
Another example
cluded constructs for filtering, forwarding, duplicating, and modi-
fying packets. Subsequent versions of the language added (and later
removed) the ability to embed arbitrary packet-processing func-
tions in policies [23], as well as constructs for composing policies
in parallel and sequence [24]. As Frenetic evolved, its designers
added, removed, and modified the meaning of primitives as dictated
by the needs of applications. Without principles or metatheory to
guide its development, its evolution has lacked clear direction and
foresight. The ad hoc semantics has not made clear which primi-
tives are essential and which ones can be derived, and when new
constructs have been added to the language, it has not been clear
how they should interact with existing constructs and what behav-
ioral laws they should obey.

An even more pressing issue is that these static policy lan-
guages only specify the forwarding behavior of the switches in the
network. However, when a network program is actually executed,
end-to-end functionality is determined both by the behavior of the
switches and by the structure of the network topology. To answer
almost any interesting question about the network such as “Can X
connect to Y?”, “Is traffic from A to B routed through Z?”, or “Is
there a loop involving S?”, the programmer must step outside the
confines of the linguistic model and the abstractions it provides.

To summarize, we believe that a foundational model for network
programming languages is essential. Such a model should (i) iden-
tify the essential constructs for programming networks, (ii) provide
guidelines for incorporating new features, and (iii) unify reasoning
about switches, topology and end-to-end behavior.

Semantic foundations. This paper presents the first network pro-
gramming language that meets these criteria. To begin, we focus
on the global behavior of the network, unlike previous network
programming languages, which have focused on the local behav-
ior of individual switches. Abstractly, a network can be seen as an
automaton that moves packets from node to node along the links
in its topology. Hence, from a linguistic perspective, it is natural
to use regular expressions, the language of finite automata. Regu-
lar expressions are a standard way to specify the packet-processing
behavior of a network: a path is encoded as a concatenation of pro-
cessing steps (p·q ·· · ·), a set of paths is encoded as a union of paths
(p+ q+ · · ·), and iterated processing is encoded using Kleene star.
Moreover, by modeling the network in this way, we get a ready-
made theory for reasoning about formal properties: Kleene algebra
(KA), a decades-old sound and complete equational theory of regu-
lar expressions.

With Kleene algebra as the choice for representing global
network structure, we can turn our attention to specifying local
switch-processing functionality. Fundamentally, a switch imple-
ments predicates to match packets and actions that transform and
forward matching packets. Existing languages build various ab-
stractions atop the predicates and actions supplied by the hardware,
but predicates and actions are essential. As a consequence, a foun-
dational model for SDN must incorporate both Kleene algebra for
reasoning about network structure and Boolean algebra for reason-
ing about the predicates that define switch behavior. Fortunately,
these classic mathematical structures have already been unified in
previous work on Kleene algebra with tests (KAT) [14].

By now KAT has a well-developed metatheory, including an
extensive model theory and results on expressiveness, deductive
completeness, and complexity. The axioms of KAT are sound and
complete over a variety of popular semantic models, including lan-
guage, relational, and trace models, and KAT has been applied suc-
cessfully in a number of application areas, including compiler, de-
vice driver, and communication protocol verification [3, 15, 16, 22].
Moreover, equivalence in KAT has a PSPACE decision procedure.
This paper applies this theory to a new domain: networks.

Host 1
Switch A Switch B Host 2

1 2 1 2

Figure 1. Example network.

NetKAT. NetKAT is a new framework for specifying, program-
ming, and reasoning about networks based on Kleene algebra with
tests. As a programming language, NetKAT has a simple denota-
tional semantics inspired by NetCore [23], but modified and ex-
tended in key ways to make it sound for KAT (which NetCore is
not). In this respect, the semantic foundation provided by KAT has
delivered true guidance: the axioms of KAT dictate the interactions
between primitive program actions, predicates, and other operators.
Moreover, any future proposed primitive that violates a KAT axiom
can be summarily rejected for breaking the equations that allow
us to reason effectively about the network. NetKAT thus provides
a foundational structure and consistent reasoning principles that
other network programming languages lack.

For specification and reasoning, NetKAT also provides a finite
set of equations that capture equivalences between NetKAT pro-
grams. The equational theory includes the axioms of KAT, as well
as domain-specific axioms that capture transformations on packets.
This set of axioms enables reasoning about local switch processing
functionality (needed in compilation and optimization) as well as
global network behavior (needed to check reachability and traffic
isolation properties). We prove that the equational theory is sound
and complete with respect to the denotational semantics. While the
soundness proof is straightforward, our proof of completeness is
novel: we construct an alternate language model for NetKAT and
leverage the completeness of KA.

To evaluate the practical utility of our theory and the expres-
sive power of NetKAT, we demonstrate how it can be used to rea-
son about a diverse collection of applications. First, we show that
NetKAT can answer a variety of interesting reachability queries
useful to network operators. Next, we state and prove a non-
interference property for networks that provides a strong form of
isolation between NetKAT programs. Finally, we prove that NetKAT
can be correctly compiled to a low-level form analogous to switch
flow tables.

In summary, the contributions of this paper are as follows:

• We develop a new semantic foundation for network program-
ming languages based on Kleene algebra with tests (KAT).

• We formalize the NetKAT language in terms of a denotational
semantics and an axiomatic semantics based on KAT; we prove
the equational axioms sound and complete with respect to the
denotational semantics.

• We apply the equational theory in several diverse domains in-
cluding reasoning about reachability, traffic isolation, and com-
piler correctness.

The next section presents a simple example to motivate NetKAT
and introduces the key elements of its design. The subsequent
sections define the language formally, develop its main theoretical
properties, and present applications.

2. Overview

This section introduces the syntax and semantics of NetKAT using
a simple example. Consider the network shown in Figure 1. It
consists of switches A and B, each with ports labeled 1 and 2,
and two hosts. The switches and hosts are connected together in

 Forwarding: transfer packets between hosts, but
Access control: block SSH packets

Encoding

series. Suppose we want to configure the network to implement the
following policies:

• Forwarding: transfer packets between hosts, but
• Access control: block SSH packets.

The forwarding component is straightforward—configure both
switches to forward packets destined for host 1 out port 1, and
likewise for host 2—but there are several ways to implement the
access control component. We will develop two implementations
and prove them equivalent using NetKAT’s equational theory.

Forwarding. To warm up, let us define a simple NetKAT policy
that implements the forwarding component. To a first approxima-
tion, a NetKAT policy can be thought of as a function from packets
to sets of packets. (In the next section we will generalize this type
to functions from lists of packets to sets of lists of packets, where
the lists encode packet-processing histories, to support reasoning
about network-wide properties.) We represent a packet as a record
with fields for standard headers such as source address (src), desti-
nation address (dst), and protocol type (typ), as well as two fields,
switch (sw) and port (pt), that identify the current location of the
packet in the network.

Atomic NetKAT policies filter and modify packets. A filter (f =
n) takes any input packet pk and yields the singleton set {pk} if
field f of pk equals n, and {} otherwise. A modification (f n)
takes any input packet pk and yields the singleton set {pk 0}, where
pk 0 is the packet obtained from pk by setting f to n.

