
Alley Stoughton

The Real/Ideal Paradigm
Lecture 1

Oregon Programming Languages Summer School
June 3–13, 2024
Boston University

Boston University

OPLSS 2024
Alley Stoughton

• Security is about protecting system components from each other.

Security

2

Honest Malicious

Client Client

OPLSS 2024
Alley Stoughton

• Protection mechanisms: Cryptography
• (hopefully good) randomness
• (hopefully) intractable mathematical problems
• (hopefully) unpredictable complexity (e.g., hash functions)

Security Enforcement

3

y

x

?

y?

pre-image resistancecollision resistance

hashing

OPLSS 2024
Alley Stoughton

• Protection mechanisms: PL Security
• unforgeable references to objects on heap
• data abstraction
• Can be used to implement dynamic information flow control and access

control

Security Enforcement

4

OPLSS 2024
Alley Stoughton

• Protection mechanisms: Resource Managers
• resources held by mangers (e.g., operating systems)
• referred to via per-client (forgeable, e.g., integers) resource descriptors

Security Enforcement

5

Resource Manager

Client Client

descriptors

OPLSS 2024
Alley Stoughton

• But how do we define security?
• One answer is to employ the real/ideal paradigm of theoretical

cryptography

Defining Security

6

Honest Malicious

Client Client

OPLSS 2024
Alley Stoughton

• Security means Adversary can’t tell real and ideal systems apart

Real/Ideal Paradigm

7

H M

Adversary Adversary

Ideal Functionality

Simulator

M

real system ideal system

leakage

prescribes
honest

behavior

returns
boolean

judgement

OPLSS 2024
Alley Stoughton

• In these lectures, we will consider three applications of the real/ideal
paradigm

• In the form just presented, also known as simulation-based security
• Two will be related to the EasyCrypt proof assistant
• The third will be situated in two functional languages:
• Concurrent Haskell + the LIO dynamic information flow control library
• Concurrent ML + access control built from data abstraction

• My thesis is that the real/ideal paradigm is applicable much more
generally than just in cryptography

Real/Ideal Paradigm

8

OPLSS 2024
Alley Stoughton

• EasyCrypt (https://github.com/EasyCrypt/easycrypt) is an interactive
proof assistant for reasoning about probabilistic imperative programs,
including ones involving black-box code

• Its object programming language consists of:
• statements, including conditionals, while loops, ordinary assignments,

and random assignments from probability (sub-)distributions—plus
procedure calls

• modules consisting of procedures plus persistent variables (state),
possibly parameterized by black box code

EasyCrypt Introduction

9

https://github.com/EasyCrypt/easycrypt

OPLSS 2024
Alley Stoughton

• EasyCrypt has four program logics:
• A Hoare Logic for partial correctness
• A probabilistic Hoare Logic (pHL) for bounding the probability that

procedures terminate with events holding
• A probabilistic Relational Hoare Logic (pRHL) for relational reasoning
• A classical higher-order Ambient Logic for doing ordinary mathematics

and connecting judgments from the other logics

EasyCrypt Introduction

10

OPLSS 2024
Alley Stoughton

• Proofs of lemmas are carried out using tactics in a style similar to that of
Coq (specifically SSReflect)

• Theories combine mathematical definitions, module definitions and
sequences of lemmas and their proofs

• Theory parameters can be instantiated via “cloning”, in which case
EasyCrypt makes one prove any axioms as lemmas

EasyCrypt Introduction

11

OPLSS 2024
Alley Stoughton

module M = {
 proc f() : bool = {
 var b : bool;
 b <$ {0,1}; (* sample a random boolean *)
 return b;
 }
}.
module N = {
 proc f() : bool = {
 var b1, b2 : bool;
 b1 <$ {0,1}; b2 <$ {0,1};
 return b1 ^^ b2; (* exclusive or *)
 }
}.

