
Program	Logics	for	Probabilistic
Programs
Motivation:	Analogy	between	probability	and	mutable	state

Probability	and	mutable	state	have	more	in	common	than	you
think

This	is	ongoing		work,	started	with	a	POPL	2020	paper	from
Bartha,	Hsu,	Liao,	"Probabilistic	Separation	Logic"

Separation	Logic:

Separation	Logic	has	been	quite	helpful	for	imperative	heap
manipulating	programs.

Now,	lets	consider	an	analogous	program

x	and	y	are	independent	random	variables	each	following
bernoulli	1/2

Do	we	get	all	the	same	properties	from	separation	logic?

Can	extend	props	in	smaller	context	to	a	larger	context.

Composing	a	larger	heap	from	a	set	of	disjoint	smaller	heaps

Today,	we're	gonna	try	to	get	intuition	about	props	like	x	tilde
Bern	1/2

Separation	Logic	for	Heap	Programs

(s,h)

s:	names	->	heap	loc

h:	loc	->	values	(partial	map)

Base	cases

	

Configuration	disjointness:	if	heaps	dont	reference	same
locations

Table	of	Analogies

A	portion	of	heap	is	owned,	if	it	can	be	referred	to	with	a
proposition

We're	going	to	build	a	model	that	again	is	by	analogy	with	heaps
and	stores.

Analogous	to	how	heaps	are	not	visible	to	you,	and	you	only
touch	them	with	variables,	we	make	the	same	idea	here	with
sample	spaces	and	random	variables.

Analogous	to	fresh	locations	in	heap,	we	need	a	fresh	location
out	of	the	sample	space,	independent	from	the	ones	I've	already
allocated.

Independent	Co	mbination:

Question:	is	there	a	nice	way	of	choosing	an	appropriate
omega?

I	like	this	one.

It's	like	asking	"how	do	I	choose	the	kind	of	heap	shapes	for
my	program"

Its	a	large	set	of	possible	intervals	I	can	carve	out	for	my	new
randomness

Behaves	very	strangely	due	to	real	numbers,	can	always
carve	out	from	it.

Question:	what	is	mu

a	function	from	events	to	0,1

Question:	How	do	I	allocate	another	fresh	source	of
randomness	in	this	square:

Have	to	be	clever	about	it.

Something	perpendicular	maybe.

Independent	combination	is	a	function.

Disjoint	union	is	a	partial	function	that	takes	two	probability
spaces	and	tries	to	combine	them	into	one,	preserving	the
measure	factorization	structure.

That	gives	me	my	interpretation	for	disjoint	union.

Definitions	are	in	the	paper.

It	is	important	to	be	able	to	pull	back	x

A	nice	aspect	here	is	we've	managed	to	take	well	studied
portions	of	probability	theory	and	encoded	them	in	our	logic.

The	main	point	I	wanna	make	is	every	single	piece	is	in	close
analogy	to	separation	logic.

Question:	Is	there	an	analagous	heap	metaphor	for	conditional
independence?

Conditioning	needs	to	be	in	our	logic

Semantics	are	spicy

Lilac	paper,	with	title	"A	modal	separation	logic	for	conditional
probability"

It	gets	hairy,	dont	wanna	say	much	more

Question:	Does	it	behave	like	diamond?

Interesting	question

Paper,	Bao	Blubell,	has	a	different	way	to	define	conditional
probability

For	our	purposes,	we	proved	laboriously	the	specific	rules
we	needed	for	our	examples

Defining	different	structures	could	be	quite	useful.

Credits	"John"	for	a	lot	of	this,	don't	know	who	that	is.

Perspectives
Want	to	conclude	with	big	challenges	in	probabilistic
programming

1.	Scalability

We	have	this	underlying	hardness	thats	difficult	to	avoid

Hopeful	that	a	better	deductive	logic,	better	sampling	will
help

It's	a	big	barrier	to	using	them	in	real	programs

Right	now	we're	on	the	order	of	1000	lines

Scalable	one	will	require	a	synthesis	of	lots	of	ideas.

2.	Usability

Probabilistic	programs	are	not	very	fun	to	use

No	debuggers,	profilers,	ide	tooling

They'll	often	just	output	a	wrong	answer	instead	of	failing

PPLs	are	the	domain	of	the	experts,	which	is	not	the	point.

There	are	research	questions	here,	I	don't	know	how	to	do
the	debugging

Profilers	are	obvious,	there's	interesting	research	here	about
which	characteristics	we	check

3.	Core	semantic	challenges

I	want	something	that	takes	a	term,	and	out	comes	a	prob,
something	that	looks	like	a	probability	distribution
(denotation	function)

I	showed	you	a	very	simple	language,	no	loops,	which	does
let	us	do	this

If	we	add	higher-order	functions,	recursion,	other	stuff,	adds
complexity.

Paper:	Staton

It	is	hard	to	make	denotational	arguments	about	prob,	even
though	we	know	lots	about	probability.

Open	questions	here.

4.		Inference	(debatably	falls	under	performance)

Only	showed	a	sliver	of	the	tools	and	capabilities

Need	to	PL'ify	this

Don't	have	good	foundational	principles	for	reasoning	about
this

5.	Reasoning	(other	questions)

Automation,	other	kinds	of	separation

Question:	Can	we	combine	heap	manipulation	and	probabilistic
separation?

In	principle	its	possible

Will	be	hard,	layers	of	separation

Concurrent	separation	logic	will	have	something	that	could
help

Question:	Has	there	been	work	on	embedding	PP	in	theorem
provers?

With	the	idea	of	reasoning	about	programs	i

Fun	question,	sounds	like	fun.	

Theres	lots	of	work,	Joe	Tasarotti

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•


