Probabilistic Programming from the Ground Up
Lecture 1: Why Probabilistic Programming

June 10, 2024

Steven Holtzen

s.holtzen@northeastern.edu

Oregon Programming Languages Summer School 2024

https://www.Kkhoury.northeastern.edu/home/sholtzen/oplss24—-ppl/

OREGON
PROGRAMMING
LANGUAGES
SUMMER &r
SCHOOL untverstry

mailto:s.holtzen@northeastern.edu
https://www.khoury.northeastern.edu/home/sholtzen/oplss24/

Goals of this course:

To be able to design, implement, and
use your own probabilistic
programming language

Secondary objective: get a
“bird’s eye view” of the field

Holtzen OPLSS 2024

of probabilistic programming

Course overview

Lecture 1: Syntax, semantics, implementation of TinyPPL
and TinyCond

Lecture 2: Approximate reasoning via sampling
* Direct sampling and TinySamp
* Rejection sampling
e Markov-Chain Monte-Carlo sampling (?)

Lecture 3: Tractability and expressivity
e Binary decision diagrams (BDD)
* Inference via weighted model counting

Lecture 4: Markov-Chain Monte Carlo, perspectives

Course logistics

 All course content available on course webpage

* All implementations provided in Ocaml, available
here: https://github.com/SHoltzen/oplss24-ppl

* You are encouraged to follow along with the
implementation and build on these interpreters to
make your own languages

* This course is a condensed version of a few other
courses | have taught:
e https://neuppl.github.io/CS7470-Fall23/

e https://www.khoury.northeastern.edu/home/sholtzen/C
S7480Fall21/

Holtzen OPLSS 2024 4

https://github.com/SHoltzen/oplss24-ppl
https://neuppl.github.io/CS7470-Fall23/
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/
https://www.khoury.northeastern.edu/home/sholtzen/CS7480Fall21/

Course philosophy

* Implementation-oriented: you should play with the
provided implementations (maybe find bugs?)
* Improve them!
e Add features to them!

e All the implementations are in pure OCaml, single-file.
You can run them in your browser without installing
OCaml if you want: https://try.ocamlpro.com/

* Think of these slides like instructor notes; they
supplement the course, but they are not actually used
to present

https://try.ocamlpro.com/

Q: What are probabilistic programs?

A: Programs that denote probability distributions

Syntax for introducing uncertainty:

True with probability 1/2

0.8

€T < fllp 1/2, 0.6
y < flip 1/2; o

return x Vy

0.25
0.2

W Probability

Holtzen OPLSS 2024 6

Why probabilistic programming languages?

The PL Argument

for probabilistic programming

1. Itis important to verify programs.

“Program testing can be used to
show the presence of bugs, but
never to show their absence.”

K pis)

E. Dijkstra

Holtzen OPLSS 2024

1. Itis important to verify programs.

2. Many kinds of programs have inherent
probabilistic uncertainty.

The Power and Weakness of Randomness in 2023 ACM A.M. Turing Award
Computation Laureate

Avi Wigderson

Institute for Advanced Study, Princeton

Randomness is Paramount to Computational Efficiency. The use of
randomness can dramatically enhance computation (and do other wonders) for a
variety of problems and settings. In particular, examples will be given of proba-
bilistic algorithms (with tiny error) which are exponentially faster than their
(best known) deterministic counterparts, and probabilistic algorithms which
achieve significant space savings over deterministic ones. Other settings in-
clude distributed algorithms where randomness (provably) achieves exponen-
tially smaller congestion than deterministic ones. Finally we’ll show that using
randomness, proof systems can be enhanced to allow properties unattainable
without it. Letting the verifier and prover toss coins, proof systems can allow
spot checking of proofs (PCPs - a central tool in the theory of approximation),
as well as zero-knowledge proofs (proofs revealing nothing except their validity
- a central tool in cryptography).

10

1. Itis important to verify programs.

2. Many kinds of programs have inherent
probabilistic uncertainty.

Differential Privacy Networking & distributed systems

a [mﬂ

500 recor ds

il Randomized algorithms

499 records

https://medium.com/dsaid-govtech/protecting-your-data-
privacy-with-differential-privacy-an-introduction-
abeeld7fcb63

Success stories and systems

Verified differential privacy

« Barthe, Gilles, et al. "Proving differential privacy via probabilistic couplings." Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science. 2016.

