1.2 Example IFSM emulation: Variant 2. The �rst example does
not use any sophisticated data structures. TheMemor� of the IFSM
is emulated by a simple �at array, at the cost of always having to
traverse all 5000 elements of the array when checking for a value.

The second variant implements the same IFSM, but in order to
be more e�cient, implements Memor� as two singly linked lists,
one for keeping track of free space for password-secret tuples, and
one for keeping track of currently active password-secret tuples.

Full source code for the emulator for variant 2 can be found on
page 14 in �gure 6.

3 ERRORS - REACHING AWEIRD STATE
A common problem when investigating foundations of computer
security is the di�culty of even de�ning exactly what a bug is -
de�ning precisely when a program has encountered a �aw and is
no longer in a well-de�ned state. Using the abstraction of the IFSM
and viewing the software as an emulator for the IFSM, this becomes
tractable.

Intuitively, a program has gone ’o� the rails’ or a bug has oc-
curred when the concrete cpu has entered a state that has no clean
equivalent in the IFSM - when the state of the cpu neither maps
to a valid state of the IFSM, nor to an intermediate state along the
edges of the IFSM.

To make this notion formal, we de�ne two mappings (remember
that Qcpu is the set of possible states of the concrete cpu on which
the IFSM is emulated, and Q� is the set of possible states of the
IFSM):

De�nition 3.1 (Instantiation). Given an IFSM � and a target ma-
chine cpu on which the IFSM is emulated by means of a program �,
the instantiation mapping

�� , cpu, � : Q� ! P(Qcpu)
is a mapping that maps states of the IFSM to the set of states of the
concrete cpu that can be used to represent these states. Note that it
is common that one state in the IFSM can be represented by a large
number of states of the target machine.

4

Stephen Chong, Harvard University

Emulating the IFSM

•Programmer implements/emulates the IFSM
•Assume we have a simple machine (Cook-and-

Reckhow RAM machine model)
•Harvard architecture (i.e., code is not data)
•216 32-bit memory cells, treat first 6 as registers

37

The probability for �exploit to obtain the defenders secret should
be no better than guessing. Let oexploit be the sequence of outputs
that the �exploit produced, and oIFSM the sequence of outputs the
IFSM produced during the game. Then our desired security property
is:

P[s 2 oIFSM] 
nsetup + nexploit

|bits32 |
=

|oexploit |
232

The probability here is given a random draw from the attacker-
speci�ed distribution over transducers. This encodes our desired
property: An attacker cannot do better than randomly guessing the
password, and the attacker cannot provide a program that does any
better.

2 A TOY COMPUTING ENVIRONMENT
The IFSM itself is a theoretical construct. In order to ’run’ the
IFSM, a programmer needs to build an emulator for the IFSM, and
this emulator needs to be built for a di�erent, general-purpose
computing environment, which will be introduced next.

For our investigation, the Cook-and-Reckhow [6] RAM machine
model is well-suited. Their machine model covers both random-
access-machine variants (Harvard architectures) and random-access-
stored-program variants (for von-Neumann-Architectures); our dis-
cussion applies equally to both, but our concrete example assumes
a Harvard architecture.

The machine model consists of a number of registers as well as
the following operations:

LOAD(C, rd) : rd C Load a constant
ADD(rs1 , rs2 , rd) : rd rs1 + rs2 Add two registers

or a register and constant
SUB(rs1 , rs2 , rd) : rd rs1 � rs2 Subtract two registers

or a register and constant
ICOPY(rp , rd) : rd rrp Indirect memory read
DCOPY(rd , rs) : rrd rs Indirect memory write
JNZ/JZ(r , Iz) Transfer control to

Iz if r is nonzero, zero
READ(rd) : rd input Read a value from input
PRINT(rs) : rd ! output Write a value to output

While the original model assumes an in�nite quantity of in�nite-
size registers, we �x the size of our registers and the number of these
registers arbitrarily. We do this for both theoretical (it simpli�es
some counting arguments later) and for practical reasons (real
machines have �nite RAM).

For the purposes of this paper, we �x the size of registers/memory
cells to be 32-bit numbers (the set of which we denote bits32), and
the number of registers/memory cells to 216. We also denote the
memory cells r0, . . . , r6 as registers. This has no e�ect at themoment,
but will be used later when we introduce attacker models.

The set of possible memory con�gurations of the machine is
denoted by Qcpu ; a program for this cpu is denoted with �, and
individual lines in this program is denoted by �i where i is the line
number.

Note that the state of the machine is fully determined by the
tuple ((q1, . . . ,q216) =: Æq, �, �i): The state of all memory cells, the

program that is running, and the line in the program the machine
will execute next.

2.1 Example IFSM: What to emulate?
There are many di�erent ways of emulating the IFSM in the toy
computing environment. Examining our informal diagram again,
emulation needs to be constructed for the three conditional edges
in the diagram (labeled b, c, and d) as well as the 3 di�erent state
modi�cations (labeled B, C, D).

2.1.1 Example IFSM emulation: Variant 1. The �rst emulator of
the example IFSM uses registers/cells 0 through 5 as scratch for
reading input, and cells 6 to 10006 as a simple �at array for storing
pairs of values. It uses no sophisticated data structures and simply
searches memory for empty pairs of memory cells, zeroing them in
order to release them.

Full source code for the emulator can be found on page 13 in
�gure 5.

2.1.2 Example IFSM emulation: Variant 2. The �rst example does
not use any sophisticated data structures. TheMemor� of the IFSM
is emulated by a simple �at array, at the cost of always having to
traverse all 5000 elements of the array when checking for a value.

The second variant implements the same IFSM, but in order to
be more e�cient, implements Memor� as two singly linked lists,
one for keeping track of free space for password-secret tuples, and
one for keeping track of currently active password-secret tuples.

Full source code for the emulator for variant 2 can be found on
page 14 in �gure 6.

3 ERRORS - REACHING AWEIRD STATE
A common problem when investigating foundations of computer
security is the di�culty of even de�ning exactly what a bug is -
de�ning precisely when a program has encountered a �aw and is
no longer in a well-de�ned state. Using the abstraction of the IFSM
and viewing the software as an emulator for the IFSM, this becomes
tractable.

Intuitively, a program has gone ’o� the rails’ or a bug has oc-
curred when the concrete cpu has entered a state that has no clean
equivalent in the IFSM - when the state of the cpu neither maps
to a valid state of the IFSM, nor to an intermediate state along the
edges of the IFSM.

To make this notion formal, we de�ne two mappings (remember
that Qcpu is the set of possible states of the concrete cpu on which
the IFSM is emulated, and Q� is the set of possible states of the
IFSM):

De�nition 3.1 (Instantiation). Given an IFSM � and a target ma-
chine cpu on which the IFSM is emulated by means of a program �,
the instantiation mapping

�� , cpu, � : Q� ! P(Qcpu)
is a mapping that maps states of the IFSM to the set of states of the
concrete cpu that can be used to represent these states. Note that it
is common that one state in the IFSM can be represented by a large
number of states of the target machine.

