Probabilistic Programming from the Ground Up
Lecture 2: Conditioning, sampling

June 11, 2024

Steven Holtzen

s.holtzen@northeastern.edu

Oregon Programming Languages Summer School 2024

https://www.Kkhoury.northeastern.edu/home/sholtzen/oplss24—-ppl/

OREGON
PROGRAMMING
LANGUAGES
SUMMER &r
SCHOOL untverstry



mailto:s.holtzen@northeastern.edu
https://www.khoury.northeastern.edu/home/sholtzen/oplss24/

TinyPPL Exercise: Network Reliability

- L4
y N7
R2
R1 > L3 R4

7

R3

Suppose:
* each link fails independently with probably 1/50

e each router chooses which router to forward an incoming packet to with uniform
probability.

What is the probability that an incoming packet reaches R4?



Network reliability

let network = tinyppl_e_of_string
"(bind r2forward (flip 0.5)
(bind 11fail (flip 0.02)
(bind 12fail (flip 0.02)
(bind 13fail (flip 0.02)
(bind 14fail (flip 0.02)
(return (if r2forward (and (not 11fail) (not l4fail))
(and (not 12fail) (not 13fail)))))))))”;;

> prob network StringMap.empty true ;;
— : float = 0.960399999999999809



TinyCond

Bayesian conditioning and observation



What is conditioning

* Conditioning updates your beliefs about the world
given observations

* Classic example: medical diagnosis

* Your COVID-19 test comes back positive. Does that
mean you have COVID?

* Not necessarily!

* The probability that you have COVID should go up, but

by how much? This depends on the test, prevalence of
COVID, etc.



COVID Test Motivating Example

* Query: What is the probability that | have COVID given the
test came back positive?

* Required data:

* True positive probability: the probability that the test will be
positive if you do have COVID

Pr(Test =T | Covid =T ) = 0.99

* False positive probability: the probability that the test will be
positive if you do not have COVID

Pr(Test =T | Covid = F) = 0.05

* Latent rate: the probability that an average person has COVID
Pr(Covid =T) = 0.01



Check that probability

of all worlds sums to 1

Possible worlds

CovID Pr(COVID, Test)

T T 0.01*0.99=0.0099
T F 0.01*0.01=0.0001
F T 0.99*0.05=0.0495
F F 0.99*0.95=0.9405

Holtzen OPLSS 2024 7



Possible worlds after conditioning
on fest=1

Called unnormalized probability
distribution, since it does not sum to 1.

Holtzen OPLSS 2024 8



Possible worlds after renormalizing
(Bayes’s Rule)

CovID Pr(Test | Covid = True)

T T 0.0099/(0.0099+0.0495)=0.1666666
F T 0.0495/(0.0099+0.0495)=0.8333333

Note: Even though the test came back positive,
it is still more likely that we do not have COVID!

Probability can be surprisingly unintuitive.




Modeling the COVID Diagnosis
Scenario in a PPL

has_covid <- flip 0.01;

test_pos_with_covid <- flip 0.99;

test_pos_no_covid <- flip 0.05;

test <- return if covid then test_pos_with_covid
else test_pos_no_covid;

observe test;

return has_covid



TinyCond Grammar

Pure computations Probabilistic computations

<p> ::= <e> 1:i=

<ident> flip <float>

true <id> <- <e>; <e>

false observe <e>; <e>

if <p> then <p> else <p> return <p>

<p> && <p>

<p> || <p>

I<p>




Semantics of TinyCond

* Unnormalized semantics: denoted |[e]]U
essentially the same as TinyPPL, but with added
rule for observe:

if [e1] (p) = true
otherwise.

[observe eq; 62]]U (p)(v) = {ge2ﬂ (p)(v)

* Simply assigns probability O to all executions that
do not satisfy the observation.



Normalized semantics

* Then, we can compute the normalized semantics
from the unnormalized semantics:

lel(p)(v) lel(p)(v)

~ [el(p)(tt) + [e](p) (££)



Example Semantics of TinyCond

x <- flip 1/2; )
y <— flip 1/2; (tt) = —
observe x || vy; 4 .
return x ! X <= Hlp 1%.
<- 1 ’ —
gbservei || vy; (tt)_
return X
x <- flip 1/2; 1
y <— flip 1/2; (ff) = —
observe x || vy; 4
return Xx
U




To keep the code

concise, we added in

BayeSlaﬂ I_ea rn|ng an effectful if

e Suppose | want to learn whether a coin is biased
* |fit’s biased, then it lands heads with probability 0.9