Verified cryptography

» Barthe, Gilles, et al. "Probabilistic relational verification for cryptographic implementations." ACM SIGPLAN
Notices 49.1 (2014): 193-205.

Verified networking

» Foster, Nate, et al. "Probabilistic netkat." Programming Languages and Systems: 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2016, Eindhoven, The Netherlands, April 2—8, 2016, Proceedings 25. Springer Berlin Heidelberg, 2016.

Verified runtime behavior of randomized algorithms

e Kaminski, Benjamin Lucien, et al. "Weakest precondition reasoning for expected runtimes of randomized algorithms." Journal of the
ACM (JACM) 65.5 (2018): 1-68.

Holtzen OPLSS 2024 12

It is important to verify programs.

Many kinds of programs have inherent
probabilistic uncertainty.

. We need programming languages with
probabilistic semantics.

The Al Argument

For probabilistic programming

1. We want programs to help us reason rationally about the world.

Holtzen OPLSS 2024 15

1. We want programs to help us reason rationally about the world.

2. We need a language for describing the world to a computer.

Holtzen OPLSS 2024 16

1. We want programs to help us reason rationally about the world.
2. We need a language for describing the world to a computer.
3. The world is too complicated to describe without probabilities.

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

1.1 INTRODUCTION

1.1.1 Why Bother with Uncertainty? J. Pearl

Reasoning about any realistic domain always requires that some simplifications be Turing Award Winner (20 1 1)
made. The very act of preparing knowledge to support reasoning requires that we
leave many facts unknown, unsaid, or crudely summarized. For example, if we
choose to encode knowledge and behavior in rules such as "Birds fly" or "Smoke
suggests fire," the rules will have many exceptions which we cannot afford to
enumerate, and the conditions under which the rules apply (e.g., seeing a bird or
smelling smoke) are usually ambiguously defined or difficult to satisfy precisely in
real life. Reasoning with exceptions is like navigating a minefield: Most steps are
safe, but some can be devastating. If we know their location, we can avoid or
defuse each mine, but suppose we start our journey with a map the size of a
postcard, with no room to mark down the exact location of every mine or the way
they are wired together. An alternative to the extremes of ignoring or enumerating
exceptions is to summarize them, i.e., provide some warning signs to indicate
which areas of the minefield are more dangerous than others. Summarization is

Holtzen OPLSS 2024 17

AN

We want programs to help us reason rationally about the world.

We need a language for describing the world to a computer.

The world is too complicated to describe without probabilities.

We need programming languages with probabilistic semantics.

The Student Network

d° | dt

50

st

i°] 0.95

0.05

i0.do

0 dt

it,d°

it dt

Holtzen OPLSS 2

il 0.2

0.8

Daphne Koller

Success stories and systems

* There have been over 50 PPLs proposed within the last 15 years

* Some widely-used examples:
* Stan https://mc-stan.org/
* Pyro https://pyro.ai/
* PyMC3 https://www.pymc.io/projects/docs/en/stable/learn.html

* Many applications of PPLs:
* Stan case studies https://mc-stan.org/users/documentation/case-studies

* Many users today within the scientific community, machine
learning community

» Several corporations have developed their own PPLs (Google,
Meta, Microsoft)

Holtzen OPLSS 2024 19

https://mc-stan.org/
https://pyro.ai/
https://www.pymc.io/projects/docs/en/stable/learn.html
https://mc-stan.org/users/documentation/case-studies

Syntax and Semantics

of a Tiny Probabilistic Programming Language
(TinyPPL)

TinyPPL Syntax

Example programs

4 N x < flip 0.5; N

x <= flip 0.5; y <— return (if x then flip 0.2

y <= Tlip 0.5; else flip 0.5)
return x || vy;
return x || vy;

\ Flip 2 coins, return disjunction/

\ If-expressions allow branching /

Syntactic features:

* Monadic do-style syntax separates effectful from pure programs

« f1lip for allocating fresh randomness Notably absent:

* Conditionals and basic logic connectives loops, functions,
modules, integers...

we will slowly add in
a few more features.