To allow programmers to express more sophisticated policies,
NetKAT also has policy combinators that build bigger policies out
of smaller ones. The union combinator (p+ q) generates the union
of the sets produced by applying each of p and q to the input packet,
while the sequential composition combinator (p·q) first applies p to
the input packet, then applies q to each packet in the resulting set,
and finally takes the union of all of the resulting sets. With these
operators, we can implement the forwarding policy as follows:

p , (dst = H1 · pt 1) + (dst = H2 · pt 2)

At the top level, this policy is the union of two sub-policies. The
first updates the pt field of all packets destined for H1 to 1 and
drops all other packets, while the second updates the pt field of
all packets destined for H2 to 2. The union of the two generates
the union of their behaviors—in other words, the policy forwards
packets across switches A and B in both directions.

Access control. Next, we extend the policy with access control.
The simplest way to do this is to compose a filter that blocks SSH
traffic with the forwarding policy in sequence:

pAC , ¬(typ = SSH) · p

This policy drops the input packet if its typ field is SSH and oth-
erwise forwards it using p. Of course, a quick inspection of the
network topology shows that it is not necessary to test all packets
at all locations in the network to block SSH traffic—packets travel-
ing between host 1 and host 2 must traverse both switches, so it is
sufficient to filter only at switch A,

pA , (sw = A · ¬(typ = SSH) · p) + (sw = B · p)

or at switch B:

pB , (sw = A · p) + (sw = B · ¬(typ = SSH) · p)

Both of these policies are more complicated than the original pol-
icy, but more efficient because they avoid having to store and en-
force the access control policy at both switches. Naturally, we
would prefer one of the optimized policies. In addition, we would
like to be able to answer the following questions:

• “Are non-SSH packets forwarded?”
• “Are SSH packets dropped?”
• “Are pAC, pA, and pB equivalent?”

Network administrators ask these sorts of questions whenever they
write a network policy. However, note that we cannot answer them
by inspecting the policies alone—the answers depend fundamen-
tally on the network topology. We will see how to incorporate topol-
ogy information into a NetKAT program next.

Topology. A network topology is a directed graph with hosts and
switches as nodes and links as edges. We can model the topology
as the union of smaller policies that encode the behavior of each
link. To model an internal link, we use the sequential composition
of a filter that retains packets located at one end of the link and
a modification that updates the sw and pt fields to the location at
the other end of the link, thereby capturing the effect of sending
a packet across the link. To model a link at the perimeter of the
network, we simply use a filter that retains packets located at
the ingress port. We assume that links are uni-directional, and
encode bi-directional links using pairs of uni-directional links. For
example, the following policy models the internal links between
switches A and B, and the links at the perimeter to hosts 1 and 2:

t = (sw = A · pt = 2 · sw B · pt 1) +
(sw = B · pt = 1 · sw A · pt 2) +
(sw = A · pt = 1) +
(sw = B · pt = 2)

Note that although we represent the links as policies, unlike
switch policies, these link policies cannot actually be controlled
programmatically—they must be consistent with the structure of
the underlying physical topology.

Switches meet topology. A packet traverses the network in inter-
leaved steps of processing by the switches and topology. In our
example, if host 1 sends a non-SSH packet to host 2, it is first pro-
cessed by switch A, then the link between A and B, and finally by
switch B. This can be encoded by the NetKAT term pAC·t·pAC. More
generally, a packet may require an arbitrary number of steps—in
particular, if the topology has a cycle. Using the Kleene star oper-
ator, which iterates a policy zero or more times, we can encode the
overall behavior of the network:

(pAC · t)*

Note however that this policy processes packets that enter and exit
the network at arbitrary locations, including at internal locations
such as on the link between switches A and B. It is often useful
to restrict attention to packets that enter and exit the network at
specified external locations e:

e , (sw = A · pt = 1) + (sw = B · pt = 2)

Using this predicate, we can restrict the policy to packets sent or
received by one of the hosts:

pnet , e · (pAC · t)* · e
More generally, the input and output predicates may be distinct:

in · (p · t)* · out
This encoding is inspired by the model used in Header Space
Analysis [10]. We call a network modeled in this way a logical
crossbar [20], since it encodes end-to-end processing behavior (and
elides internal processing steps). Section 3 discusses a more refined
model that encodes hop-by-hop processing.

Formal reasoning. We now turn to formal reasoning and inves-
tigate whether the logical crossbar correctly implements the spec-
ified forwarding and access control policies. It turns out that these

series. Suppose we want to configure the network to implement the
following policies:

• Forwarding: transfer packets between hosts, but
• Access control: block SSH packets.

The forwarding component is straightforward—configure both
switches to forward packets destined for host 1 out port 1, and
likewise for host 2—but there are several ways to implement the
access control component. We will develop two implementations
and prove them equivalent using NetKAT’s equational theory.

Forwarding. To warm up, let us define a simple NetKAT policy
that implements the forwarding component. To a first approxima-
tion, a NetKAT policy can be thought of as a function from packets
to sets of packets. (In the next section we will generalize this type
to functions from lists of packets to sets of lists of packets, where
the lists encode packet-processing histories, to support reasoning
about network-wide properties.) We represent a packet as a record
with fields for standard headers such as source address (src), desti-
nation address (dst), and protocol type (typ), as well as two fields,
switch (sw) and port (pt), that identify the current location of the
packet in the network.

Atomic NetKAT policies filter and modify packets. A filter (f =
n) takes any input packet pk and yields the singleton set {pk} if
field f of pk equals n, and {} otherwise. A modification (f n)
takes any input packet pk and yields the singleton set {pk 0}, where
pk 0 is the packet obtained from pk by setting f to n.

To allow programmers to express more sophisticated policies,
NetKAT also has policy combinators that build bigger policies out
of smaller ones. The union combinator (p+ q) generates the union
of the sets produced by applying each of p and q to the input packet,
while the sequential composition combinator (p·q) first applies p to
the input packet, then applies q to each packet in the resulting set,
and finally takes the union of all of the resulting sets. With these
operators, we can implement the forwarding policy as follows:

p , (dst = H1 · pt 1) + (dst = H2 · pt 2)

At the top level, this policy is the union of two sub-policies. The
first updates the pt field of all packets destined for H1 to 1 and
drops all other packets, while the second updates the pt field of
all packets destined for H2 to 2. The union of the two generates
the union of their behaviors—in other words, the policy forwards
packets across switches A and B in both directions.

Access control. Next, we extend the policy with access control.
The simplest way to do this is to compose a filter that blocks SSH
traffic with the forwarding policy in sequence:

pAC , ¬(typ = SSH) · p

This policy drops the input packet if its typ field is SSH and oth-
erwise forwards it using p. Of course, a quick inspection of the
network topology shows that it is not necessary to test all packets
at all locations in the network to block SSH traffic—packets travel-
ing between host 1 and host 2 must traverse both switches, so it is
sufficient to filter only at switch A,

pA , (sw = A · ¬(typ = SSH) · p) + (sw = B · p)

or at switch B:

pB , (sw = A · p) + (sw = B · ¬(typ = SSH) · p)

Both of these policies are more complicated than the original pol-
icy, but more efficient because they avoid having to store and en-
force the access control policy at both switches. Naturally, we
would prefer one of the optimized policies. In addition, we would
like to be able to answer the following questions:

• “Are non-SSH packets forwarded?”
• “Are SSH packets dropped?”
• “Are pAC, pA, and pB equivalent?”

Network administrators ask these sorts of questions whenever they
write a network policy. However, note that we cannot answer them
by inspecting the policies alone—the answers depend fundamen-
tally on the network topology. We will see how to incorporate topol-
ogy information into a NetKAT program next.