4

Stephen Chong, Harvard University

Emulating the IFSM

•Variant 1:
•Use registers/cells 0-5 as scratch
•Use cells 6-10006 a simple flat array for storing pairs

of values
•No sophisticated data structures, just search through

memory for empty pairs of memory cells

•Variant 2
•Implement as two singly-linked lists
•One to keep track of free space for password-secret pairs
•One to keep track of currently active password-secret pairs

38

Stephen Chong, Harvard University

What is a bug?

•Can explicitly define bugs in this setting
•IFSM serves as intensional specification

•Call the implementation machine cpu
•Let Qcpu be the set of states of the implementation

machine

•Bug has occurred in implementation when
implementation state q ∈ Qcpu has no clean
equivalent in IFSM

39

Stephen Chong, Harvard University

Sane and Transitory States

•Abstraction function from states Qcpu to states Qθ (of the IFSM)

•Set Qcpusane are the states for which α is defined
•i.e., the states that directly correspond to a state of the IFSM

•But cpu may take multiple steps to implement one step in the IFSM, i.e., may
have some transitory states

•legitimate states needed to reach a desired target state of the IFSM
•Need to distinguish these from error states
•Call them Qcputrans

40

De�nition 3.2 (Abstraction). Given an IFSM � and a target ma-
chine cpu on which the IFSM is emulated by means of program �,
the partial abstraction mapping

��,cpu,� : Qcpu ! Q�

maps a concrete state of the target machine to the IFSM state that
it represents. Note that this is a partial mapping: There are many
states of cpu which do not map to an IFSM state. We denote the set
of states on which � is de�ned as Qsane

cpu .

During the process of emulating the IFSM, the target machine
is necessarily in states on which ��,cpu,� is not de�ned - since
following an edge in the IFSM diagram often involves multi-step
state modi�cations to reach a desired target state of the IFSM. To
di�erentiate these states from erroneous states, we de�ne transitory
states.

Intuitively, a transitory state is a state occuring during the emu-
lation of an edge in the state machine diagram of the IFSM that is
always part of a benign and intended transition.

De�nition 3.3 (Transitory State). Given an IFSM � and a target
machine cpu on which the IFSM is emulated by means of the pro-
gram �, a transitory state qtrans of the cpu is a state that satis�es
all of the following:

(1) there exists S, S 0 2 Q� and � 2 � so that � (S,�) = S 0 -
the transition from S to S 0 given input � is an existing
transition in the IFSM, hence an intended transition.

(2) there exists qS 2 ��,cpu,� (S),qS 0 2 ��,cpu,� (S 0) and a
sequence of state transitions

qS !n qtrans !n0
qS 0

so that ��,cpu,� is not de�ned on all intermediate states
and so that all sequences of transitions from qtrans lead
to qS 0 , irrespective of any addition input and before the
machine performs any output.

The set of transitory states will be denoted Q trans
cpu from here on.

Clearly, if irrespective of any attacker actions (input) themachine
always transitions into a well-de�ned and intended state without
any observable e�ects, the transitory state is not relevant for the
security properties of the IFSM.

Example 3.4 (Example mappings for Emulator Variant 1). For our
very simple �rst example, we can provide the relevant mappings
explicitly. An element of Qcpu can be described by the state of all
memory cells (Æq) and the program line �i . Let � (i) := 2i + base.
Then

��,cpu,� (AM) =

8>>>>>><
>>>>>>:

Æq 2 Qcpu so that
8(p, s) 2 M 9i 2 N<5000 with

(q� (i),q� (i)+1) = (p, s)
^(8i , j with (q� (i),q� (i)+1) = (q� (j),q� (j)+1)
) q� (i) = q� (i)+1 = 0)

9>>>>>>=
>>>>>>;

Once we have � , we can de�ne � in terms of it: Let q0 2 Qcpu . Then

��,cpu,� :
ÿ

M 2M
��,cpu,� (AM) ! Q

��,cpu,� (q0) = AM with q0 2 ��,cpu,� (AM)
Now we have all the pieces in place to de�ne erroneous and

non-erroneous states.

3.1 De�ning weird states
With the above de�nitions we can partition the set of possible states
Qcpu into three parts: States that directly correspond to states of
the IFSM, transitory states that are just symptoms of the emulator
transitioning between valid IFSM states, and all the other states.

These other states are the object of study of this paper, and the
principal object of study of the exploit practitioner community.
They will be called weird states in the remainder of this paper - to
re�ect the fact that they arise unintentionally and do not have any
meaningful interpretation on the more abstract level of the ISFM.

De�nition 3.5 (Weird state). Given an IFSM � , the computing
environment cpu and the program � that is supposed to emulate � ,
the set Qcpu can be partitioned into disjoint sets as follows:

Qcpu = Q
sane
cpu €[Q trans

cpu €[Qweird
cpu

An element of Qcpu that is neither in Qsane
cpu nor in Q trans

cpu is called
a weird state, and the set of all such states is denoted as Qweird

cpu .

3.1.1 Possible sources of weird states. There are many possible
sources for weird states. Some of these sources are:

Human Error in the construction of the program �. This is
probably the single most common source of weird states
in the real world: Since the process of constructing � is
based on humans that often have to work on a non-existent
or highly incomplete speci�cation of the IFSM, mistakes
are made and program paths through � exist that allow
entering a weird state. Real-world examples of this include
pretty much all memory corruption bugs, bu�er over�ows
etc.

Hardware Faults during the execution of �. While determin-
istic computing is a convenient abstraction, the hardware
of any real-world computing system is often only proba-
bilistically deterministic, e.g. deterministic in the average
case with some low-probability situations in which it non-
deterministically �ips some bits. A prime example for this
is the widely-publicized Rowhammer hardware issue [13]
(and the resulting exploitation [17]) .

Transcription Errors that are introduced into � if � is trans-
mitted over a channel that can introduce errors. Examples
of this include � being stored on a storage medium / hard-
disk which due to environmental factors or hardware fail-
ure corrupts � partially.

4 WEIRD MACHINES: EMULATED IFSM
TRANSITIONS APPLIED TOWEIRD STATES

Given the de�nition of weird states, we now need to examine what
happens to the emulated IFSM when � can be made to compute on
a weird state.

4.1 Interaction as a form of programming
Before examining computation on weird states, though, we need to
clarify to ourselves that sending input to a �nite state transducer is
a form of programming. The set of symbols that can be sent for a
restricted instruction set, and the state transitions inside the �nite
state transducer are the semantics of these instructions. Sending

5

S S’
σ

δ(S, σ) = S’

q1 q2 q3 q4 q5

αα

Stephen Chong, Harvard University

Weird States

•Weird states (Qcpuweird) are the states of Qcpu that are
neither sane nor transitory
• Qcpu = Qcpusane ∪̇ ̇Qcputrans ∪̇ ̇Qcpuweird

•Sources of weird states
•Human error in writing program
•Most common source! e.g., memory corruption bugs, buffer
overflows, failed invariants, ...