Holtzen OPLSS 2024

TinyPPL Grammar

Pure computations Probabilistic computations

<p> ::i= <e> :i:i=

<ident> | flip <float>

true | <id> <- <e>; <e>

false | return <p>

if <p> then <p> else <p>

<p> && <p>

<p> || <p>

I<p>

“Monadic style”; not too

Holtzen OPLSS 2024 important what that means

TinyPPL Pure Semantics

* Semantics of pure terms are standard

-], : Env — Bool

pisan
environment, T is
semantic true, L

* Some examples:

is semantic false

[true],p =T
[z]pp = p()

Holtzen OPLSS 2024 23

TinyPPL Probabilistic Semantics

* Denote probability distributions on values

I-]e : Env — Bool — [0, 1]

e Definition:

0 ifo="T
1 — 6 otherwise

[flip O]lp =v — {

1 ifv=[p]pp

return =V
[[p]]p {O otherwise

TinyPPL Probabilistic Semantics

Semantics of bind

x < flip 1/2;
y < flip 1/2; p(U) —)
return x Vy

TinyPPL Probabilistic Semantics

Semantics of bind

r < flip 1/2; 1 x < return true;
y + flip 1/2; | [P(V) = > ||y e 12 p(v) +
return x V y return x V y

T < return false;

y < flip 1/2; p(v)
return x Vy

N| =

TinyPPL Probabilistic Semantics

Semantics of bind

T <— return true;

1

2 y < return true; | | p(v) +
x <+ flip 1/2; return r Vy
y « flip 1/2; | jp(v) ==

1 T < return true;
return x Vy

_ y < return false;fj [p(v) +

return r Vy

TinyPPL Probabilistic Semantics

Semantics of bind

[< ersealp(v) =) _ea](v) x [ea]plz = v'](v)

Run e, in new environment

Sum over all with x mapping to v’
intermediate states

Holtzen OPLSS 2024 28

Q: How hard do you
think it is to evaluate
a TinyPPL Program?

Hardness of Evaluating TinyPPL Programs

* The #SAT problem: given a Boolean formula ¢,
count the number of solutions to that formula

#SAT(Cl \Y —|b) =3

* Widely regarded to be computationally intractable
(belongs to complexity class #P [Val79], as hard as
polytime hierarchy [Toda91])

Hardness of Evaluating TinyPPL Programs
Reducing #SAT to evaluating TinyPPL

#SAT(aVv b) A (aV c)

a <- flip 1/2;
b <— flip 1/2;
3
27X ¢ <— flip 1/2: p(T)
return (a || b) & (a || c)

Evaluating TinyPPL programs is at least as

hard as #SAT!

TinyPPL Demo

utop[59]> let p2 = tinyppl_e_of_string "(bind x (flip 0.5)
(bind y (flip 0.4)
(bind z (flip 0.6)
(return (if x y 2)))))";;
val p2 : expr =

Binds (N Elipsans
Bind ("y", Flip 0.4,
Bind ("z", Flip 0.6, Return (Ite (Ident "x", Ident "y", Ident "z")))))
utop[60]> (prob pl StringMap.empty true);;
- : float = 0.5

Holtzen OPLSS 2024

32

TinyPPL Exercise: Network Reliability

- L4
y N7
R2
R1 > L3 R4

7

R3

Suppose:
* each link fails independently with probably 1/50

e each router chooses which router to forward an incoming packet to with uniform
probability.

What is the probability that an incoming packet reaches R4?

33

Network reliability

let network = tinyppl_e_of_string
"(bind r2forward (flip 0.5)
(bind 11fail (flip 0.02)
(bind 12fail (flip 0.02)
(bind 13fail (flip 0.02)
(bind 14fail (flip 0.02)
(return (if r2forward (and (not 11fail) (not l4fail))
(and (not 12fail) (not 13fail)))))))))”;;

> prob network StringMap.empty true ;;
— : float = 0.960399999999999809

TinyCond

Bayesian conditioning and observation

What is conditioning

* Conditioning updates your beliefs about the world
given observations

* Classic example: medical diagnosis

* Your COVID-19 test comes back positive. Does that
mean you have COVID?