Topology. A network topology is a directed graph with hosts and
switches as nodes and links as edges. We can model the topology
as the union of smaller policies that encode the behavior of each
link. To model an internal link, we use the sequential composition
of a filter that retains packets located at one end of the link and
a modification that updates the sw and pt fields to the location at
the other end of the link, thereby capturing the effect of sending
a packet across the link. To model a link at the perimeter of the
network, we simply use a filter that retains packets located at
the ingress port. We assume that links are uni-directional, and
encode bi-directional links using pairs of uni-directional links. For
example, the following policy models the internal links between
switches A and B, and the links at the perimeter to hosts 1 and 2:

t = (sw = A · pt = 2 · sw B · pt 1) +
(sw = B · pt = 1 · sw A · pt 2) +
(sw = A · pt = 1) +
(sw = B · pt = 2)

Note that although we represent the links as policies, unlike
switch policies, these link policies cannot actually be controlled
programmatically—they must be consistent with the structure of
the underlying physical topology.

Switches meet topology. A packet traverses the network in inter-
leaved steps of processing by the switches and topology. In our
example, if host 1 sends a non-SSH packet to host 2, it is first pro-
cessed by switch A, then the link between A and B, and finally by
switch B. This can be encoded by the NetKAT term pAC·t·pAC. More
generally, a packet may require an arbitrary number of steps—in
particular, if the topology has a cycle. Using the Kleene star oper-
ator, which iterates a policy zero or more times, we can encode the
overall behavior of the network:

(pAC · t)*

Note however that this policy processes packets that enter and exit
the network at arbitrary locations, including at internal locations
such as on the link between switches A and B. It is often useful
to restrict attention to packets that enter and exit the network at
specified external locations e:

e , (sw = A · pt = 1) + (sw = B · pt = 2)

Using this predicate, we can restrict the policy to packets sent or
received by one of the hosts:

pnet , e · (pAC · t)* · e
More generally, the input and output predicates may be distinct:

in · (p · t)* · out
This encoding is inspired by the model used in Header Space
Analysis [10]. We call a network modeled in this way a logical
crossbar [20], since it encodes end-to-end processing behavior (and
elides internal processing steps). Section 3 discusses a more refined
model that encodes hop-by-hop processing.

Formal reasoning. We now turn to formal reasoning and inves-
tigate whether the logical crossbar correctly implements the spec-
ified forwarding and access control policies. It turns out that these

Forwarding

Access Control

series. Suppose we want to configure the network to implement the
following policies:

• Forwarding: transfer packets between hosts, but
• Access control: block SSH packets.

The forwarding component is straightforward—configure both
switches to forward packets destined for host 1 out port 1, and
likewise for host 2—but there are several ways to implement the
access control component. We will develop two implementations
and prove them equivalent using NetKAT’s equational theory.

Forwarding. To warm up, let us define a simple NetKAT policy
that implements the forwarding component. To a first approxima-
tion, a NetKAT policy can be thought of as a function from packets
to sets of packets. (In the next section we will generalize this type
to functions from lists of packets to sets of lists of packets, where
the lists encode packet-processing histories, to support reasoning
about network-wide properties.) We represent a packet as a record
with fields for standard headers such as source address (src), desti-
nation address (dst), and protocol type (typ), as well as two fields,
switch (sw) and port (pt), that identify the current location of the
packet in the network.

Atomic NetKAT policies filter and modify packets. A filter (f =
n) takes any input packet pk and yields the singleton set {pk} if
field f of pk equals n, and {} otherwise. A modification (f n)
takes any input packet pk and yields the singleton set {pk 0}, where
pk 0 is the packet obtained from pk by setting f to n.

To allow programmers to express more sophisticated policies,
NetKAT also has policy combinators that build bigger policies out
of smaller ones. The union combinator (p+ q) generates the union
of the sets produced by applying each of p and q to the input packet,
while the sequential composition combinator (p·q) first applies p to
the input packet, then applies q to each packet in the resulting set,
and finally takes the union of all of the resulting sets. With these
operators, we can implement the forwarding policy as follows:

p , (dst = H1 · pt 1) + (dst = H2 · pt 2)

At the top level, this policy is the union of two sub-policies. The
first updates the pt field of all packets destined for H1 to 1 and
drops all other packets, while the second updates the pt field of
all packets destined for H2 to 2. The union of the two generates
the union of their behaviors—in other words, the policy forwards
packets across switches A and B in both directions.

Access control. Next, we extend the policy with access control.
The simplest way to do this is to compose a filter that blocks SSH
traffic with the forwarding policy in sequence:

pAC , ¬(typ = SSH) · p

This policy drops the input packet if its typ field is SSH and oth-
erwise forwards it using p. Of course, a quick inspection of the
network topology shows that it is not necessary to test all packets
at all locations in the network to block SSH traffic—packets travel-
ing between host 1 and host 2 must traverse both switches, so it is
sufficient to filter only at switch A,

pA , (sw = A · ¬(typ = SSH) · p) + (sw = B · p)

or at switch B:

pB , (sw = A · p) + (sw = B · ¬(typ = SSH) · p)

Both of these policies are more complicated than the original pol-
icy, but more efficient because they avoid having to store and en-
force the access control policy at both switches. Naturally, we
would prefer one of the optimized policies. In addition, we would
like to be able to answer the following questions:

• “Are non-SSH packets forwarded?”
• “Are SSH packets dropped?”
• “Are pAC, pA, and pB equivalent?”

Network administrators ask these sorts of questions whenever they
write a network policy. However, note that we cannot answer them
by inspecting the policies alone—the answers depend fundamen-
tally on the network topology. We will see how to incorporate topol-
ogy information into a NetKAT program next.

Topology. A network topology is a directed graph with hosts and
switches as nodes and links as edges. We can model the topology
as the union of smaller policies that encode the behavior of each
link. To model an internal link, we use the sequential composition
of a filter that retains packets located at one end of the link and
a modification that updates the sw and pt fields to the location at
the other end of the link, thereby capturing the effect of sending
a packet across the link. To model a link at the perimeter of the
network, we simply use a filter that retains packets located at
the ingress port. We assume that links are uni-directional, and
encode bi-directional links using pairs of uni-directional links. For
example, the following policy models the internal links between
switches A and B, and the links at the perimeter to hosts 1 and 2:

t = (sw = A · pt = 2 · sw B · pt 1) +
(sw = B · pt = 1 · sw A · pt 2) +
(sw = A · pt = 1) +
(sw = B · pt = 2)

Note that although we represent the links as policies, unlike
switch policies, these link policies cannot actually be controlled
programmatically—they must be consistent with the structure of
the underlying physical topology.

Switches meet topology. A packet traverses the network in inter-
leaved steps of processing by the switches and topology. In our
example, if host 1 sends a non-SSH packet to host 2, it is first pro-
cessed by switch A, then the link between A and B, and finally by
switch B. This can be encoded by the NetKAT term pAC·t·pAC. More
generally, a packet may require an arbitrary number of steps—in
particular, if the topology has a cycle. Using the Kleene star oper-
ator, which iterates a policy zero or more times, we can encode the
overall behavior of the network:

(pAC · t)*

Note however that this policy processes packets that enter and exit
the network at arbitrary locations, including at internal locations
such as on the link between switches A and B. It is often useful
to restrict attention to packets that enter and exit the network at
specified external locations e:

e , (sw = A · pt = 1) + (sw = B · pt = 2)

Using this predicate, we can restrict the policy to packets sent or
received by one of the hosts:

pnet , e · (pAC · t)* · e
More generally, the input and output predicates may be distinct:

in · (p · t)* · out
This encoding is inspired by the model used in Header Space
Analysis [10]. We call a network modeled in this way a logical
crossbar [20], since it encodes end-to-end processing behavior (and
elides internal processing steps). Section 3 discusses a more refined
model that encodes hop-by-hop processing.