•Hardware faults during execution
•Bit flips, from gamma rays or Rowhammer attacks, etc

•Transcription errors
• E.g., error in program transmission (over network, from disk, etc.)

41

Stephen Chong, Harvard University

Weird Machines

•Classical view of machine:
runs program, accepts data as
input

•Can summarize sequence of
instructions, and intermediate
states

•From attacker perspective: an
unintended machine where
the input data, combined with
the code, operates on memory

42

input is the same thing as programming. This change of perspective
is crucial.

The classical perspective views a program as being a sequence
of instructions that, combined with some input, drive the machine
through a series of states:

State 1 State 2 State 3 State 4 State 5

Input Input

Instruction Instruction Instruction Instruction

Program

Data

We can summarize the sequence of instruction that drives the
machine from state 1 to state 5 into one instruction, and summarize
the intermediate states, too: From the outside, they are unobserv-
able.

State 1 State 4 State 5

Input Input

Instruction(s) Instruction(s)

Program (Data from attacker perspective)

Data (Program from attacker perspective)

The symmetry of the resulting diagram makes it clear that every
�nite-state transducer (and as a result, every piece of real-world
software) can be viewed from two angles: As an intended machine
where the contents of memory, combined with the code, operate
on input data - but, from the attacker perspective, as an unintended
machine where the input data, combined with the code, operates on
the contents of memory. Each side views what it can control as the
program, and what it does not control as the data. Mathematically,
there is no distinction between the two perspectives.

Under normal conditions, this dual perspective does not matter:
By sending symbols to the IFSM, the attacker can of course cause the
IFSM to change state - this is obvious and unremarkable. The dual
perspective becomes important as soon as a weird state is entered
and the attacker obtains much more liberty to modify states than
anticipated.

4.2 The weird machine
To recapitulate: There is the machine that the programmer intends
to have, the IFSM. Since he only has the cpu available, he generates
the program � to simulate the IFSM on the general cpu. This pro-
gram emulates all the state transitions of the IFSM so that a state
from Qsane

cpu gets transformed into another state from Qsane
cpu , whilst

traversing a number of states from Q trans
cpu .

Now we consider an attacker that has the ability to somehow
move the cpu into a weird state - a state that has no meaning-
ful equivalent in the IFSM, and that will also not necessarily re-
converge to a state that does. This initial weird state will be called
qinit 2 Qweird

cpu .
Once the attacker has achieved this, a new computing device

emerges: A machine that transforms the states inQcpu , particularly
those in Qweird

cpu , by means of transitions that were meant to trans-
form valid IFSM states into each other, and that takes an instruction
stream from the attacker (in form of further inputs).

De�nition 4.1 (Weird Machine). Theweird machine is the comput-
ing device that arises from the operation of the emulated transitions
of the IFSM on weird states. It consists of the 7-tuple

(Qweird
cpu ,qinit ,Q

sane
cpu [Qtrans

cpu , �0,�0,� 0,� 0)

Note that Qsane
cpu [Qtrans

cpu are terminating states for the weird
machine; if one of these states is entered, � begins emulating the
original IFSM again. Further note that the alphabets for input and
output may be di�erent from those for the IFSM.

The weird machine has a number of interesting properties:

Input as instruction stream Themost interesting property
of the weird machine is that, contrary to individual lines
of � transforming states in Qcpu , the weird machine takes
the instruction stream from user input: Every input is an
opcode that leads to the execution of the emulated transi-
tion. While this is true for the IFSM as well, the IFSM can
only reach a well-de�ned and safe set of states. The weird
machine on the other hand has a state space of unknown
size that can be explored by ’programming’ it - sending
careful crafted inputs.

Unknown state space The state space is a priori not known:
It depends heavily on � and qinit , and determining the size
and shape of Qweird

cpu is very di�cult. This also means that
determining whether the security properties of the IFSM
can be violated is a nontrivial endeavour.

Unknown computational power It is a-priori unclear how
much computational power a given weird machine will
have. Intuitively, since the transitions of the IFSM end up
being the ’instructions’ of the weird machine, greater com-
plexity of the IFSM appears to imply greater computational
power; but the actual way the transitions are implemented
is just as important - some constructs will lead to easier
exploitation than others.

Emergent instruction set The attacker gets to choose the
sequence of instructions, but the instruction set itself emerges
from a combination of the IFSM and the emulator �. This
means that while the machine is programmable, and the
semantics of the instructions are well-de�ned, the instruc-
tions themselves are often extremely unwieldly to use. Fur-
thermore, the attacker needs to discover the semantics of
his instructions during the construction of the attack and
infer them from � and qinit .

6

input is the same thing as programming. This change of perspective
is crucial.

The classical perspective views a program as being a sequence
of instructions that, combined with some input, drive the machine
through a series of states:

State 1 State 2 State 3 State 4 State 5

Input Input

Instruction Instruction Instruction Instruction

Program

Data

We can summarize the sequence of instruction that drives the
machine from state 1 to state 5 into one instruction, and summarize
the intermediate states, too: From the outside, they are unobserv-
able.

State 1 State 4 State 5

Input Input

Instruction(s) Instruction(s)

Program (Data from attacker perspective)

Data (Program from attacker perspective)

The symmetry of the resulting diagram makes it clear that every
�nite-state transducer (and as a result, every piece of real-world
software) can be viewed from two angles: As an intended machine
where the contents of memory, combined with the code, operate
on input data - but, from the attacker perspective, as an unintended
machine where the input data, combined with the code, operates on
the contents of memory. Each side views what it can control as the
program, and what it does not control as the data. Mathematically,
there is no distinction between the two perspectives.

Under normal conditions, this dual perspective does not matter:
By sending symbols to the IFSM, the attacker can of course cause the
IFSM to change state - this is obvious and unremarkable. The dual
perspective becomes important as soon as a weird state is entered
and the attacker obtains much more liberty to modify states than
anticipated.

4.2 The weird machine
To recapitulate: There is the machine that the programmer intends
to have, the IFSM. Since he only has the cpu available, he generates
the program � to simulate the IFSM on the general cpu. This pro-
gram emulates all the state transitions of the IFSM so that a state
from Qsane

cpu gets transformed into another state from Qsane
cpu , whilst

traversing a number of states from Q trans
cpu .

Now we consider an attacker that has the ability to somehow
move the cpu into a weird state - a state that has no meaning-
ful equivalent in the IFSM, and that will also not necessarily re-
converge to a state that does. This initial weird state will be called
qinit 2 Qweird

cpu .
Once the attacker has achieved this, a new computing device

emerges: A machine that transforms the states inQcpu , particularly
those in Qweird

cpu , by means of transitions that were meant to trans-
form valid IFSM states into each other, and that takes an instruction
stream from the attacker (in form of further inputs).

De�nition 4.1 (Weird Machine). Theweird machine is the comput-
ing device that arises from the operation of the emulated transitions
of the IFSM on weird states. It consists of the 7-tuple

(Qweird
cpu ,qinit ,Q

sane
cpu [Qtrans

cpu , �0,�0,� 0,� 0)

Note that Qsane
cpu [Qtrans

cpu are terminating states for the weird
machine; if one of these states is entered, � begins emulating the
original IFSM again. Further note that the alphabets for input and
output may be di�erent from those for the IFSM.