* Not necessarily!

* The probability that you have COVID should go up, but

by how much? This depends on the test, prevalence of
COVID, etc.

COVID Test Motivating Example

* Query: What is the probability that | have COVID given the
test came back positive?

* Required data:

* True positive probability: the probability that the test will be
positive if you do have COVID

Pr(Test =T | Covid =T) = 0.99

* False positive probability: the probability that the test will be
positive if you do not have COVID

Pr(Test =T | Covid = F) = 0.05

* Latent rate: the probability that an average person has COVID
Pr(Covid =T) = 0.01

Check that probability

of all worlds sums to 1

Possible worlds

CovID Pr(COVID, Test)

T T 0.01*0.99=0.0099
T F 0.01*0.01=0.0001
F T 0.99*0.05=0.0495
F F 0.99*0.95=0.9405

Holtzen OPLSS 2024 38

Possible worlds after conditioning
on fest=1

Called unnormalized probability
distribution, since it does not sum to 1.

Holtzen OPLSS 2024

39

Possible worlds after renormalizing
(Bayes’s Rule)

CovID Pr(Test | Covid = True)

T T 0.0099/(0.0099+0.0495)=0.1666666
F T 0.0495/(0.0099+0.0495)=0.8333333

Note: Even though the test came back positive,
it is still more likely that we do not have COVID!

Probability can be surprisingly unintuitive.

40

Modeling the COVID Diagnosis
Scenario in a PPL

has_covid <- flip 0.01;

test_pos_with_covid <- flip 0.99;

test_pos_no_covid <- flip 0.05;

test <- return if covid then test_pos_with_covid
else test_pos_no_covid;

observe test;

return has_covid

TinyCond Grammar

Pure computations Probabilistic computations

<p> ::= <e> 1:i=

<ident> flip <float>

true <id> <- <e>; <e>

false observe <e>; <e>

if <p> then <p> else <p> return <p>

<p> && <p>

<p> || <p>

I<p>

Semantics of TinyCond

* Unnormalized semantics: denoted |[e]]U
essentially the same as TinyPPL, but with added
rule for observe:

if [e1] (p) = true
otherwise.

[observe eq; 62]]U (p)(v) = {ge2ﬂ (p)(v)

* Simply assigns probability O to all executions that
do not satisfy the observation.

Normalized semantics

* Then, we can compute the normalized semantics
from the unnormalized semantics:

lel(p)(v) lel(p)(v)

~ [el(p)(tt) + [e](p) (££)

Non-locality of Conditioning

x <— flip 0.5;
y <— flip 0.5;
observe x || vy;
return Xx

Semantically, observation “reaches back in

time” to affect previous probabilistic
operations in the program!

X <— flip 0.6666;
y <— flip 0.6666;
return X

45

Some more perspective
on semantics

Program Semantics as a Discipline

6. Formal Language Definition

A high level programming language, such as ALcoL,
ForTrAN, or CoBoL, is usually intended to be implemented
on a variety of computers of differing size, configuration,
and design. It has been found a serious problem to define
these languages with sufficient rigour to ensure compat-
ibility among all implementors. Since the purpose of com-
patibility is to facilitate interchange of programs ex-
pressed in the language, one way to achieve this would be to
insist that all implementations of the language shall “‘sat-
isfy”” the axioms and rules of inference which underlie
proofs of the properties of programs expressed in the
language, so that all predictions based on these proofs will
be fulfilled, except in the event of hardware failure. In
effect, this is equivalent to accepting the axioms and rules
of inference as the ultimately definitive specification of the
meaning of the language.

Hoare, Charles Antony Richard.
"An axiomatic basis for computer
programming." Communications
of the ACM 12.10 (1969): 576-
580.

Semantics are a tool to abstract away
details of the implementation

Formally prove programs have
certain behaviors

Given as logical relations between
input and output states

In many cases, the validity of the results of a program
(or part of a program) will depend on the values taken
by the variables before that program is initiated. These
initial preconditions of successful use can be specified by
the same type of general assertion as is used to describe
the results obtained on termination. To state the required
connection between a precondition (P), a program (Q)
and a description of the result of its execution (R), we
introduce a new notation:

P{Q} R.