Formal reasoning. We now turn to formal reasoning and inves-
tigate whether the logical crossbar correctly implements the spec-
ified forwarding and access control policies. It turns out that these

series. Suppose we want to configure the network to implement the
following policies:

• Forwarding: transfer packets between hosts, but
• Access control: block SSH packets.

The forwarding component is straightforward—configure both
switches to forward packets destined for host 1 out port 1, and
likewise for host 2—but there are several ways to implement the
access control component. We will develop two implementations
and prove them equivalent using NetKAT’s equational theory.

Forwarding. To warm up, let us define a simple NetKAT policy
that implements the forwarding component. To a first approxima-
tion, a NetKAT policy can be thought of as a function from packets
to sets of packets. (In the next section we will generalize this type
to functions from lists of packets to sets of lists of packets, where
the lists encode packet-processing histories, to support reasoning
about network-wide properties.) We represent a packet as a record
with fields for standard headers such as source address (src), desti-
nation address (dst), and protocol type (typ), as well as two fields,
switch (sw) and port (pt), that identify the current location of the
packet in the network.

Atomic NetKAT policies filter and modify packets. A filter (f =
n) takes any input packet pk and yields the singleton set {pk} if
field f of pk equals n, and {} otherwise. A modification (f n)
takes any input packet pk and yields the singleton set {pk 0}, where
pk 0 is the packet obtained from pk by setting f to n.

To allow programmers to express more sophisticated policies,
NetKAT also has policy combinators that build bigger policies out
of smaller ones. The union combinator (p+ q) generates the union
of the sets produced by applying each of p and q to the input packet,
while the sequential composition combinator (p·q) first applies p to
the input packet, then applies q to each packet in the resulting set,
and finally takes the union of all of the resulting sets. With these
operators, we can implement the forwarding policy as follows:

p , (dst = H1 · pt 1) + (dst = H2 · pt 2)

At the top level, this policy is the union of two sub-policies. The
first updates the pt field of all packets destined for H1 to 1 and
drops all other packets, while the second updates the pt field of
all packets destined for H2 to 2. The union of the two generates
the union of their behaviors—in other words, the policy forwards
packets across switches A and B in both directions.

Access control. Next, we extend the policy with access control.
The simplest way to do this is to compose a filter that blocks SSH
traffic with the forwarding policy in sequence:

pAC , ¬(typ = SSH) · p

This policy drops the input packet if its typ field is SSH and oth-
erwise forwards it using p. Of course, a quick inspection of the
network topology shows that it is not necessary to test all packets
at all locations in the network to block SSH traffic—packets travel-
ing between host 1 and host 2 must traverse both switches, so it is
sufficient to filter only at switch A,

pA , (sw = A · ¬(typ = SSH) · p) + (sw = B · p)

or at switch B:

pB , (sw = A · p) + (sw = B · ¬(typ = SSH) · p)

Both of these policies are more complicated than the original pol-
icy, but more efficient because they avoid having to store and en-
force the access control policy at both switches. Naturally, we
would prefer one of the optimized policies. In addition, we would
like to be able to answer the following questions:

• “Are non-SSH packets forwarded?”
• “Are SSH packets dropped?”
• “Are pAC, pA, and pB equivalent?”

Network administrators ask these sorts of questions whenever they
write a network policy. However, note that we cannot answer them
by inspecting the policies alone—the answers depend fundamen-
tally on the network topology. We will see how to incorporate topol-
ogy information into a NetKAT program next.

Topology. A network topology is a directed graph with hosts and
switches as nodes and links as edges. We can model the topology
as the union of smaller policies that encode the behavior of each
link. To model an internal link, we use the sequential composition
of a filter that retains packets located at one end of the link and
a modification that updates the sw and pt fields to the location at
the other end of the link, thereby capturing the effect of sending
a packet across the link. To model a link at the perimeter of the
network, we simply use a filter that retains packets located at
the ingress port. We assume that links are uni-directional, and
encode bi-directional links using pairs of uni-directional links. For
example, the following policy models the internal links between
switches A and B, and the links at the perimeter to hosts 1 and 2:

t = (sw = A · pt = 2 · sw B · pt 1) +
(sw = B · pt = 1 · sw A · pt 2) +
(sw = A · pt = 1) +
(sw = B · pt = 2)

Note that although we represent the links as policies, unlike
switch policies, these link policies cannot actually be controlled
programmatically—they must be consistent with the structure of
the underlying physical topology.

Switches meet topology. A packet traverses the network in inter-
leaved steps of processing by the switches and topology. In our
example, if host 1 sends a non-SSH packet to host 2, it is first pro-
cessed by switch A, then the link between A and B, and finally by
switch B. This can be encoded by the NetKAT term pAC·t·pAC. More
generally, a packet may require an arbitrary number of steps—in
particular, if the topology has a cycle. Using the Kleene star oper-
ator, which iterates a policy zero or more times, we can encode the
overall behavior of the network:

(pAC · t)*

Note however that this policy processes packets that enter and exit
the network at arbitrary locations, including at internal locations
such as on the link between switches A and B. It is often useful
to restrict attention to packets that enter and exit the network at
specified external locations e:

e , (sw = A · pt = 1) + (sw = B · pt = 2)

Using this predicate, we can restrict the policy to packets sent or
received by one of the hosts:

pnet , e · (pAC · t)* · e
More generally, the input and output predicates may be distinct:

in · (p · t)* · out
This encoding is inspired by the model used in Header Space
Analysis [10]. We call a network modeled in this way a logical
crossbar [20], since it encodes end-to-end processing behavior (and
elides internal processing steps). Section 3 discusses a more refined
model that encodes hop-by-hop processing.

Formal reasoning. We now turn to formal reasoning and inves-
tigate whether the logical crossbar correctly implements the spec-
ified forwarding and access control policies. It turns out that these

Properties

Are non-SSH packets forwarded?
Are SSH packets dropped?
Are p_AC, p_A, and p_B equivalent?