The weird machine has a number of interesting properties:

Input as instruction stream Themost interesting property
of the weird machine is that, contrary to individual lines
of � transforming states in Qcpu , the weird machine takes
the instruction stream from user input: Every input is an
opcode that leads to the execution of the emulated transi-
tion. While this is true for the IFSM as well, the IFSM can
only reach a well-de�ned and safe set of states. The weird
machine on the other hand has a state space of unknown
size that can be explored by ’programming’ it - sending
careful crafted inputs.

Unknown state space The state space is a priori not known:
It depends heavily on � and qinit , and determining the size
and shape of Qweird

cpu is very di�cult. This also means that
determining whether the security properties of the IFSM
can be violated is a nontrivial endeavour.

Unknown computational power It is a-priori unclear how
much computational power a given weird machine will
have. Intuitively, since the transitions of the IFSM end up
being the ’instructions’ of the weird machine, greater com-
plexity of the IFSM appears to imply greater computational
power; but the actual way the transitions are implemented
is just as important - some constructs will lead to easier
exploitation than others.

Emergent instruction set The attacker gets to choose the
sequence of instructions, but the instruction set itself emerges
from a combination of the IFSM and the emulator �. This
means that while the machine is programmable, and the
semantics of the instructions are well-de�ned, the instruc-
tions themselves are often extremely unwieldly to use. Fur-
thermore, the attacker needs to discover the semantics of
his instructions during the construction of the attack and
infer them from � and qinit .

6

input is the same thing as programming. This change of perspective
is crucial.

The classical perspective views a program as being a sequence
of instructions that, combined with some input, drive the machine
through a series of states:

State 1 State 2 State 3 State 4 State 5

Input Input

Instruction Instruction Instruction Instruction

Program

Data

We can summarize the sequence of instruction that drives the
machine from state 1 to state 5 into one instruction, and summarize
the intermediate states, too: From the outside, they are unobserv-
able.

State 1 State 4 State 5

Input Input

Instruction(s) Instruction(s)

Program (Data from attacker perspective)

Data (Program from attacker perspective)

The symmetry of the resulting diagram makes it clear that every
�nite-state transducer (and as a result, every piece of real-world
software) can be viewed from two angles: As an intended machine
where the contents of memory, combined with the code, operate
on input data - but, from the attacker perspective, as an unintended
machine where the input data, combined with the code, operates on
the contents of memory. Each side views what it can control as the
program, and what it does not control as the data. Mathematically,
there is no distinction between the two perspectives.

Under normal conditions, this dual perspective does not matter:
By sending symbols to the IFSM, the attacker can of course cause the
IFSM to change state - this is obvious and unremarkable. The dual
perspective becomes important as soon as a weird state is entered
and the attacker obtains much more liberty to modify states than
anticipated.

4.2 The weird machine
To recapitulate: There is the machine that the programmer intends
to have, the IFSM. Since he only has the cpu available, he generates
the program � to simulate the IFSM on the general cpu. This pro-
gram emulates all the state transitions of the IFSM so that a state
from Qsane

cpu gets transformed into another state from Qsane
cpu , whilst

traversing a number of states from Q trans
cpu .

Now we consider an attacker that has the ability to somehow
move the cpu into a weird state - a state that has no meaning-
ful equivalent in the IFSM, and that will also not necessarily re-
converge to a state that does. This initial weird state will be called
qinit 2 Qweird

cpu .
Once the attacker has achieved this, a new computing device

emerges: A machine that transforms the states inQcpu , particularly
those in Qweird

cpu , by means of transitions that were meant to trans-
form valid IFSM states into each other, and that takes an instruction
stream from the attacker (in form of further inputs).

De�nition 4.1 (Weird Machine). Theweird machine is the comput-
ing device that arises from the operation of the emulated transitions
of the IFSM on weird states. It consists of the 7-tuple

(Qweird
cpu ,qinit ,Q

sane
cpu [Qtrans

cpu , �0,�0,� 0,� 0)

Note that Qsane
cpu [Qtrans

cpu are terminating states for the weird
machine; if one of these states is entered, � begins emulating the
original IFSM again. Further note that the alphabets for input and
output may be di�erent from those for the IFSM.

The weird machine has a number of interesting properties:

Input as instruction stream Themost interesting property
of the weird machine is that, contrary to individual lines
of � transforming states in Qcpu , the weird machine takes
the instruction stream from user input: Every input is an
opcode that leads to the execution of the emulated transi-
tion. While this is true for the IFSM as well, the IFSM can
only reach a well-de�ned and safe set of states. The weird
machine on the other hand has a state space of unknown
size that can be explored by ’programming’ it - sending
careful crafted inputs.

Unknown state space The state space is a priori not known:
It depends heavily on � and qinit , and determining the size
and shape of Qweird

cpu is very di�cult. This also means that
determining whether the security properties of the IFSM
can be violated is a nontrivial endeavour.

Unknown computational power It is a-priori unclear how
much computational power a given weird machine will
have. Intuitively, since the transitions of the IFSM end up
being the ’instructions’ of the weird machine, greater com-
plexity of the IFSM appears to imply greater computational
power; but the actual way the transitions are implemented
is just as important - some constructs will lead to easier
exploitation than others.

Emergent instruction set The attacker gets to choose the
sequence of instructions, but the instruction set itself emerges
from a combination of the IFSM and the emulator �. This
means that while the machine is programmable, and the
semantics of the instructions are well-de�ned, the instruc-
tions themselves are often extremely unwieldly to use. Fur-
thermore, the attacker needs to discover the semantics of
his instructions during the construction of the attack and
infer them from � and qinit .

6

input is the same thing as programming. This change of perspective
is crucial.

The classical perspective views a program as being a sequence
of instructions that, combined with some input, drive the machine
through a series of states:

State 1 State 2 State 3 State 4 State 5

Input Input

Instruction Instruction Instruction Instruction

Program

Data

We can summarize the sequence of instruction that drives the
machine from state 1 to state 5 into one instruction, and summarize
the intermediate states, too: From the outside, they are unobserv-
able.

State 1 State 4 State 5

Input Input

Instruction(s) Instruction(s)

Program (Data from attacker perspective)

Data (Program from attacker perspective)

The symmetry of the resulting diagram makes it clear that every
�nite-state transducer (and as a result, every piece of real-world
software) can be viewed from two angles: As an intended machine
where the contents of memory, combined with the code, operate
on input data - but, from the attacker perspective, as an unintended
machine where the input data, combined with the code, operates on
the contents of memory. Each side views what it can control as the
program, and what it does not control as the data. Mathematically,
there is no distinction between the two perspectives.

Under normal conditions, this dual perspective does not matter:
By sending symbols to the IFSM, the attacker can of course cause the
IFSM to change state - this is obvious and unremarkable. The dual
perspective becomes important as soon as a weird state is entered
and the attacker obtains much more liberty to modify states than
anticipated.