Tiny Timeline

;I

"An axiomatic basis for
computer programming."

1969

Probabilistic Program Semantics

* Languages are too informal:
meaning given by just what the
program compiler does!

* We can’t implement things
consistently or prove things correct

* Need formal system for reasoning

* Introduced logical relations

E. Dijkstra

48

Denotational Semantics

Towarp A MATHEMATICAL SEMANTICS
FOR
CoMPUTER LANGUAGES

0. INTRODUCTION, The idea of a mathematical semantics for a

language is perfectly well illustrated by the contrast between
numerals on the one hand and numbers on the other. The nurerals
are expressions in a certain familiar language; while the numbers
are mathematical objects (abstract objects) which provide the
intended interpretations of the expressions. We need the ex-
pressions to be able to communicate the results of our theorizings
about the numbers, but the symbols themselves should not be con-
fused with the concepts they denote. For one thing, there are
many different languages adequate for conveying the same concepts
(e.g. binary, octal, or decimal numerals) . For another, even in
the same language many different expressions can denote the same
concepts (e.g. 2+2, 4, 1+{1+(1+1)), etc.), The problem of ex-
plaining these equivalences of expressions (whether in the same

or different languages) is one of the tasks of semantics and is
much too important to be left to syntax alone. Besides, the
mathematical concepts are required for the proof that the various

equivalences have been correctly described.

D. Scott C. Strachey

Scott, Dana S., and Christopher
Strachey. Toward a mathematical
semantics for computer languages.
Vol. 1. Oxford: Oxford University
Computing Laboratory,

Programming Research Group,
1971.

49

Denotational Semantics

Semantically speaking each of the numerals is meant to ° Introduced SemantiC bracket.

denote a unique number. Let N be thc set of numbers, (The L. .
elements of Nml are expressions; while the elements of N are d|5t|nCt|0n between SyntaX
mathematical objects conceived in abstraction independently of and semantic domain
notation.) The obvious principle of interpretation provides a . . .
function, the evaluattion mapping, which we might call U, and * Semant|CS ShOUId be IndUCtIVE
which has the functional character: on the syntax

U oNml o+ N e Key problem: notion of program
Thus for each v € Nm1, the function value equiva/ence

AT Kt

7§ the number denoted by v.

How is the evaluation function t} determined? Inasmuch as
it is to be defined on a recursively defined set Nmlt, it is reason-
able that A should itself be given a recursive definition. Indeed
by following exactly the four clauses of the recursive definition Nmi,

we are motivated by our understanding of numerals to write:

Yoy = o

di11 = ¢

Vivol = 2-VIv}
A vil = 2Vlvi+:

50

Denotational Semantics

* Why the fuss with functions, semantic domains,

etc.? Dijkstra had a problem: Loops

“while B do S”
defined as that of the call
“whiledo(B, S)”
of the recursive procedure (described in ALGOL 60 syntax):

procedure whiledo (condition, statement);
begin if condition then begin statement;

whiledo (condition, statement) end
end

Although correct, it hurts me, for I don’t like to crack an egg with a
sledgehammer, no matter how effective the sledgehammer is for doing so.
For the generation of theoretical computing scientists that became involved
in the subject during the sixties, the above recursive definition is often not
only “the natural one”, but even “the true one”. In view of the fact that we
cannot even define what a Turing machine is supposed to do without appeal-
ing to the notion of repetition, some redressing of the balance seemed indi-
cated.

rentice-Hall Series in Automatic Computation
I- @ I-

programming
gdsger
W,
dijkstra

51

Tiny Timeline

\ i -~
] N Yoot
‘ J L

"An axiomatic basis for
computer programming.” D. Scott C. Strachey

1969 1971

Probabilistic Program Semantics

* Denotational semantics and recursive
decompositions of programs

* Syntactic and semantic domains

* Associate each program term with a
mathematical function

* Gave a way to formalize loops by working in
the semantic domain!