EasyCrypt Introduction

12

OPLSS 2024
Alley Stoughton

• Semantics for PL given
via a denotational
semantics using a
probability monad

• Can be pictured as tree,
where the nodes are
basic instructions, with
edges from random
assignments labeled by
chosen values and
probabilities

• Can have infinite
branches with probability
0

EasyCrypt Introduction

13

b1

b2

true
.5

b2

true
.5

true
.5

false
.5

false
.5

false
.5

.25
false

.25
true

.25
false

.25
true

Execution of N.f

OPLSS 2024
Alley Stoughton

• We can use pHL to prove that running M.f returns true exactly half the
time:

lemma M_true &m :
 Pr[M.f() @ &m : res] = 1%r / 2%r.

• Then we can use pRHL to prove this relational judgement:

lemma M_N_equiv :
 equiv[M.f ~ N.f : true ==> res{1} = res{2}].

EasyCrypt Introduction

14

relations on memories

predicate on memory — includes result

OPLSS 2024
Alley Stoughton

• Understanding the definition of the validity of relational judgements

equiv [M.f ~ N.g : P ==> Q]

uses a concept called probabilistic relational coupling, as relational
postconditions on memories (module variables and procedure results)
need to be lifted to relations on distributions over memories

• But in practice one can think and work more informally

EasyCrypt Introduction

15

OPLSS 2024
Alley Stoughton

• E.g., if we have proved a relational judgement

equiv [M.f ~ N.g : true ==> Q]

E and F are memory predicates for M.f and N.g, respectively, and we
can prove the Ambient Logic implication

Q => E{1} <=> F{2}

then we can conclude the Ambient Logic formula

Pr[M.f() @ &m : E] = Pr[N.g() @ &m : F]

EasyCrypt Introduction

16

OPLSS 2024
Alley Stoughton

• In our example, this lets us go from

lemma M_N_equiv :
 equiv[M.f ~ N.f : true ==> res{1} = res{2}].

to

lemma M_N_true &m :
 Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res].

lemma N_true &m : Pr[N.f() @ &m : res] = 1%r / 2%r.

EasyCrypt Introduction

17

OPLSS 2024
Alley Stoughton

• In the key step of proving

lemma M_N_equiv :
 equiv[M.f ~ N.f : true ==> res{1} = res{2}].

we have the following relational goal:

EasyCrypt Introduction

18

OPLSS 2024
Alley Stoughton

Current goal

&1 (left) : {b : bool}

&2 (right) : {b1, b2 : bool}

pre = true

b <$ {0,1} (1) b2 <$ {0,1}

post = b{1} = b1{2} ^^ b2{2}

EasyCrypt Introduction

19

the value of b1 in N.f
was already chosen

OPLSS 2024
Alley Stoughton

• We can apply the two-sided rnd tactic with isomorphism (fun x => x
^^ b1{2}) on the distribution {0,1}, pushing the random
assignments into the postcondition:

Current goal
--
&1 (left) : {b : bool}
&2 (right) : {b1, b2 : bool}

pre = true

post =
 (forall (b2R : bool), b2R \in {0,1} => b2R = b2R ^^ b1{2} ^^ b1{2}) &&
 forall (bL : bool),
 bL \in {0,1} =>
 bL = bL ^^ b1{2} ^^ b1{2} &&
 bL = b1{2} ^^ (bL ^^ b1{2})

EasyCrypt Introduction

20

like all other tactics, the rnd tactic has
been proven sound according to the
validity of relational judgements

OPLSS 2024
Alley Stoughton

• In the supplementary material for my lectures, you can find slide decks
comprising an example-based introduction to EasyCrypt

• The slides were written for a course I co-teach at Boston University
• In the rest of this lecture and my following lectures, I’m not going to work

with formal proofs in EasyCrypt, but will instead emphasize the big ideas
• But I may do some live coding at the ends of lectures, time-permitting
• And I’ll post a few EasyCrypt exercises on slack, which you can

optionally work on — and ask me questions about

EasyCrypt Introduction

21

OPLSS 2024
Alley Stoughton

• Cryptographic schemes (e.g., encryption) and protocols (e.g., key-
exchange) can be specified at a high-level in EasyCrypt’s programming
language

• They generally make use of randomness, which can be modeled by
random assignments from distributions.