4.2 The weird machine
To recapitulate: There is the machine that the programmer intends
to have, the IFSM. Since he only has the cpu available, he generates
the program � to simulate the IFSM on the general cpu. This pro-
gram emulates all the state transitions of the IFSM so that a state
from Qsane

cpu gets transformed into another state from Qsane
cpu , whilst

traversing a number of states from Q trans
cpu .

Now we consider an attacker that has the ability to somehow
move the cpu into a weird state - a state that has no meaning-
ful equivalent in the IFSM, and that will also not necessarily re-
converge to a state that does. This initial weird state will be called
qinit 2 Qweird

cpu .
Once the attacker has achieved this, a new computing device

emerges: A machine that transforms the states inQcpu , particularly
those in Qweird

cpu , by means of transitions that were meant to trans-
form valid IFSM states into each other, and that takes an instruction
stream from the attacker (in form of further inputs).

De�nition 4.1 (Weird Machine). Theweird machine is the comput-
ing device that arises from the operation of the emulated transitions
of the IFSM on weird states. It consists of the 7-tuple

(Qweird
cpu ,qinit ,Q

sane
cpu [Qtrans

cpu , �0,�0,� 0,� 0)

Note that Qsane
cpu [Qtrans

cpu are terminating states for the weird
machine; if one of these states is entered, � begins emulating the
original IFSM again. Further note that the alphabets for input and
output may be di�erent from those for the IFSM.

The weird machine has a number of interesting properties:

Input as instruction stream Themost interesting property
of the weird machine is that, contrary to individual lines
of � transforming states in Qcpu , the weird machine takes
the instruction stream from user input: Every input is an
opcode that leads to the execution of the emulated transi-
tion. While this is true for the IFSM as well, the IFSM can
only reach a well-de�ned and safe set of states. The weird
machine on the other hand has a state space of unknown
size that can be explored by ’programming’ it - sending
careful crafted inputs.

Unknown state space The state space is a priori not known:
It depends heavily on � and qinit , and determining the size
and shape of Qweird

cpu is very di�cult. This also means that
determining whether the security properties of the IFSM
can be violated is a nontrivial endeavour.

Unknown computational power It is a-priori unclear how
much computational power a given weird machine will
have. Intuitively, since the transitions of the IFSM end up
being the ’instructions’ of the weird machine, greater com-
plexity of the IFSM appears to imply greater computational
power; but the actual way the transitions are implemented
is just as important - some constructs will lead to easier
exploitation than others.

Emergent instruction set The attacker gets to choose the
sequence of instructions, but the instruction set itself emerges
from a combination of the IFSM and the emulator �. This
means that while the machine is programmable, and the
semantics of the instructions are well-de�ned, the instruc-
tions themselves are often extremely unwieldly to use. Fur-
thermore, the attacker needs to discover the semantics of
his instructions during the construction of the attack and
infer them from � and qinit .

6

Stephen Chong, Harvard University

Weird Machine

•Intended machine implementation
•Emulates all state transitions of the IFSM so a state from Qcpusane gets transformed

to another state from Qcpusane, maybe traversing some states from Qcputrans

•There may be an unintended machine
•Start in a weird state

•“Instructions” in the form on input transform to other weird states
• Transitions that were meant to transform valid states!

•Interesting properties:
•Input as instruction stream

•Unknown state space

•Unknown computational power

•Emergent instruction set

43

input is the same thing as programming. This change of perspective
is crucial.

The classical perspective views a program as being a sequence
of instructions that, combined with some input, drive the machine
through a series of states:

State 1 State 2 State 3 State 4 State 5

Input Input

Instruction Instruction Instruction Instruction

Program

Data

We can summarize the sequence of instruction that drives the
machine from state 1 to state 5 into one instruction, and summarize
the intermediate states, too: From the outside, they are unobserv-
able.

State 1 State 4 State 5

Input Input

Instruction(s) Instruction(s)

Program (Data from attacker perspective)

Data (Program from attacker perspective)

The symmetry of the resulting diagram makes it clear that every
�nite-state transducer (and as a result, every piece of real-world
software) can be viewed from two angles: As an intended machine
where the contents of memory, combined with the code, operate
on input data - but, from the attacker perspective, as an unintended
machine where the input data, combined with the code, operates on
the contents of memory. Each side views what it can control as the
program, and what it does not control as the data. Mathematically,
there is no distinction between the two perspectives.

Under normal conditions, this dual perspective does not matter:
By sending symbols to the IFSM, the attacker can of course cause the
IFSM to change state - this is obvious and unremarkable. The dual
perspective becomes important as soon as a weird state is entered
and the attacker obtains much more liberty to modify states than
anticipated.

4.2 The weird machine
To recapitulate: There is the machine that the programmer intends
to have, the IFSM. Since he only has the cpu available, he generates
the program � to simulate the IFSM on the general cpu. This pro-
gram emulates all the state transitions of the IFSM so that a state
from Qsane

cpu gets transformed into another state from Qsane
cpu , whilst

traversing a number of states from Q trans
cpu .

Now we consider an attacker that has the ability to somehow
move the cpu into a weird state - a state that has no meaning-
ful equivalent in the IFSM, and that will also not necessarily re-
converge to a state that does. This initial weird state will be called
qinit 2 Qweird

cpu .
Once the attacker has achieved this, a new computing device

emerges: A machine that transforms the states inQcpu , particularly
those in Qweird

cpu , by means of transitions that were meant to trans-
form valid IFSM states into each other, and that takes an instruction
stream from the attacker (in form of further inputs).

De�nition 4.1 (Weird Machine). Theweird machine is the comput-
ing device that arises from the operation of the emulated transitions
of the IFSM on weird states. It consists of the 7-tuple

(Qweird
cpu ,qinit ,Q

sane
cpu [Qtrans

cpu , �0,�0,� 0,� 0)

Note that Qsane
cpu [Qtrans

cpu are terminating states for the weird
machine; if one of these states is entered, � begins emulating the
original IFSM again. Further note that the alphabets for input and
output may be di�erent from those for the IFSM.

The weird machine has a number of interesting properties:

Input as instruction stream Themost interesting property
of the weird machine is that, contrary to individual lines
of � transforming states in Qcpu , the weird machine takes
the instruction stream from user input: Every input is an
opcode that leads to the execution of the emulated transi-
tion. While this is true for the IFSM as well, the IFSM can
only reach a well-de�ned and safe set of states. The weird
machine on the other hand has a state space of unknown
size that can be explored by ’programming’ it - sending
careful crafted inputs.

Unknown state space The state space is a priori not known:
It depends heavily on � and qinit , and determining the size
and shape of Qweird

cpu is very di�cult. This also means that
determining whether the security properties of the IFSM
can be violated is a nontrivial endeavour.

Unknown computational power It is a-priori unclear how
much computational power a given weird machine will
have. Intuitively, since the transitions of the IFSM end up
being the ’instructions’ of the weird machine, greater com-
plexity of the IFSM appears to imply greater computational
power; but the actual way the transitions are implemented
is just as important - some constructs will lead to easier
exploitation than others.