* Entire research program of giving
denotational semantics to different kinds of
programs...

CS7480 52

Kozen 19/9

* Kozen, Dexter. "Semantics of probabilistic programs." 20th Annual
Symposium on Foundations of Computer Science (sfcs 1979). IEEE, 1979.

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 22, 328-350 (1981)

Semantics of Probabilistic Programs
DEXTER KOZEN

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Revised January 5, 1981

* Gave 4 reasons for studying probabilistic program semantics

CS7480 53

Kozen’s Motivation

1. Clearing up the difference between endogenous vs. exogenous
randomness

2. Match existing ’orogram’s behavior: languages like ALGOL60 (!) have
rand and loops!

* Formalized an incredibly powerful language (but no conditioning or functions)

3. A formal system for verifying randomized algorithms l I
Pl

4. Connect existing denotational semantics theory with probability
(Loops!)

CS7480

54

Tiny Timeline

7

5

§

-/,

0
g

D. Scott C. Strachey

P

D. Kozen
1969 1971 1979

Probabilistic Program Semantics

* Connected randomized algorithms
and denotational semantics
* Gave a formal basis for reasoning
about both
* Formalized a special language
e Continuous distributions
* Loops
* No observations
* No functions

CS7480 55

Modern Challenges

e Semantics of PPLs is still a vibrant modern research
topic

A Domain Theory for Statistical Probabilistic Programming

MATTHIJS VAKAR, Columbia University, USA Distin guis h € d Pa Per
OHAD KAMMAR, University of Oxford, UK PO P L’ 19

SAM STATON, University of Oxford, UK

Contextual Equivalence for a Probabilistic Language with
Continuous Random Variables and Recursion
2018, some work

MITCHELL WAND, Northeastern University

RYAN CULPEPPER, Northeastern University d o n e h e re !
THEOPHILOS GIANNAKOPOULOS, BAE Systems, Burlington MA

ANDREW COBB, Northeastern University

e Peruse POPL and PLDI for many dozens more!

e Questions:

* How rich can we make the language and still find an
interesting/useful semantic domain?

 What can we prove about probabilistic programs?

Tiny Timeline

D. Scott C. Strachey D Kozen

1969 1971 1979

Probabilistic Program Semantics

Giry, Michele. "A categorical approach to probability theory." Categorical Aspects of Topology and Analysis: Proceedings of an
International Conference Held at Carleton University, Ottawa, August 11-15, 1981. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1982.

Jones, Claire, and Gordon D. Plotkin. "A probabilistic powerdomain of evaluations." Proceedings. Fourth Annual Symposium on
Logic in Computer Science. IEEE Computer Society, 1989.

Ramsey, Norman, and Avi Pfeffer. "Stochastic lambda calculus and monads of probability distributions."
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 2002.
Shan, Chung-chieh, and Norman Ramsey. "Exact Bayesian inference by symbolic disintegration." Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. 2017.

Heunen, Chris, et al. "A convenient category for higher-order probability theory." 2017 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). IEEE, 2017.

Zhang, Yizhou, and Nada Amin. "Reasoning about “reasoning about reasoning”: semantics and contextual equivalence for
probabilistic programs with nested queries and recursion.” Proceedings of the ACM on Programming Languages 6.POPL
(2022): 1-28.

57

More on Semantics Basics

* Gunter, Carl A. Semantics of
programming languages:
structures and techniques.
MIT press, 1992.

* Chapter 1 has a fantastic

overview and whirlwind
tour of semantics

Languages * Endnotes contain a nice
history of the topic

Semantics of

Programming

* Unfortunately no book on
probabilistic program
semantics (yet)

References

e [Val79] Valiant, L.G. (1979). "The complexity of
computing the permanent". Theoretical Computer
Science. 8 (2): 189-201. doi:10.1016/0304-
3975(79)90044-6.

* [Toda91] Toda, Seinosuke (October 1991). "PP is as
Hard as the Polynomial-Time Hierarchy". SIAM
Journal on Computing. 20 (5): 865—877. CiteSeerX

10.1.1.121.1246. d0i:10.1137/0220053. ISSN 0097-
5397.