Correct forwarding

Syntax

Fields f ::= f1 | · · · | fk
Packets pk ::= {f1 = v1, · · · , fk = vk}

Histories h ::= pk ::hi | pk ::h
Predicates a, b ::= 1 Identity

| 0 Drop
| f = n Test
| a+ b Disjunction
| a · b Conjunction
| ¬a Negation

Policies p, q ::= a Filter
| f n Modification
| p+ q Union
| p · q Sequential composition
| p* Kleene star
| dup Duplication

Semantics

JpK 2 H! P(H)

J1K h , {h}
J0K h , {}

Jf = nK (pk ::h) ,
⇢
{pk ::h} if pk .f = n

{} otherwise
J¬aK h , {h} \ (JaK h)

Jf nK (pk ::h) , {pk [f := n]::h}
Jp+ qK h , JpK h [JqK h

Jp · qK h , (JpK JqK) h
Jp*K h , S

i2N F
i h

where F
0 h , {h} and F

i+1 h , (JpK F
i) h

JdupK (pk ::h) , {pk ::(pk ::h)}

Kleene Algebra Axioms

p+ (q + r) ⌘ (p+ q) + r KA-PLUS-ASSOC
p+ q ⌘ q + p KA-PLUS-COMM
p+ 0 ⌘ p KA-PLUS-ZERO
p+ p ⌘ p KA-PLUS-IDEM

p · (q · r) ⌘ (p · q) · r KA-SEQ-ASSOC
1 · p ⌘ p KA-ONE-SEQ
p · 1 ⌘ p KA-SEQ-ONE

p · (q + r) ⌘ p · q + p · r KA-SEQ-DIST-L
(p+ q) · r ⌘ p · r + q · r KA-SEQ-DIST-R

0 · p ⌘ 0 KA-ZERO-SEQ
p · 0 ⌘ 0 KA-SEQ-ZERO

1+ p · p* ⌘ p* KA-UNROLL-L
q + p · r r) p* · q r KA-LFP-L

1+ p* · p ⌘ p* KA-UNROLL-R
p+ q · r q) p · r* q KA-LFP-R

Additional Boolean Algebra Axioms

a+ (b · c) ⌘ (a+ b) · (a+ c) BA-PLUS-DIST
a+ 1 ⌘ 1 BA-PLUS-ONE

a+ ¬a ⌘ 1 BA-EXCL-MID
a · b ⌘ b · a BA-SEQ-COMM

a · ¬a ⌘ 0 BA-CONTRA
a · a ⌘ a BA-SEQ-IDEM

Packet Algebra Axioms

f n · f 0 n
0 ⌘ f 0 n

0 · f n, if f 6= f 0 PA-MOD-MOD-COMM

f n · f 0 = n
0 ⌘ f 0 = n

0 · f n, if f 6= f 0 PA-MOD-FILTER-COMM
dup · f = n ⌘ f = n · dup PA-DUP-FILTER-COMM

f n · f = n ⌘ f n PA-MOD-FILTER
f = n · f n ⌘ f = n PA-FILTER-MOD

f n · f n
0 ⌘ f n

0 PA-MOD-MOD

f = n · f = n
0 ⌘ 0, if n 6= n

0 PA-CONTRAP
i
f = i ⌘ 1 PA-MATCH-ALL

Figure 2. NetKAT: syntax, semantics, and equational axioms.

questions, and many others, can be reduced to policy equivalence.
We write p ⌘ q when p and q return the same set of packets on all
inputs, and p q when p returns a subset of the packets returned
by q on all inputs. (Note that p q can be treated as an abbrevia-
tion for p + q ⌘ q.) To establish that pnet correctly filters all SSH
packets going from port 1 on switch A to port 2 on switch B, we
check the following equivalence, where 0 is the filtering policy that
drops all packets:

0

@
typ = SSH · sw = A · pt = 1 ·
(pAC · t)* ·
sw = B · pt = 2

1

A ⌘ 0

To establish that the optimized policies pA and pB correctly filter
SSH packets going from port 1 on switch A to port 2 on switch B,
we check the following equivalences,

0

@
typ = SSH · sw = A · pt = 1 ·
(pA · t)* ·
sw = B · pt = 2

1

A ⌘ 0

and:
0

@
typ = SSH · sw = A · pt = 1 ·
(pB · t)* ·
sw = B · pt = 2

1

A ⌘ 0

Finally, to establish that pAC correctly forwards non-SSH packets
from H1 to H2, we check the following inclusion:

(¬(typ = SSH) · sw = A · pt = 1 · sw B · pt 2)
 (pAC · t)*

and similarly for non-SSH packets H2 to H1.
Of course, to actually check these equivalences formally, we

need a proof system. NetKAT is designed to not only be an expres-
sive programming language, but also one that satisfies the axioms
of a Kleene algebra with tests (KAT). Moreover, by extending KAT
with additional axioms that capture the domain-specific features of
networks, the equational theory is complete—i.e., it can answer all
the questions posed in this section, and many more. The follow-
ing sections present the syntax, semantics, and equational theory
of NetKAT formally (Section 3); prove that the equational theory
is sound and complete with respect to the semantics (Section 4);
and illustrate its effectiveness on a broad range of questions includ-
ing additional reachability properties (Section 5), program isolation
(Section 6) and compiler correctness (Section 7).

3. NetKAT

This section defines the syntax and semantics of NetKAT formally.

Preliminaries. A packet pk is a record with fields f1, . . . , fk map-
ping to fixed-width integers n. We assume a finite set of packet

Syntax

Fields f ::= f1 | · · · | fk
Packets pk ::= {f1 = v1, · · · , fk = vk}

Histories h ::= pk ::hi | pk ::h
Predicates a, b ::= 1 Identity

| 0 Drop
| f = n Test
| a+ b Disjunction
| a · b Conjunction
| ¬a Negation

Policies p, q ::= a Filter
| f n Modification
| p+ q Union
| p · q Sequential composition
| p* Kleene star
| dup Duplication

Semantics

JpK 2 H! P(H)

J1K h , {h}
J0K h , {}

Jf = nK (pk ::h) ,
⇢
{pk ::h} if pk .f = n

{} otherwise
J¬aK h , {h} \ (JaK h)

Jf nK (pk ::h) , {pk [f := n]::h}
Jp+ qK h , JpK h [JqK h

Jp · qK h , (JpK JqK) h
Jp*K h , S

i2N F
i h

where F
0 h , {h} and F

i+1 h , (JpK F
i) h

JdupK (pk ::h) , {pk ::(pk ::h)}

Kleene Algebra Axioms

p+ (q + r) ⌘ (p+ q) + r KA-PLUS-ASSOC
p+ q ⌘ q + p KA-PLUS-COMM
p+ 0 ⌘ p KA-PLUS-ZERO
p+ p ⌘ p KA-PLUS-IDEM

p · (q · r) ⌘ (p · q) · r KA-SEQ-ASSOC
1 · p ⌘ p KA-ONE-SEQ
p · 1 ⌘ p KA-SEQ-ONE

p · (q + r) ⌘ p · q + p · r KA-SEQ-DIST-L
(p+ q) · r ⌘ p · r + q · r KA-SEQ-DIST-R

0 · p ⌘ 0 KA-ZERO-SEQ
p · 0 ⌘ 0 KA-SEQ-ZERO

1+ p · p* ⌘ p* KA-UNROLL-L
q + p · r r) p* · q r KA-LFP-L

1+ p* · p ⌘ p* KA-UNROLL-R
p+ q · r q) p · r* q KA-LFP-R

Additional Boolean Algebra Axioms

a+ (b · c) ⌘ (a+ b) · (a+ c) BA-PLUS-DIST
a+ 1 ⌘ 1 BA-PLUS-ONE

a+ ¬a ⌘ 1 BA-EXCL-MID
a · b ⌘ b · a BA-SEQ-COMM

a · ¬a ⌘ 0 BA-CONTRA
a · a ⌘ a BA-SEQ-IDEM

Packet Algebra Axioms

f n · f 0 n
0 ⌘ f 0 n

0 · f n, if f 6= f 0 PA-MOD-MOD-COMM

f n · f 0 = n
0 ⌘ f 0 = n

0 · f n, if f 6= f 0 PA-MOD-FILTER-COMM
dup · f = n ⌘ f = n · dup PA-DUP-FILTER-COMM

f n · f = n ⌘ f n PA-MOD-FILTER
f = n · f n ⌘ f = n PA-FILTER-MOD

f n · f n
0 ⌘ f n

0 PA-MOD-MOD

f = n · f = n
0 ⌘ 0, if n 6= n

0 PA-CONTRAP
i
f = i ⌘ 1 PA-MATCH-ALL

Figure 2. NetKAT: syntax, semantics, and equational axioms.