Emergent instruction set The attacker gets to choose the
sequence of instructions, but the instruction set itself emerges
from a combination of the IFSM and the emulator �. This
means that while the machine is programmable, and the
semantics of the instructions are well-de�ned, the instruc-
tions themselves are often extremely unwieldly to use. Fur-
thermore, the attacker needs to discover the semantics of
his instructions during the construction of the attack and
infer them from � and qinit .

6

Stephen Chong, Harvard University

Attacker Models

•Given method of entering some initial qinit from some particular set of
sane states {qi}i∈I ⊂ Qcpusane

•Exploitation is the process of:
•setup (choosing the right qi)
•instantiation (entering qinit) and
•programming of the weird machine

•How to model the attacker? Some possibilities:
•Arbitrary program-point, chosen-bitflip

•Attacker gets to stop program execution, choose any bit to flip

•Arbitrary program-point, chosen-bitflip, registers
•Attacker gets to stop program execution, choose any bit (except for registers) to flip

•Fixed-program point, chosen-bitflip, registers
•At specific program point(s), attacker gets to choose any bit (except for registers) to flip

•...

44

Stephen Chong, Harvard University

Exploitability

45

•Variant 1: Not exploitable!
•Key idea: show that any bit-flip the attacker can do can

be achieved by a finite number of legitimate transitions
•i.e., bit-flipping stays within Qcpusane

•Show that the security property is achieved if staying
only within Qcpusane

•Variant 2: Exploitable
•Key idea: attacker sets up data structure so that a bitflip

corrupts a pointer, and a known value is treated as a
password

Stephen Chong, Harvard University

Where to From Here?

•This provides a perspective on weird machines
•Generalizes many kinds of vulnerabilities

•But does it provide insight in how to prevent
these vulnerabilities?

46

Stephen Chong, Harvard University

Weird Machines as Insecure
Compilation

•Paykin et al. (2019)
•Key idea: an exploit is behavior in the target that

doesn’t correspond to behavior in the source

47

Weird Machines as Insecure Compilation
Jennifer Paykin, Eric Mertens, Mark Tullsen, Luke Maurer, Benoı̂t Razet, and Scott Moore

{jpaykin,scott}@galois.com Galois, Inc.

Computer security is distinguished from other computer sci-
ence disciplines by its adversarial nature—computer security
studies how systems behave while subject to attack. A result
of this adversarial focus is that exploits serve an important role
in security research: an exploit witnesses the insecurity of a
system by causing it to behave inappropriately.

However, the mere existence of an exploit fails to answer
many important questions about the system under consid-
eration: How severe is the vulnerability? How readily can
the vulnerability be repurposed by hackers to attack other
systems? Can the vulnerability be patched? How effective
is a proposed mitigation? Without a systematic approach to
understanding exploits, it is difficult to evaluate the importance
of any particular vulnerability or to generalize lessons learned
to improve security more broadly.

In the exploit community, many practitioners describe ex-
ploit development as an exercise in “programming a weird

machine.” A weird machine is the latent computational ma-
chine exposed by a vulnerable program that can be repurposed
by an attacker to achieve their goals [1, 2]. A particularly
evocative example of programming a weird machine is return-
oriented programming, where attackers exploit a program by
overwriting the stack with a sequence of return addresses that
invoke fragments of the original binary to achieve a desired
effect [3]. Despite the intuitive appeal of weird machines, it
has proven challenging to provide a formal definition that
can be consistently applied to a variety of systems and
vulnerabilities [4, 5].

Dullien [5] defines weird behavior as the difference between
two state machines—an intended finite state machine (IFSM)
corresponding to the model that the programmer has in her
head when writing the program and an implemented finite
state machine that attempts to realize the IFSM. A weird state
is a state in the implemented finite state machine that does
not correspond to a state in the intended one, and the weird
machine is the collection of computations reachable from a
weird state. Using this formalism, Dullien is able to compare
the exploitability of two implementations of a simple program.

This formalism requires that the relationship between the
intended and actual state machines is formalized, but does
not give clear guidelines for what this relationship must look
like. Furthermore, since both the intended and implemented
state machines are program-specific, it is difficult to draw con-

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-15-C-0124. Any opinions, findings
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Air
Force and DARPA.

clusions about the generalizability of exploits or mitigations
beyond the system at hand.

Arguing for the development of new formalisms of
weird machines, Bratus and Shubina [2] identify abstraction-
breaking as their core phenomenon. Inspired by Abadi’s [6]
connection between programming language abstractions and
secure compilation, we propose formalizing weird machines as
counterexamples to secure compilation between a source pro-
gram (written P) and its compilation (written JPK), witnessed
by a target-level attacker context A. Following Abate et al. [7],
we define secure compilation via property-preservation, rather
than full abstraction, explicitly modeling a program’s behavior
(written Behav (P)).

An exploit is an adversarial context that causes a compiled
program to behave differently than it could in the source-
language semantics. Intuitively, such a behavior must violate
some abstraction of the source-level program. More formally:

Definition (Exploit). An exploit of a vulnerable source pro-

gram V is an attacker context A from an attack class A if

Behav (C[V]) 6= Behav (A[JVK]) for every non-oblivious
1 C.

ExploitA(V) ,
(

A 2 A

�����
8 C . ¬oblivious(C))
Behav (C[V]) 6= Behav (A[JVK])

)

Given a vulnerable program, the set of possible exploits
determines what behaviors are available to the attacker:

Definition (Weird Machine). The weird machine of a vulner-

able source program V for an attack class A is the collection

of behaviors arising from exploits of V.

WMA(V) ,
n

Behav (A[JVK])
��� A 2 ExploitA(V)

o

Using these definitions, we model a number of weird ma-
chines and exploits including return-oriented programming [3],
data-oriented programming [8], speculative execution vulner-
abilities [9, 10], and timing side-channels. Furthermore, we
show that our approach generalizes Dullien’s state machine
formalization. Finally, we show that exploits are exactly the
contexts that violate robust properties of behaviors [7].

Formalizing weird machines in terms of secure compilation
provides a clear framework for understanding exploit classes
like these and, as evidenced by Abadi et al’s previous work
on address space layout randomization [11, 12], allows us to
reason about the underlying causes of exploits and how they
might be mitigated.

1A context is oblivious if its behavior does not depend on the program it
is linked with: oblivious(C) , 8V,V’ . Behav (C[V]) = Behav C[V’].

Weird Machines as Insecure Compilation
Jennifer Paykin, Eric Mertens, Mark Tullsen, Luke Maurer, Benoı̂t Razet, and Scott Moore

{jpaykin,scott}@galois.com Galois, Inc.

Computer security is distinguished from other computer sci-
ence disciplines by its adversarial nature—computer security
studies how systems behave while subject to attack. A result
of this adversarial focus is that exploits serve an important role
in security research: an exploit witnesses the insecurity of a
system by causing it to behave inappropriately.