* Initially you think there is a 50% chance the coin is biased; this is called your
prior

* You observe three coin outcomes, True, True, False. Now you want to know the
posterior probability of whether the coin is biased.

biased <- flip 0.5;

flipl <— if biased then flip 0.9 else flip 0.5;
observe flipl;

flip2 <— if biased then flip 0.9 else flip 0.5;
observe flip2;

flip3 <— if biased then flip 0.9 else flip 0.5;
observe flip3;

return biased

Holtzen OPLSS 2024 15



Non-locality of Conditioning

x <— flip 0.5;
y <— flip 0.5;
observe x || vy;
return Xx

Semantically, observation “reaches back in

time” to affect previous probabilistic
operations in the program!

X <— flip 0.6666;
y <— flip 0.6666;
return X

16



Sampling semantics




Context

* Last time we discussed semantics and modeling in
TinyPPL and TinySamp

* We gave small implementations of both these
languages

* Problem: These implementations were inefficient
and inexpressive



Challenge 1: Scalability

* What is the probability that this program returns
true?

let big_program = tinyppl_e_of_string

"(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5) .
(bind x (flip 0.5) Takes a long time to
(bind x (flip 0.5) .
(bind x (flip 0.5) compute for TinyCond and
(bind x (flip 0.5) .
(bind x (flip 0.5) TinyPPL, even though we
(bind x (flip 0.5) . .ty
(bind x (flip 0.5) can easily see it’s 0.5
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(bind x (flip 0.5)
(return x)))))) )N NN)NIIIN"

Holtzen OPLSS 2024 19



Challenge 2: Expressivity

* TinyPPL and TinyCond are quite restrictive
languages: very few language features.

* Limits ability to model realistic scenarios



Direct Sampling Semantics

e Simple intuition: sample all probabilistic quantities
as they are encountered

* Then you’re left with a pure program you can run with
standard semantics

x <— flip 0.5; X <— return true; X <— return true;
y <— flip 0.5; — y <— flip 0.5; —> y <— return false;
return x || vy; return x || vy; return true || false;

tt



Approximation Semantics Intuition

* WWe can approximate the semantics of a program by
drawing many samples

Sampled value
tt
); :: :{ig gg' Draw finite number t
" of samples ff

return x || vy;

ff
tt

e Suppose we draw the above 5 samples; then we
would conclude that program outputs T with
probability approximately 3/5

Holtzen OPLSS 2024 22



Expectations

* Let Pr: () — [0,1] be a probability distribution on a set () (we will
assume countable sets)

* Required that ), ,cq Pr(w) = 1.

* A random variable is a map out of the sample space; we will assume it
is real-valued f: Q - real

* Then, the expectation of f with respect to Pr is defined as:

Ep:[f] = ) Pr(w)f(w).

weld



Law of large numbers

* A few different theorems of the general shape:

Ep.|[f| = lim Z f(wi).

N — o0 N
w;~Pr

This notation means
“draw N independent
samples from Pr”

Holtzen OPLSS 2024

24



Expectation Estimator
» For a fixed finite N:
1 N
Er:(f] ~ & w%f(w».

* Lots of interesting theorems on bounding how
quickly this estimator approaches the true
expectation; see “concentration inequalities”



Direct Sampling Semantics

* Let’s give a sampling semantics for TinyPPL with
only fair coin flips

Pure computations Probabilistic computations

<p> ::= <e> ::=

<ident> | flip 1/2

true | <id> <- <e>; <e>

false | return <p>

if <p> then <p> else <p>

<p> && <p>

<p> || <p>

I<p>




High level goal

1. Give a semantics to TinyPPL that formalizes
“drawing a sample”. Call this the (direct) sampling
semantics.

2. Relate the expectation of direct sampling

semantics to the denotation of TinyPPL programs

3. Use this relationship to establish (asymptotic)

correctness of sampling using expectation
estimator

See Wand, Mitchell, et al. "Contextual equivalence for a probabilistic language with continuous

random variables and recursion." Proceedings of the ACM on Programming Languages 2.ICFP (2018):
1-30.

27



Direct Sampling Semantics

* |s a big-step relation:

Return value
ot (e,p) | v J

Entropy space: an infinite list of An environment

Boolean values. Think of this

A probabilistic
like your random number

generator.

TinyPPL term

* ”In the context of the entropy space, the term e with
environment p steps to value v”

* Will be defined inductively on terms

Holtzen OPLSS 2024 28



Sampling Semantics Definition

fiob (£1ip 1/2,0) | f

To handle coin flips, step to the first

element of the entropy space.