questions, and many others, can be reduced to policy equivalence.
We write p ⌘ q when p and q return the same set of packets on all
inputs, and p q when p returns a subset of the packets returned
by q on all inputs. (Note that p q can be treated as an abbrevia-
tion for p + q ⌘ q.) To establish that pnet correctly filters all SSH
packets going from port 1 on switch A to port 2 on switch B, we
check the following equivalence, where 0 is the filtering policy that
drops all packets:

0

@
typ = SSH · sw = A · pt = 1 ·
(pAC · t)* ·
sw = B · pt = 2

1

A ⌘ 0

To establish that the optimized policies pA and pB correctly filter
SSH packets going from port 1 on switch A to port 2 on switch B,
we check the following equivalences,

0

@
typ = SSH · sw = A · pt = 1 ·
(pA · t)* ·
sw = B · pt = 2

1

A ⌘ 0

and:
0

@
typ = SSH · sw = A · pt = 1 ·
(pB · t)* ·
sw = B · pt = 2

1

A ⌘ 0

Finally, to establish that pAC correctly forwards non-SSH packets
from H1 to H2, we check the following inclusion:

(¬(typ = SSH) · sw = A · pt = 1 · sw B · pt 2)
 (pAC · t)*

and similarly for non-SSH packets H2 to H1.
Of course, to actually check these equivalences formally, we

need a proof system. NetKAT is designed to not only be an expres-
sive programming language, but also one that satisfies the axioms
of a Kleene algebra with tests (KAT). Moreover, by extending KAT
with additional axioms that capture the domain-specific features of
networks, the equational theory is complete—i.e., it can answer all
the questions posed in this section, and many more. The follow-
ing sections present the syntax, semantics, and equational theory
of NetKAT formally (Section 3); prove that the equational theory
is sound and complete with respect to the semantics (Section 4);
and illustrate its effectiveness on a broad range of questions includ-
ing additional reachability properties (Section 5), program isolation
(Section 6) and compiler correctness (Section 7).

3. NetKAT

This section defines the syntax and semantics of NetKAT formally.

Preliminaries. A packet pk is a record with fields f1, . . . , fk map-
ping to fixed-width integers n. We assume a finite set of packet

Equivalence

Lemma 1. in · aB · q ⌘ 0
Proof.

in · aB · q
⌘ { definition in }

aA · a1 · aB · q
⌘ { KAT-COMMUTE }

aA · aB · a1 · q
⌘ { PA-CONTRA }

0 · a1 · q
⌘ { KA-ZERO-SEQ }

0

Lemma 2. q · aA · t · out ⌘ 0
Proof.

q · aA · t · out
⌘ { definition t }

q · aA · (aA · a2 ·mB ·m1 +
aB · a1 ·mA ·m2 +
aA · a1 +
aB · a2) · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
q · aA · aA · a2 ·mB ·m1 · out +
q · aA · aB · a1 ·mA ·m2 · out +
q · aA · aA · a1 · out +
q · aA · aB · a2 · out

⌘ { definition out }
q · aA · aA · a2 ·mB ·m1 · aB · a2 +
q · aA · aB · a1 ·mA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-MOD-FILTER }
q · aA · aA · a2 ·mB ·m1 · a1 · aB · a2 +
q · aA · aB · a1 ·mA · aA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { KAT-COMMUTE }
q · aA · aA · a2 ·mB ·m1 · aB · a1 · a2 +
q · aA · aB · a1 ·mA ·m2 · aA · aB · a2 +
q · aA · aA · aB · a1 · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-CONTRA }
q · aA · aA · a2 ·mB ·m1 · aB · 0+
q · aA · aB · a1 ·mA ·m2 · 0 · a2 +
q · aA · aA · aB · 0+
q · 0 · a2 · aB · a2

⌘ { KA-SEQ-ZERO, KA-ZERO-SEQ }
0+ 0+ 0+ 0

⌘ { KA-PLUS-IDEM }
0

Lemma 3. in · SSH · (pA · t)* · out ⌘ in · SSH · (pB · t)* · out
Proof.

in · SSH · (pA · t)* · out
⌘ { KAT-INVARIANT, definition pA }

in · SSH · ((aA · ¬SSH · p+ aB · p) · t · SSH)* · out
⌘ { KA-SEQ-DIST-R }

in · SSH · (aA · ¬SSH · p · t · SSH + aB · p · t · SSH)* · out
⌘ { KAT-COMMUTE }

in · SSH · (aA · ¬SSH · SSH · p · t+ aB · p · t · SSH)* · out
⌘ { BA-CONTRA }

in · SSH · (aA · 0 · p · t+ aB · p · t · SSH)* · out
⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-COMM, KA-PLUS-ZERO }

in · SSH · (aB · p · t · SSH)* · out
⌘ { KA-UNROLL-L }

in · SSH · (1+ (aB · p · t · SSH) · (aB · p · t · SSH)*) · out
⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R, definition out }

in · SSH · aB · a2 +
in · SSH · aB · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { KAT-COMMUTE }
in · aB · SSH · a2 +
in · aB · SSH · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { Lemma 1 }
0+ 0

⌘ { KA-PLUS-IDEM }
0

⌘ { KA-PLUS-IDEM }
0+ 0

⌘ { Lemma 1, Lemma 2 }
in · aB · SSH · a2 +
in · SSH · (aA · p · t · SSH)* · p · SSH · aA · t · out

⌘ { KAT-COMMUTE, definition out }
in · SSH · out +
in · SSH · (aA · p · t · SSH)* · aA · p · t · SSH · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
in · SSH · (1+ (aA · p · t · SSH)* · (aA · p · t · SSH)) · out

⌘ { KA-UNROLL-R }
in · SSH · (aA · p · t · SSH)* · out

⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-ZERO }
in · SSH · (aA · p · t · SSH + aB · 0 · p · t)* · out

⌘ { BA-CONTRA }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · SSH · p · t)* · out

⌘ { KAT-COMMUTE }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · p · t · SSH)* · out

⌘ { KA-SEQ-DIST-R }
in · SSH · ((aA · p+ aB · ¬SSH · p) · t · SSH)* · out

⌘ { KAT-INVARIANT, definition pB }
in · SSH · (pB · t)* · out

Figure 5. Code motion proofs.

strings. We prove the language model and the standard model
of NetKAT given by the denotational semantics are isomorphic.

3. We then define a normal form for NetKAT policies, and show
that every policy is provably equivalent to its normal form.

4. Finally, we relate NetKAT normal forms to regular sets of
guarded strings, and obtain the completeness of NetKAT from
the completeness of KA.

The rest of this section outlines the key steps of this proof. The
long version of this paper gives further details.

