
Lecture Notes 04

Review
• We are implementing secure Battleship in Haskell/LIO.

• We will rely on secure architecture. A trusted referee has the 2 players’
boards, takes the initial boards, and runs the game of Battleship according
to its rules.

– Referee implemented in ConcurrentML.
– Can we split the referee into mutually distrustful player interfaces?

∗ Using a protocol to run the game instead, the players should see
the same thing.

∗ If a player deviates from the protocol, how can we define from
the other interface that they are still secure? (See slides for a
nice diagram!)

Real/Ideal Security Framing
• The real/ideal security framing gives us a means of reasoning about and

enforcing a fair game of Battleship.

• How do we define the ideal world?

– Using the model referee is a good start. If it is enforcing the rules of
the game as a trusted party, it coincides with the best case scenario
for the two-player interface version. If the adversary can’t tell the
difference between that and a simulator running the game and pre-
tending to be a referee, that should give us our proof of security (i.e.,
if you can’t distinguish between the real/ideal versions of the game,
then you can treat the real version as the ideal version).

∗ We want the outcomes of execution to be the same on the Re-
al/Ideal side.

∗ ... Is this what we want?
∗ If M violates the protocol, then the simulator terminates, but

the model referee may have learned enough to output to the
adversary. So the adversary could learn which is the simulation,

1



potentially, by trying to violate the protocol and determining
whether the protocol communicates an error, or a result and
then an error.

– See the paper from PLAS 2014 (Uppsala!)

Battleship Game Overview
• See slides for a brief overview of the game Battleship, plus the finer details

of strategy, and what information the players get when landing shots.

LIO
• Thanks, ”Steve Security!”

• A library for Concurrent Haskell with dynamic enforcement of information
flow control.

• Gives mutable variables shareable between predicates and used for com-
munication.

LIO Battleship
• Player Interfaces exchange, using trusted code, labeled boards using la-

beled cells.

• See slides for the code which implements this.

• See slides for an LIO example! The diagram is very helpful. :)

• The ”1 AND 2” bit on the right side is saying that both 1 and 2 trust the
codebase used to generate the initial state of the game.

• 1 on the left refers to secrecy. So, ”1: ...” says that Player Interface 1 is
allowed to declassify the cell.

– While Player Interface 2 could choose not to label it, the PC label
would be raised and have 1 with it. The channels it communicates
on won’t allow that. So if 2 declassifies one of these cells, it won’t be
allowed to communicate further.

• Each ship has a mutable variable associated with it. When pb is run for
either, they can reference, read, and write to this mutable variable.

• If we didn’t do that, it would be possible for player 2 to collect the un-
classified cells, run the DC actions in a different order. It could then ask
player 1 to declassify HC, then GC, etc. It could then send them to player
1, but run the actions in a different order. This would give player 2 more

2



information than they are entitled to, as they could learn that they sunk
the patrol boat before they finished hitting all of it.

• Player 1, when getting the cell, has permission to declassify it, and trust
is because it was generated using the mutually trusted codebase.

Concurrent ML
• Library for Standard ML

• No special security features (neither does concurrent Haskell)

• From abstract types and mutable references, you can program access con-
trol and such.

Concurrent ML + AC Battleship
• Player Interfaces implemented using a different mechanism in ML.

– Exchange using trusted code, boards are immutable and abstract and
locked, and can be unlocked using unforgeable keys.

– ... But there’s a catch! We have a type of keys, a type of counted
keys, but there’s no way of deconstructing a counted key. If the key is
unforgeable and an int, you can put them together to make a counted
key, but you can’t get just the key back from that point. Type of key
and counted key are abstract.

∗ (Secret monad!? The counted key sounds a little monadic...)

• See slides for an example game using this construction!

• Basically, since you can’t destruct the components of the protocol, you
can’t do the same attack as the LIO example.

– The counters are what keep you from performing the prior exploit.
It enforces the order of calls in the protocol.