Holtzen OPLSS 2024

29



Sampling Semantics Definition

(p,p) U v

o - (return p,p) | v

To handle returning pure values, run the
pure term and return the value it runs to.

Holtzen OPLSS 2024

30



Sampling Semantics Definition

* To handle bind, we need to split up the entropy
space into two independent streams of random
values

* We do this with two auxiliary functions: ©; and .

* Define r; to take all even-indexed elements of the
entropy space, and mp to take all odd-indexed elements.



Sampling Semantics Definition

(o) F (e, p) I v mr(o) F (e, plx — v]) | v

o b (r <+ ey;es,p) | v



Evaluation function

 Auxiliary function called eval that runs a program to
its returned value:

eval(o,p,e) =v if ok (e, p) v

* This is a well-defined function because sampling
semantics is deterministic (check!)

* It’s a partial function: if the available entropy is too
small, it will get stuck.



Theorem: Adequacy of sampling semantics

* Let e be a probabilistic TinyPPL program

* Let p be an environment that is well-typed for e (i.e., contains all free variables
ine)

* Let o be an entropy space that is “big enough” (i.e., eval cannot get stuck)

* Let Pr(o) be a uniform probability distribution on entropy spaces (i.e., assigns

probability ril to every entropy space g, where |ag| is the length of the list

* Then,

E, ([eval(e, p,0) = tt]) = [e] (o) (tt)



Lemmas

| eft as exercises for the curious

1. (Constant) For k constant: Ea(k) — L

2. (Spllttlng) E,(f(0)) = E, (%f(tt o)+ %f(ff : a))

3. (Independent) For f and g independent:

Eq(f(0) x g(0)) = Es(f(0)) X Es(g(0))



Proof for flip

E, ([eval(flip, o, p) = tt])

= E, (1/2]eval(flip, tt :: 0,p) = tt] + 1/2[eval(flip, ff :: 0,p) = tt]) Split
=E, (1/2) Def. of eval
=1/2 Const

— [£1ip 1/2](p)(tt).



Proof for bind

E, ([eval(z < ej;es,0,p) = tt])

—E, (Z[eval(el, m.(0), p) = V'] x [eval(ey, mr(0), plz — v']) = tt]) Def. of bind
= Z E U([eval(el TL(0),p) = V'] x [eval(es, mr(0), plz — v']) = tt]) Linearity of E
= ZE [eval(er, (o), p) = ']) X Eq ([eval(ez, mr(0), plz — v']) = tt]) Indep
= Z[[elﬂ ) x [e2] (pla = v'](tt) LH.

[[ZU <— eq; 62]]( )(tt).

Holtzen OPLSS 2024 37



TinySamp

tinyppl_e_of_string "(bind x (flip 0.5) (return x))"

tinyppl_e_of_string "(bind x (flip 0.5)
(bind y (flip 0.4)
(bind z (flip 0.6)
(return (if x y z)))))"

(within_epsilon (estimate pl true 10000) 0.5);
0.5

(within_epsilon (estimate p2 true 10000) )

Holtzen OPLSS 2024



Rejection sampling



Adding observe

Pure computations Probabilistic computations

<p> ::= <e> ::=

<ident> flip 1/2

true <id> <- <e>; <e>

false observe e; e

if <p> then <p> else <p> return <p>

<p> && <p>

<p> || <p>

I<p>




Direct Sampling Semantics

e Simple intuition: just like sampling semantics, we
sample all probabilistic quantities as they are
encountered

* If an observation is violated, reject the sample: do not
count it towards the estimate

X <— flip 0.5; X <— return false; X <— return false;
y <— flip 0.5; — y <— flip 0.5; —> y <— return false;
observe x || vy; observe x || vy; observe x || vy;
return x; return x; return true;

.

1



Rejection sampling

Sampled value

tt
tt

x <— flip 0.5;

y <— flip 0.5; Draw finite number
observe x || y; of samples 1

return Xx;

e Suppose we draw the above 5 samples; then we
would conclude that program outputs T with
probability approximately 1/3

Holtzen OPLSS 2024

42



Rejection Sampling Semantics

(p,p) b v

ok (flip 6,
Vo ( 1ip P)Uv g}—(returnp,p>UU

Pt ok{ep v (p,p) | ££
o (observe p;e,p) | v o (observe p;e,p) | L
mL(o) F{e,p) ¥ L (o) F(enp)dv  v#FEL  wr(o)F(e2,plz = v]) § 0
ob(r <+ ey;eq,p L ok (x <+ erjeqp) I v

Holtzen OPLSS 2024

43