Step 1: Reduced NetKAT. Let f1, . . . , fk be a list of all fields of
a packet in some (fixed) order. For each tuple n̄ = n1, . . . , nk of
values, let f̄ = n̄ and f̄ n̄ denote the expressions

f1 = n1 · · · fk = nk f1 n1 · · · fk nk,

Lemma 1. in · aB · q ⌘ 0
Proof.

in · aB · q
⌘ { definition in }

aA · a1 · aB · q
⌘ { KAT-COMMUTE }

aA · aB · a1 · q
⌘ { PA-CONTRA }

0 · a1 · q
⌘ { KA-ZERO-SEQ }

0

Lemma 2. q · aA · t · out ⌘ 0
Proof.

q · aA · t · out
⌘ { definition t }

q · aA · (aA · a2 ·mB ·m1 +
aB · a1 ·mA ·m2 +
aA · a1 +
aB · a2) · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
q · aA · aA · a2 ·mB ·m1 · out +
q · aA · aB · a1 ·mA ·m2 · out +
q · aA · aA · a1 · out +
q · aA · aB · a2 · out

⌘ { definition out }
q · aA · aA · a2 ·mB ·m1 · aB · a2 +
q · aA · aB · a1 ·mA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-MOD-FILTER }
q · aA · aA · a2 ·mB ·m1 · a1 · aB · a2 +
q · aA · aB · a1 ·mA · aA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { KAT-COMMUTE }
q · aA · aA · a2 ·mB ·m1 · aB · a1 · a2 +
q · aA · aB · a1 ·mA ·m2 · aA · aB · a2 +
q · aA · aA · aB · a1 · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-CONTRA }
q · aA · aA · a2 ·mB ·m1 · aB · 0+
q · aA · aB · a1 ·mA ·m2 · 0 · a2 +
q · aA · aA · aB · 0+
q · 0 · a2 · aB · a2

⌘ { KA-SEQ-ZERO, KA-ZERO-SEQ }
0+ 0+ 0+ 0

⌘ { KA-PLUS-IDEM }
0

Lemma 3. in · SSH · (pA · t)* · out ⌘ in · SSH · (pB · t)* · out
Proof.

in · SSH · (pA · t)* · out
⌘ { KAT-INVARIANT, definition pA }

in · SSH · ((aA · ¬SSH · p+ aB · p) · t · SSH)* · out
⌘ { KA-SEQ-DIST-R }

in · SSH · (aA · ¬SSH · p · t · SSH + aB · p · t · SSH)* · out
⌘ { KAT-COMMUTE }

in · SSH · (aA · ¬SSH · SSH · p · t+ aB · p · t · SSH)* · out
⌘ { BA-CONTRA }

in · SSH · (aA · 0 · p · t+ aB · p · t · SSH)* · out
⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-COMM, KA-PLUS-ZERO }

in · SSH · (aB · p · t · SSH)* · out
⌘ { KA-UNROLL-L }

in · SSH · (1+ (aB · p · t · SSH) · (aB · p · t · SSH)*) · out
⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R, definition out }

in · SSH · aB · a2 +
in · SSH · aB · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { KAT-COMMUTE }
in · aB · SSH · a2 +
in · aB · SSH · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { Lemma 1 }
0+ 0

⌘ { KA-PLUS-IDEM }
0

⌘ { KA-PLUS-IDEM }
0+ 0

⌘ { Lemma 1, Lemma 2 }
in · aB · SSH · a2 +
in · SSH · (aA · p · t · SSH)* · p · SSH · aA · t · out

⌘ { KAT-COMMUTE, definition out }
in · SSH · out +
in · SSH · (aA · p · t · SSH)* · aA · p · t · SSH · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
in · SSH · (1+ (aA · p · t · SSH)* · (aA · p · t · SSH)) · out

⌘ { KA-UNROLL-R }
in · SSH · (aA · p · t · SSH)* · out

⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-ZERO }
in · SSH · (aA · p · t · SSH + aB · 0 · p · t)* · out

⌘ { BA-CONTRA }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · SSH · p · t)* · out

⌘ { KAT-COMMUTE }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · p · t · SSH)* · out

⌘ { KA-SEQ-DIST-R }
in · SSH · ((aA · p+ aB · ¬SSH · p) · t · SSH)* · out

⌘ { KAT-INVARIANT, definition pB }
in · SSH · (pB · t)* · out

Figure 5. Code motion proofs.

strings. We prove the language model and the standard model
of NetKAT given by the denotational semantics are isomorphic.

3. We then define a normal form for NetKAT policies, and show
that every policy is provably equivalent to its normal form.

4. Finally, we relate NetKAT normal forms to regular sets of
guarded strings, and obtain the completeness of NetKAT from
the completeness of KA.

The rest of this section outlines the key steps of this proof. The
long version of this paper gives further details.

Step 1: Reduced NetKAT. Let f1, . . . , fk be a list of all fields of
a packet in some (fixed) order. For each tuple n̄ = n1, . . . , nk of
values, let f̄ = n̄ and f̄ n̄ denote the expressions

f1 = n1 · · · fk = nk f1 n1 · · · fk nk,

Proof

Lemma 1. in · aB · q ⌘ 0
Proof.

in · aB · q
⌘ { definition in }

aA · a1 · aB · q
⌘ { KAT-COMMUTE }

aA · aB · a1 · q
⌘ { PA-CONTRA }

0 · a1 · q
⌘ { KA-ZERO-SEQ }

0

Lemma 2. q · aA · t · out ⌘ 0
Proof.

q · aA · t · out
⌘ { definition t }

q · aA · (aA · a2 ·mB ·m1 +
aB · a1 ·mA ·m2 +
aA · a1 +
aB · a2) · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
q · aA · aA · a2 ·mB ·m1 · out +
q · aA · aB · a1 ·mA ·m2 · out +
q · aA · aA · a1 · out +
q · aA · aB · a2 · out

⌘ { definition out }
q · aA · aA · a2 ·mB ·m1 · aB · a2 +
q · aA · aB · a1 ·mA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-MOD-FILTER }
q · aA · aA · a2 ·mB ·m1 · a1 · aB · a2 +
q · aA · aB · a1 ·mA · aA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { KAT-COMMUTE }
q · aA · aA · a2 ·mB ·m1 · aB · a1 · a2 +
q · aA · aB · a1 ·mA ·m2 · aA · aB · a2 +
q · aA · aA · aB · a1 · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-CONTRA }
q · aA · aA · a2 ·mB ·m1 · aB · 0+
q · aA · aB · a1 ·mA ·m2 · 0 · a2 +
q · aA · aA · aB · 0+
q · 0 · a2 · aB · a2

⌘ { KA-SEQ-ZERO, KA-ZERO-SEQ }
0+ 0+ 0+ 0

⌘ { KA-PLUS-IDEM }
0

Lemma 3. in · SSH · (pA · t)* · out ⌘ in · SSH · (pB · t)* · out
Proof.

in · SSH · (pA · t)* · out
⌘ { KAT-INVARIANT, definition pA }

in · SSH · ((aA · ¬SSH · p+ aB · p) · t · SSH)* · out
⌘ { KA-SEQ-DIST-R }

in · SSH · (aA · ¬SSH · p · t · SSH + aB · p · t · SSH)* · out
⌘ { KAT-COMMUTE }

in · SSH · (aA · ¬SSH · SSH · p · t+ aB · p · t · SSH)* · out
⌘ { BA-CONTRA }

in · SSH · (aA · 0 · p · t+ aB · p · t · SSH)* · out
⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-COMM, KA-PLUS-ZERO }

in · SSH · (aB · p · t · SSH)* · out
⌘ { KA-UNROLL-L }

in · SSH · (1+ (aB · p · t · SSH) · (aB · p · t · SSH)*) · out
⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R, definition out }

in · SSH · aB · a2 +
in · SSH · aB · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { KAT-COMMUTE }
in · aB · SSH · a2 +
in · aB · SSH · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { Lemma 1 }
0+ 0