• When these high-level specifications are implemented, this
randomness must be realized using pseudorandom number
generators, whose seeds make use of randomness from the
underlying operating system or hardware

• There is work (e.g., Jasmin, https://formosa-crypto.gitlab.io/projects/) on
formally connecting high-level EasyCrypt code with efficient low-level
implementations

Cryptographic Security

22

https://formosa-crypto.gitlab.io/projects/

OPLSS 2024
Alley Stoughton

• In our first example, we will see how we can:
• define symmetric encryption out of randomness plus a pseudorandom

function (PRF);
• specify security for this scheme (indistinguishability under chosen

plaintext attack, IND-CPA); and
• prove security of this scheme, using a reduction to the security of the

PRF
• We will employ a form of the real/ideal paradigm that doesn’t use a

simulator
• But the top-level security theorem will use an indistinguishability game,

rather than the real/ideal paradigm

Example 1: Symmetric Encryption

23

OPLSS 2024
Alley Stoughton

• The EasyCrypt code for this example can be found on GitHub:

https://github.com/alleystoughton/EasyTeach

Example 1

24

https://github.com/alleystoughton/EasyTeach

OPLSS 2024
Alley Stoughton

• Our treatment of symmetric encryption schemes is parameterized by
three types:

type key. (* encryption keys, key_len bits *)
type text. (* plaintexts, text_len bits *)
type cipher. (* ciphertexts - scheme specific *)

• An encryption scheme is a stateless implementation of this module
interface:

module type ENC = {
 proc key_gen() : key (* key generation *)
 proc enc(k : key, x : text) : cipher (* encryption *)
 proc dec(k : key, c : cipher) : text (* decryption *)
}.

Symmetric Encryption Schemes

25

OPLSS 2024
Alley Stoughton

• An encryption scheme is correct if and only if the following procedure
returns true with probability 1 for all arguments:

module Cor (Enc : ENC) = {
 proc main(x : text) : bool = {
 var k : key; var c : cipher; var y : text;
 k <@ Enc.key_gen();
 c <@ Enc.enc(k, x);
 y <@ Enc.dec(k, c);
 return x = y;
 }
}.

• The module Cor is parameterized (may be applied to) an arbitrary
encryption scheme, Enc

Scheme Correctness

26

OPLSS 2024
Alley Stoughton

• To define IND-CPA security of encryption schemes, we need the notion
of an encryption oracle, which both the adversary and IND-CPA game
will interact with:

module type EO = {
 (* initialization - generates key *)
 proc init() : unit
 (* encryption by adversary before game's encryption *)
 proc enc_pre(x : text) : cipher
 (* one-time encryption by game *)
 proc genc(x : text) : cipher
 (* encryption by adversary after game's encryption *)
 proc enc_post(x : text) : cipher
}.

Encryption Oracles

27

OPLSS 2024
Alley Stoughton

• Here is the standard encryption oracle, parameterized by an encryption
scheme, Enc:

module EncO (Enc : ENC) : EO = {
 var key : key
 var ctr_pre : int
 var ctr_post : int

 proc init() : unit = {
 key <@ Enc.key_gen();
 ctr_pre <- 0; ctr_post <- 0;
 }

Standard Encryption Oracle

28

OPLSS 2024
Alley Stoughton

 proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
 }

Standard Encryption Oracle

29

OPLSS 2024
Alley Stoughton

 proc genc(x : text) : cipher = {
 var c : cipher;
 c <@ Enc.enc(key, x);
 return c;
 }

Standard Encryption Oracle

30

OPLSS 2024
Alley Stoughton

 proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
 }
}.