• See slides for a diagram about M’s possible knowledge when run
against the Simulator.

• At the start, the model referee hasn’t said anything about the opponent’s
board’s state. It knows that information, but there is no leakage of infor-
mation. The board is locked and immutable, though, so we have to have
it point to a mutable variable (remember that from before) in order to
update its state.

3



• Meanwhile, the model referee wants to shoot, and M chooses to shoot
at a location. It sends it to ”the other player interface,” and the model
interface updates the board corresponding to M’s query, and says that M
got a hit. The supervisor patches ”hit” into that mutable variable from
before, simulating an updated board. The Supervisor sends a counted key
that unlocks the proper position, then M can run the ”shoot” procedure
again, and consults the mutable variable to choose what to return (”hit”).

What Happens Without the Counters?
• Without the counters, or if M could destruct them, it could give GC a

counter ”1” and shoot lb1. This would let the attack from earlier, where
you learn where the patrol boat is a bit early, happen again in another
form. This would fail to replicate the things that happen in the real world.

M Commits to a Board
• What if there is a bug in the protocol, and M moves its ships around to

avoid G’s shots?

– How do we know that this can’t happen?
– Ideal world: The referee gets both players to send their boards.
– So, in the Real world, the Supervisor is being asked what the boards

are at the start of the game.
– Supervisor has an API call and can check which board was used

to create the current board. So, M has to give a real board to
the ’trusted infrastructure,’ and the Supervisor constructs the corre-
sponding prior board to check it... I think.

• If there were a bug like this in the protocol, we could distinguish between
the boards.

• What might frustrate the Supervisor in this case?

– If S has given M a locked empty board first, then M sends back
the same board (a replay attack). Then, there would be no way of
doing an extraction to check how the board was derived! (There is
no valid prior board state, and so the check can’t compute a valid
prior board.)

– The protocol has to protect against this attack, or else risk getting
stuck in a locked state (which would distinguish between the Re-
al/Ideal world, possibly as the Real world could get stuck and the
Ideal world would simply reject the board).

4



Summary
• Separating the definition of security from its enforcement, she claims, is

huge!

– ”How do we know which of M’s actions are okay?” EasyCrypt can
help with that!

• Lots of bugs were found, of course... but it shows why formalization is
useful! It helped to find them.

• Sandboxing?

– Safe Haskell used in LIO stops bad behaviors in M. But M might be
able to stop the process by introducing an error. So, we would want
to check that M isn’t blowing up and is only interacting via accepted
channels for the system.

– For Concurrent ML, this had to be done by just reading the code.
But you could make a type system do this! It would probably just
require some type system engineering.

Discussion
• How do we know that a Real/Ideal paradigm says what we want?

– It’s VERY easy to get it wrong, as Cryptography definitions are
NOTORIOUSLY precarious. Small changes in protocol can eliminate
ALL of our security guarantees. See the slides for a diagram
outlining one such case...

• What alternatives to Real/Ideal do we have, in this setting or others?

– It’s hard to get right... it would be awesome to describe what we
wanted with, like, a Hoare logic or something. Can PL people help
with this?

• When is splitting a trusted component into two mutually distrustful com-
ponents helpful?

• For Battleship, can we rely on smaller trusted computing bases?

– The referee was simple, and we substituted a really hard thing to
simulate it. Is there something simpler we could do instead, to get
the same benefit?

• Why didn’t we use information flow control?

– Originally were trying to evaluate LIO, and thought Battleship was
a cool classic thing to implement! But it turned out to not require
information flow control. In the end, everything is declassified.

5



– Could we reason about when information flow control is or isn’t
needed?

Future Work
• We want to prove security in a proof assistant!

– People are working on this right now! They aren’t there yet, though.
– The proofs are very, very hard to do, and hard to mechanize. Need

something like Iris, but with types...
– Friendly competition here is welcome!

6