⌘ { KA-PLUS-IDEM }
0

⌘ { KA-PLUS-IDEM }
0+ 0

⌘ { Lemma 1, Lemma 2 }
in · aB · SSH · a2 +
in · SSH · (aA · p · t · SSH)* · p · SSH · aA · t · out

⌘ { KAT-COMMUTE, definition out }
in · SSH · out +
in · SSH · (aA · p · t · SSH)* · aA · p · t · SSH · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
in · SSH · (1+ (aA · p · t · SSH)* · (aA · p · t · SSH)) · out

⌘ { KA-UNROLL-R }
in · SSH · (aA · p · t · SSH)* · out

⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-ZERO }
in · SSH · (aA · p · t · SSH + aB · 0 · p · t)* · out

⌘ { BA-CONTRA }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · SSH · p · t)* · out

⌘ { KAT-COMMUTE }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · p · t · SSH)* · out

⌘ { KA-SEQ-DIST-R }
in · SSH · ((aA · p+ aB · ¬SSH · p) · t · SSH)* · out

⌘ { KAT-INVARIANT, definition pB }
in · SSH · (pB · t)* · out

Figure 5. Code motion proofs.

strings. We prove the language model and the standard model
of NetKAT given by the denotational semantics are isomorphic.

3. We then define a normal form for NetKAT policies, and show
that every policy is provably equivalent to its normal form.

4. Finally, we relate NetKAT normal forms to regular sets of
guarded strings, and obtain the completeness of NetKAT from
the completeness of KA.

The rest of this section outlines the key steps of this proof. The
long version of this paper gives further details.

Step 1: Reduced NetKAT. Let f1, . . . , fk be a list of all fields of
a packet in some (fixed) order. For each tuple n̄ = n1, . . . , nk of
values, let f̄ = n̄ and f̄ n̄ denote the expressions

f1 = n1 · · · fk = nk f1 n1 · · · fk nk,

Lemma 1. in · aB · q ⌘ 0
Proof.

in · aB · q
⌘ { definition in }

aA · a1 · aB · q
⌘ { KAT-COMMUTE }

aA · aB · a1 · q
⌘ { PA-CONTRA }

0 · a1 · q
⌘ { KA-ZERO-SEQ }

0

Lemma 2. q · aA · t · out ⌘ 0
Proof.

q · aA · t · out
⌘ { definition t }

q · aA · (aA · a2 ·mB ·m1 +
aB · a1 ·mA ·m2 +
aA · a1 +
aB · a2) · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
q · aA · aA · a2 ·mB ·m1 · out +
q · aA · aB · a1 ·mA ·m2 · out +
q · aA · aA · a1 · out +
q · aA · aB · a2 · out

⌘ { definition out }
q · aA · aA · a2 ·mB ·m1 · aB · a2 +
q · aA · aB · a1 ·mA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-MOD-FILTER }
q · aA · aA · a2 ·mB ·m1 · a1 · aB · a2 +
q · aA · aB · a1 ·mA · aA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

⌘ { KAT-COMMUTE }
q · aA · aA · a2 ·mB ·m1 · aB · a1 · a2 +
q · aA · aB · a1 ·mA ·m2 · aA · aB · a2 +
q · aA · aA · aB · a1 · a2 +
q · aA · aB · a2 · aB · a2

⌘ { PA-CONTRA }
q · aA · aA · a2 ·mB ·m1 · aB · 0+
q · aA · aB · a1 ·mA ·m2 · 0 · a2 +
q · aA · aA · aB · 0+
q · 0 · a2 · aB · a2

⌘ { KA-SEQ-ZERO, KA-ZERO-SEQ }
0+ 0+ 0+ 0

⌘ { KA-PLUS-IDEM }
0

Lemma 3. in · SSH · (pA · t)* · out ⌘ in · SSH · (pB · t)* · out
Proof.

in · SSH · (pA · t)* · out
⌘ { KAT-INVARIANT, definition pA }

in · SSH · ((aA · ¬SSH · p+ aB · p) · t · SSH)* · out
⌘ { KA-SEQ-DIST-R }

in · SSH · (aA · ¬SSH · p · t · SSH + aB · p · t · SSH)* · out
⌘ { KAT-COMMUTE }

in · SSH · (aA · ¬SSH · SSH · p · t+ aB · p · t · SSH)* · out
⌘ { BA-CONTRA }

in · SSH · (aA · 0 · p · t+ aB · p · t · SSH)* · out
⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-COMM, KA-PLUS-ZERO }

in · SSH · (aB · p · t · SSH)* · out
⌘ { KA-UNROLL-L }

in · SSH · (1+ (aB · p · t · SSH) · (aB · p · t · SSH)*) · out
⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R, definition out }

in · SSH · aB · a2 +
in · SSH · aB · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { KAT-COMMUTE }
in · aB · SSH · a2 +
in · aB · SSH · p · t · SSH · (aB · p · t · SSH)* · aB · a2

⌘ { Lemma 1 }
0+ 0

⌘ { KA-PLUS-IDEM }
0

⌘ { KA-PLUS-IDEM }
0+ 0

⌘ { Lemma 1, Lemma 2 }
in · aB · SSH · a2 +
in · SSH · (aA · p · t · SSH)* · p · SSH · aA · t · out

⌘ { KAT-COMMUTE, definition out }
in · SSH · out +
in · SSH · (aA · p · t · SSH)* · aA · p · t · SSH · out

⌘ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
in · SSH · (1+ (aA · p · t · SSH)* · (aA · p · t · SSH)) · out

⌘ { KA-UNROLL-R }
in · SSH · (aA · p · t · SSH)* · out

⌘ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-ZERO }
in · SSH · (aA · p · t · SSH + aB · 0 · p · t)* · out

⌘ { BA-CONTRA }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · SSH · p · t)* · out

⌘ { KAT-COMMUTE }
in · SSH · (aA · p · t · SSH + aB · ¬SSH · p · t · SSH)* · out

⌘ { KA-SEQ-DIST-R }
in · SSH · ((aA · p+ aB · ¬SSH · p) · t · SSH)* · out

⌘ { KAT-INVARIANT, definition pB }
in · SSH · (pB · t)* · out

Figure 5. Code motion proofs.

strings. We prove the language model and the standard model
of NetKAT given by the denotational semantics are isomorphic.

3. We then define a normal form for NetKAT policies, and show
that every policy is provably equivalent to its normal form.

4. Finally, we relate NetKAT normal forms to regular sets of
guarded strings, and obtain the completeness of NetKAT from
the completeness of KA.

The rest of this section outlines the key steps of this proof. The
long version of this paper gives further details.

Step 1: Reduced NetKAT. Let f1, . . . , fk be a list of all fields of
a packet in some (fixed) order. For each tuple n̄ = n1, . . . , nk of
values, let f̄ = n̄ and f̄ n̄ denote the expressions

f1 = n1 · · · fk = nk f1 n1 · · · fk nk,

…