Standard Encryption Oracle

31

OPLSS 2024
Alley Stoughton

• An encryption adversary is parameterized by an encryption oracle:
module type ADV (EO : EO) = {
 (* choose a pair of plaintexts, x1/x2 *)
 proc choose() : text * text {EO.enc_pre}

 (* given ciphertext c based on a random boolean b
 (the encryption using EO.genc of x1 if b = true,
 the encryption of x2 if b = false), try to guess b
 *)
 proc guess(c : cipher) : bool {EO.enc_post}
}.

• Adversaries may be probabilistic

Encryption Adversary

32

OPLSS 2024
Alley Stoughton

• The IND-CPA Game is parameterized by an encryption scheme and an
encryption adversary:

module INDCPA (Enc : ENC, Adv : ADV) = {
 module EO = EncO(Enc) (* make EO from Enc *)
 module A = Adv(EO) (* connect Adv to EO *)
 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO.init(); (* initialize EO *)
 (x1, x2) <@ A.choose(); (* let A choose x1/x2 *)
 b <$ {0,1}; (* choose boolean b *)
 c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *)
 b' <@ A.guess(c); (* let A guess b from c *)
 return b = b'; (* see if A won *)
 }.

IND-CPA Game

33

OPLSS 2024
Alley Stoughton

IND-CPA Game

34

Enc

EO Adv

Game

OPLSS 2024
Alley Stoughton

• If the value b’ that Adv returns is independent of the random boolean
b, then the probability that Adv wins the game will be exactly 1/2

• E.g., if Adv always returns true, it’ll win half the time

• The question is how much better it can do—and we want to prove that it
can’t do much better than win half the time

• But this will depend upon the quality of the encryption scheme

• An adversary that wins with probability greater than 1/2 can be
converted into one that loses with that probability, and vice versa. When
formalizing security, it’s convenient to upper-bound the distance
between the probability of the adversary winning and 1/2

IND-CPA Game

35

OPLSS 2024
Alley Stoughton

• In our security theorem for a given encryption scheme Enc and
adversary Adv, we prove an upper bound on the absolute value of the
difference between the probability that Adv wins the game and 1/2:

`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| <= … Adv …

• Ideally, we’d like the upper bound to be 0, so that the probability that
Enc wins is exactly 1/2, but this won’t be possible

• The upper bound may also be a function of the number of bits
text_len in text and the encryption oracle limits limit_pre and
limit_post

IND-CPA Security

36

OPLSS 2024
Alley Stoughton

• Q: Because the adversary can call the encryption oracle with the
plaintexts x1/x2 it goes on to choose, why isn’t it impossible to define a
secure scheme?

• A: Because encryption can (must!) involve randomness.
• Q: What is the rationale for letting the adversary call enc_pre and
enc_post at all?

• A: It models the possibility that the adversary may be able to influence
which plaintexts are encrypted

• Q: What is the rationale for limiting the number of times enc_pre and
enc_post may be called?

• A: There will probably be some limit on the adversary’s influence on
what is encrypted

IND-CPA Security

37

OPLSS 2024
Alley Stoughton

• Our pseudorandom function (PRF) is an operator F with this type:
op F : key -> text -> text.

• For each value k of type key, (F k) is a function from text to text

• Since key is a bitstring of length key_len, then there are at most
2key_len of these functions

• If we wanted, we could try to spell out the code for F, but we choose to
keep F abstract

• We will talk about the “goodness” of F using the real/ideal paradigm

Pseudorandom Functions

38

OPLSS 2024
Alley Stoughton

• We will assume that dtext (dkey) is a sub-distribution on text (key)
that is a distribution (is “lossless”), and where every element of text
(key) has the same non-zero value:

op dtext : text distr.
op dkey : key distr.

Pseudorandom Functions

39

OPLSS 2024
Alley Stoughton

• A random function is a module with the following interface:
module type RF = {

 (* initialization *)

 proc init() : unit

 (* application to a text *)

 proc f(x : text) : text

}.

