We'll do a small part of the program we showed earlier:

I'm going to show a simple inductive procedure that we can apply to our example:

Define this relationship inductively, starting with the base case.

Compilation Arrow:

We'll do a small part of the program we showed earlier:

We'll do a small part of the program we showed earlier:

We'll do a small part of the program we showed earlier:

Now let's look at the other inductive case, where the top

2.) No Vacuous children/nodes. This is implied by 1st part of

1.) No isomorphic subtrees (syntactically, no redundant

2.

Reduction:

Starting with A, conjoin the true child and the false child

Together.

Now do bind:

We'll look at it in the context of an example.

When does sampling work well and when does it work poorly?

Succinctness for your probabilistic programs. The tractable language

Kroneckers "Art of Computer Programming" has a lot of pages on

There is some theory argument that could be made there.

The tree restriction is helpful there. Each node needs a true

Could use ZDDs accepting, one unnormalized semantics.

Could end up with a very large table.

Table language where each row is a possible world.

This is also polynomial in space, because the space is

restricted by the runtime complexity.

This makes sense, if we consider for instance conversion to

DNF is a family of formulae for which SAT is easy to solve.

This makes sense, if we consider for instance conversion to

Example DNF:

DNF (Disjunctive Normal Form) for SAT.

This makes sense, if we consider for instance conversion to

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.

In the program we have above, this results in lots of samples

Afterwards, only consider the accepted samples.

Violation of the observation means you forget that sample

Yes, but another issue lies in interactions with conditioning.

His observation is that there's a relationship between

Preserving compilation

Good paper idea, but we're going to talk about semantics

Approximate conditioning.

Drawback of approximation is dealing with

We have a worst case hardness situation, and

Called the low probability of evidence problem.