However, the mere existence of an exploit fails to answer
many important questions about the system under consid-
eration: How severe is the vulnerability? How readily can
the vulnerability be repurposed by hackers to attack other
systems? Can the vulnerability be patched? How effective
is a proposed mitigation? Without a systematic approach to
understanding exploits, it is difficult to evaluate the importance
of any particular vulnerability or to generalize lessons learned
to improve security more broadly.

In the exploit community, many practitioners describe ex-
ploit development as an exercise in “programming a weird

machine.” A weird machine is the latent computational ma-
chine exposed by a vulnerable program that can be repurposed
by an attacker to achieve their goals [1, 2]. A particularly
evocative example of programming a weird machine is return-
oriented programming, where attackers exploit a program by
overwriting the stack with a sequence of return addresses that
invoke fragments of the original binary to achieve a desired
effect [3]. Despite the intuitive appeal of weird machines, it
has proven challenging to provide a formal definition that
can be consistently applied to a variety of systems and
vulnerabilities [4, 5].

Dullien [5] defines weird behavior as the difference between
two state machines—an intended finite state machine (IFSM)
corresponding to the model that the programmer has in her
head when writing the program and an implemented finite
state machine that attempts to realize the IFSM. A weird state
is a state in the implemented finite state machine that does
not correspond to a state in the intended one, and the weird
machine is the collection of computations reachable from a
weird state. Using this formalism, Dullien is able to compare
the exploitability of two implementations of a simple program.

This formalism requires that the relationship between the
intended and actual state machines is formalized, but does
not give clear guidelines for what this relationship must look
like. Furthermore, since both the intended and implemented
state machines are program-specific, it is difficult to draw con-

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-15-C-0124. Any opinions, findings
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Air
Force and DARPA.

clusions about the generalizability of exploits or mitigations
beyond the system at hand.

Arguing for the development of new formalisms of
weird machines, Bratus and Shubina [2] identify abstraction-
breaking as their core phenomenon. Inspired by Abadi’s [6]
connection between programming language abstractions and
secure compilation, we propose formalizing weird machines as
counterexamples to secure compilation between a source pro-
gram (written P) and its compilation (written JPK), witnessed
by a target-level attacker context A. Following Abate et al. [7],
we define secure compilation via property-preservation, rather
than full abstraction, explicitly modeling a program’s behavior
(written Behav (P)).

An exploit is an adversarial context that causes a compiled
program to behave differently than it could in the source-
language semantics. Intuitively, such a behavior must violate
some abstraction of the source-level program. More formally:

Definition (Exploit). An exploit of a vulnerable source pro-

gram V is an attacker context A from an attack class A if

Behav (C[V]) 6= Behav (A[JVK]) for every non-oblivious
1 C.

ExploitA(V) ,
(

A 2 A

�����
8 C . ¬oblivious(C))
Behav (C[V]) 6= Behav (A[JVK])

)

Given a vulnerable program, the set of possible exploits
determines what behaviors are available to the attacker:

Definition (Weird Machine). The weird machine of a vulner-

able source program V for an attack class A is the collection

of behaviors arising from exploits of V.

WMA(V) ,
n

Behav (A[JVK])
��� A 2 ExploitA(V)

o

Using these definitions, we model a number of weird ma-
chines and exploits including return-oriented programming [3],
data-oriented programming [8], speculative execution vulner-
abilities [9, 10], and timing side-channels. Furthermore, we
show that our approach generalizes Dullien’s state machine
formalization. Finally, we show that exploits are exactly the
contexts that violate robust properties of behaviors [7].

Formalizing weird machines in terms of secure compilation
provides a clear framework for understanding exploit classes
like these and, as evidenced by Abadi et al’s previous work
on address space layout randomization [11, 12], allows us to
reason about the underlying causes of exploits and how they
might be mitigated.

1A context is oblivious if its behavior does not depend on the program it
is linked with: oblivious(C) , 8V,V’ . Behav (C[V]) = Behav C[V’].

Stephen Chong, Harvard University

Weird Machines as Insecure
Compilation

•Generalizes Dullien’s approach
•Uses vocabulary of language-based security
•Recall Robust Hyperproperty Preservation:

•Exactly characterizes no weird-machine exploits!

48

1 void before() { strcpy(guess, "12345678"); }
2 void after() { return; }

Listing 5: An attack that prints the password.
1 void before() { strcpy(guess, "1234567"); }
2 void after() { printf("8weird"); }

Listing 6: A context with the same behavior as Listing 5
in the source semantics.

level abstraction and so an attacker can easily simulate
the behavior of an exploit that accesses the password.

Suppose instead that the password was hidden by a
language-level abstraction, such as a different imple-
mentation of init_secret that loads the (possibly
different on each execution) secret from some external
source (e.g., an access-controlled configuration file). In
that case, the context in Listing 5 would be an exploit,
since according to the source-language semantics, no
context can access the static buffer secret or the static
function init_secret.

The security properties of such a component V can
be broken into two parts: 1) its security with respect to
source language contexts; and 2) its security with respect
to target language contexts. In general programmers
should take perspective 1 into account when writing
code and developing algorithms, since they are already in
the mindspace of the source language. But programmers
often don’t know the details of a compiler or target
language, so it is significantly harder to understand
perspective 2.

In Section III-D, we discuss an extension of our frame-
work that would identify the attack against Listing 3 as
an exploit by also considering attacks that violate code
confidentiality. This extended definition can account for
additional exploits under an attacker model where the
adversary is assumed not to have access to the program’s
source code, at the cost of increasing the difficulty of rea-
soning about program exploitability. However, even with
this extension, there are still programs that are intuitively
insecure but that our framework says are unexploitable,
such as a program that always stores user’s passwords in
plaintext, violating well-known security best practices.

III. ROBUST PROPERTY VIOLATION

One way to characterize classes of exploits is to con-
sider what security properties of a source program they
can violate. For example, return-oriented programming
attacks can change the the control-flow of a program,
while data-oriented programming attacks can only alter
the data that a program computes on. Similarly, timing
side channels may reveal confidential information, but
cannot directly change the execution of a program. In

general, showing that an attacker context violates a
property that holds of all source programs is sufficient
to show that it has invoked a weird behavior.

For a property B ⊆ BS of source behaviors, we write
B↓ for the set of target behaviors satisfying B:

B↓� �bT ∈ BT � ∃bS ∈ B.bS � bT� .
Lemma III.1. Let B ⊆ BS be a property of source
behaviors such that for all whole source programs P

S,
B(PS) ∈ B. If V is a source component and A ∈ A
is a target context such that B(A[V ↓]) ∉ B ↓, then
A ∈ Exploit

A(V).
Proof. Since B(A[V ↓]) ∉ B ↓, there is no source
behavior bS ∈ B such that bS � B(A[V↓]); so there is
no context CS such that B(CS[V])� B(A[V↓]).

In fact, the violating property need not hold of all
source programs, but only those of the form CS[V].
Lemma III.2. Let V be a source component, and let
B ⊆ BS be a property of source behaviors such that for
all source contexts C

S, it is the case that B(CS[V]) ∈ B.
If A ∈ A is an attack such that B(A[V ↓]) ∉ B ↓, then
A ∈ Exploit(V).