Pseudorandom Functions

40

OPLSS 2024
Alley Stoughton

• Here is a random function made from our PRF F:
module PRF : RF = {
 var key : key
 proc init() : unit = {
 key <$ dkey;
 }
 proc f(x : text) : text = {
 var y : text;
 y <- F key x;
 return y;
 }
}.

Pseudorandom Functions

41

The “real” version

OPLSS 2024
Alley Stoughton

• Here is a random function made from true randomness:
module TRF : RF = {
 (* mp is a finite map associating texts with texts *)
 var mp : (text, text) fmap
 proc init() : unit = {
 mp <- empty; (* empty map *)
 }
 proc f(x : text) : text = {
 var y : text;
 if (! x \in mp) { (* give x a random value in *)
 y <$ dtext; (* mp if not already in mp's domain *)
 mp.[x] <- y;
 }
 return oget mp.[x]; (* return value of x in mp *)
 } (* mp.[x] is: None if x is not in mp’s domain, *)
}. (* and Some z if z is the value of x in mp *)

Pseudorandom Functions

42

The “ideal” version

OPLSS 2024
Alley Stoughton

• A random function adversary is parameterized by a random function
module:

module type RFA (RF : RF) = {
 proc main() : bool {RF.f}
}.

Pseudorandom Functions

43

OPLSS 2024
Alley Stoughton

• Here is the random function game:
module GRF (RF : RF, RFA : RFA) = {
 module A = RFA(RF)
 proc main() : bool = {
 var b : bool;
 RF.init();
 b <@ A.main();
 return b;
 }
}.

• A random function adversary RFA tries to tell the PRF and TRF apart, by
returning true with different probabilities

Pseudorandom Functions

44

OPLSS 2024
Alley Stoughton

• Our PRF F is “good” if and only if the following is small, whenever RFA
is limited in the amount of computation it may do (maybe we say it runs
in polynomial time):

 `|Pr[GRF(PRF, RFA).main() @ &m : res] -
 Pr[GRF(TRF, RFA).main() @ &m : res]|

• RFA must be limited, because there will typically be many more distinct
maps from text to text than functions of the form (F k), where k is
a key (there are at most 2key_len such functions)

• Since text_len is the number of bits in text, there will be 2text_len
^ 2text_len distinct maps from text to text (e.g., 28 = 256, 28 ^ 28
~= 10617)

• Thus, with enough running time, RFA may be able to tell with
reasonable probability if it’s interacting with a PRF random function or
a true random function

Pseudorandom Functions

45

OPLSS 2024
Alley Stoughton

• We construct our encryption scheme Enc out of F:

(+^) : text -> text -> text (* bitwise exclusive or *)

type cipher = text * text. (* ciphertexts *)

module Enc : ENC = {
 proc key_gen() : key = {
 var k : key;
 k <$ dkey;
 return k;
 }

Our Symmetric Encryption Scheme

46

OPLSS 2024
Alley Stoughton

 proc enc(k : key, x : text) : cipher = {
 var u : text;
 u <$ dtext;
 return (u, x +^ F k u);
 }

 proc dec(k : key, c : cipher) : text = {
 var u, v : text;
 (u, v) <- c;
 return v +^ F k u;
 }
}.

Our Symmetric Encryption Scheme

47

OPLSS 2024
Alley Stoughton

• Suppose that enc(k, x) returns c = (u, x +^ F k u), where u
was randomly chosen

• Then dec(k, c) returns (x +^ F k u) +^ F k u = x

Correctness

48

OPLSS 2024
Alley Stoughton

• At the beginning of Lecture 2, we’ll continue with Example 1:

• Reviewing the material from today

• Considering an adversarial attack strategy against our scheme, and
what it tells us about the statement of our security theorem

• Giving a high-level sketch of the proof of our security theorem

Next Lecture

49