This result derives from the literature on robust prop-
erty preserving compilers [10, 9, 15]. A compiler sat-
isfies robust (hyper-) property preservation (RHP) if,
whenever a hyperproperty is preserved by a source pro-
gram, the compilation of the hyperproperty is preserved
by the compilation of the source program.2

∀B ⊆ BS. ∀US. �∀CS. B(CS[US]) ∈ B� ⇒
�∀CT. B(CT[US ↓]) ∈ B↓� (RHP)

Abate et al. [9] also give a property-free characterization
of robust hyperproprety preservation:

Theorem III.3 (Abate et al. [9]). A compiler satisfies
RHP if and only if for all source components U

S and
target contexts CT, there exists a back-translated source
context C

S such that B(CS[US])� B(CT[US ↓]).
This property-free characterization is exactly the nega-

tion of Definition II.1, so we can restate the result in
terms of exploits:

Theorem III.4. A compiler satisfies RHP if and only
if it has no exploits: for all source components U

S,
Exploit(US) = �.

2For a much deeper discussion of robust property preservation with
respect to the bhavior relation, see Abate et al. [15]; prior to that, it
was assumed that source and target behaviors were always equal.

6

1 void before() { strcpy(guess, "12345678"); }
2 void after() { return; }

Listing 5: An attack that prints the password.
1 void before() { strcpy(guess, "1234567"); }
2 void after() { printf("8weird"); }

Listing 6: A context with the same behavior as Listing 5
in the source semantics.

level abstraction and so an attacker can easily simulate
the behavior of an exploit that accesses the password.

Suppose instead that the password was hidden by a
language-level abstraction, such as a different imple-
mentation of init_secret that loads the (possibly
different on each execution) secret from some external
source (e.g., an access-controlled configuration file). In
that case, the context in Listing 5 would be an exploit,
since according to the source-language semantics, no
context can access the static buffer secret or the static
function init_secret.

The security properties of such a component V can
be broken into two parts: 1) its security with respect to
source language contexts; and 2) its security with respect
to target language contexts. In general programmers
should take perspective 1 into account when writing
code and developing algorithms, since they are already in
the mindspace of the source language. But programmers
often don’t know the details of a compiler or target
language, so it is significantly harder to understand
perspective 2.

In Section III-D, we discuss an extension of our frame-
work that would identify the attack against Listing 3 as
an exploit by also considering attacks that violate code
confidentiality. This extended definition can account for
additional exploits under an attacker model where the
adversary is assumed not to have access to the program’s
source code, at the cost of increasing the difficulty of rea-
soning about program exploitability. However, even with
this extension, there are still programs that are intuitively
insecure but that our framework says are unexploitable,
such as a program that always stores user’s passwords in
plaintext, violating well-known security best practices.

III. ROBUST PROPERTY VIOLATION

One way to characterize classes of exploits is to con-
sider what security properties of a source program they
can violate. For example, return-oriented programming
attacks can change the the control-flow of a program,
while data-oriented programming attacks can only alter
the data that a program computes on. Similarly, timing
side channels may reveal confidential information, but
cannot directly change the execution of a program. In

general, showing that an attacker context violates a
property that holds of all source programs is sufficient
to show that it has invoked a weird behavior.

For a property B ⊆ BS of source behaviors, we write
B↓ for the set of target behaviors satisfying B:

B↓� �bT ∈ BT � ∃bS ∈ B.bS � bT� .
Lemma III.1. Let B ⊆ BS be a property of source
behaviors such that for all whole source programs P

S,
B(PS) ∈ B. If V is a source component and A ∈ A
is a target context such that B(A[V ↓]) ∉ B ↓, then
A ∈ Exploit

A(V).
Proof. Since B(A[V ↓]) ∉ B ↓, there is no source
behavior bS ∈ B such that bS � B(A[V↓]); so there is
no context CS such that B(CS[V])� B(A[V↓]).

In fact, the violating property need not hold of all
source programs, but only those of the form CS[V].
Lemma III.2. Let V be a source component, and let
B ⊆ BS be a property of source behaviors such that for
all source contexts C

S, it is the case that B(CS[V]) ∈ B.
If A ∈ A is an attack such that B(A[V ↓]) ∉ B ↓, then
A ∈ Exploit(V).

This result derives from the literature on robust prop-
erty preserving compilers [10, 9, 15]. A compiler sat-
isfies robust (hyper-) property preservation (RHP) if,
whenever a hyperproperty is preserved by a source pro-
gram, the compilation of the hyperproperty is preserved
by the compilation of the source program.2

∀B ⊆ BS. ∀US. �∀CS. B(CS[US]) ∈ B� ⇒
�∀CT. B(CT[US ↓]) ∈ B↓� (RHP)

Abate et al. [9] also give a property-free characterization
of robust hyperproprety preservation:

Theorem III.3 (Abate et al. [9]). A compiler satisfies
RHP if and only if for all source components U

S and
target contexts CT, there exists a back-translated source
context C

S such that B(CS[US])� B(CT[US ↓]).
This property-free characterization is exactly the nega-

tion of Definition II.1, so we can restate the result in
terms of exploits:

Theorem III.4. A compiler satisfies RHP if and only
if it has no exploits: for all source components U

S,
Exploit(US) = �.

2For a much deeper discussion of robust property preservation with
respect to the bhavior relation, see Abate et al. [15]; prior to that, it
was assumed that source and target behaviors were always equal.

6

Stephen Chong, Harvard University 49

Stephen Chong, Harvard University

Moral of this Lecture

•Weird machines: application of formal methods
to understand and reason about certain
vulnerabilities

•Language-based security connected it with
existing security definitions and on-going work
on enforcing these security definitions

50

Stephen Chong, Harvard University

Moral of this Lecture Series

51

Real computer
system

Model of
computer

system

Reason
about
model

Stephen Chong, Harvard University

Moral of this Lecture Series

52

Real computer
system

Model of
computer

system

Reason
about
model

•PL techniques and ideas are a great fit for formal
approaches to computer security
•Useful models for systems, effective reasoning techniques,

practical enforcement mechanisms, enforcing language
abstractions preserves reasoning, ...

•Go forth and research!

Stephen Chong, Harvard University

Moral of this Lecture Series

53

Real computer
system

Model of
computer

system

Reason
about
model

•PL techniques and ideas are a great fit for formal
approaches to computer security
•Useful models for systems, effective reasoning techniques,

practical enforcement mechanisms, enforcing language
abstractions preserves reasoning, ...

•Go forth and research!

Stephen Chong, Harvard University

References/Further Reading

•Dullien, T. (2020). Weird machines,
exploitability, and provable unexploitability. IEEE
Transactions on Emerging Topics in Computing
8(2), 391–403.

•Paykin, J., E. Mertens, M. Tullsen, L. Maurer, B.
Razet, and S. Moore (2019). Weird machines as
insecure compilation. In Workshop on
Foundations of Computer Security.

54

