The Real/Ideal Paradigm Lecture 1

Alley Stoughton

Oregon Programming Languages Summer School June 3–13, 2024 **Boston University**

Boston University

Security is about protecting system components from each other.

Security

- Protection mechanisms: Cryptography
 - (hopefully good) randomness

 - (hopefully) intractable mathematical problems (hopefully) unpredictable complexity (e.g., hash functions)

collision resistance

OPLSS 2024 Alley Stoughton

pre-image resistance

- Protection mechanisms: PL Security
 - unforgeable references to objects on heap
 - data abstraction
 - Can be used to implement dynamic information flow control and access control

Security Enforcement

- Protection mechanisms: Resource Managers
 - resources held by mangers (e.g., operating systems)
 - referred to via per-client (forgeable, e.g., integers) resource descriptors

Security Enforcement

Defining Security

- But how do we define security?
- One answer is to employ the real/ideal paradigm of theoretical cryptography

Security means Adversary can't tell real and ideal systems apart

real system

OPLSS 2024 Alley Stoughton

ideal system

- In these lectures, we will consider three applications of the real/ideal paradigm
 - In the form just presented, also known as simulation-based security
- Two will be related to the EasyCrypt proof assistant
- The third will be situated in two functional languages:
 - Concurrent Haskell + the LIO dynamic information flow control library
 - Concurrent ML + access control built from data abstraction
- My thesis is that the real/ideal paradigm is applicable much more generally than just in cryptography

- including ones involving black-box code
- Its object programming language consists of:
 - statements, including conditionals, while loops, ordinary assignments, and random assignments from probability (sub-)distributions—plus procedure calls
 - possibly parameterized by black box code

 EasyCrypt (<u>https://github.com/EasyCrypt/easycrypt</u>) is an interactive proof assistant for reasoning about probabilistic imperative programs,

modules consisting of procedures plus persistent variables (state),

- EasyCrypt has four program logics:
 - A Hoare Logic for partial correctness
 - A probabilistic Hoare Logic (pHL) for bounding the probability that procedures terminate with events holding
 - A probabilistic Relational Hoare Logic (pRHL) for relational reasoning
 - A classical higher-order Ambient Logic for doing ordinary mathematics and connecting judgments from the other logics

- Proofs of lemmas are carried out using tactics in a style similar to that of Coq (specifically SSReflect)
- Theories combine mathematical definitions, module definitions and sequences of lemmas and their proofs
- Theory parameters can be instantiated via "cloning", in which case EasyCrypt makes one prove any axioms as lemmas

11

```
module M = \{
  proc f() : bool = {
    var b : bool;
    b <$ {0,1}; (* sample a random boolean *)</pre>
    return b;
}.
module N = \{
  proc f() : bool = {
    var b1, b2 : bool;
    b1 <$ {0,1}; b2 <$ {0,1};
    return b1 ^^ b2; (* exclusive or *)
_
```


EasyCrypt Introduction

- Semantics for PL given via a denotational semantics using a probability monad
- Can be pictured as tree, where the nodes are basic instructions, with edges from random assignments labeled by chosen values and probabilities
- Can have infinite branches with probability

- time:
- lemma M_true &m : Pr[M.f() @ &m : res] = 1%r / 2%r.
- Then we can use pRHL to prove this relational judgement:

lemma M_N_equiv : equiv[M.f ~ N.f : true =

• We can use pHL to prove that running M. f returns true exactly half the

- predicate on memory includes result

14

 Understanding the definition of the validity of relational judgements equiv [M.f \sim N.g : P ==> Q]

need to be lifted to relations on distributions over memories

But in practice one can think and work more informally

uses a concept called *probabilistic relational coupling*, as relational postconditions on memories (module variables and procedure results)

• E.g., if we have proved a relational judgement equiv [M.f \sim N.g : true ==> Q] E and F are memory predicates for M. f and N. g, respectively, and we can prove the Ambient Logic implication $0 => E\{1\} <=> F\{2\}$

then we can conclude the Ambient Logic formula Pr[M.f() @ &m : E] = Pr[N.g() @ &m : F]

• In our example, this lets us go from

lemma M_N_equiv : equiv[M.f ~ N.f : true ==> res{1} = res{2}].

to

lemma M_N_true &m : Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res].lemma N_true &m : Pr[N.f() @ &m : res] = 1%r / 2%r.

EasyCrypt Introduction

In the key step of proving

lemma M_N_equiv : equiv[M.f ~ N.f : true ==> res{1} = res{2}].

we have the following relational goal:

the value of **b1** in **N**. **f** was already chosen

(1) $b2 < \{0,1\}$

 1 b1{2}) on the distribution {0,1}, pushing the random assignments into the postcondition:

```
Current goal
```

&1 (left) : {b : bool} &2 (right) : {b1, b2 : bool}

```
pre = true
```

```
post =
  forall (bL : bool),
    bL \in {0,1} =>
    bL = bL ^{h} b1{2} ^{h} b1{2} \&
    bL = b1{2} \land (bL \land b1{2})
```

• We can apply the two-sided rnd tactic with isomorphism (fun $x \Rightarrow x$

like all other tactics, the rnd tactic has been proven sound according to the validity of relational judgements

(forall (b2R : bool), b2R \in $\{0,1\} => b2R = b2R \land b1\{2\} \land b1\{2\}) \&\&$

- In the supplementary material for my lectures, you can find slide decks comprising an example-based introduction to EasyCrypt
 - The slides were written for a course I co-teach at Boston University
- In the rest of this lecture and my following lectures, I'm not going to work with formal proofs in EasyCrypt, but will instead emphasize the big ideas
- But I may do some live coding at the ends of lectures, time-permitting
- And I'll post a few EasyCrypt exercises on slack, which you can optionally work on — and ask me questions about

- Cryptographic schemes (e.g., encryption) and protocols (e.g., keyexchange) can be specified at a high-level in EasyCrypt's programming language
 - They generally make use of randomness, which can be modeled by random assignments from distributions.
 - When these high-level specifications are implemented, this randomness must be realized using pseudorandom number generators, whose seeds make use of randomness from the underlying operating system or hardware
- There is work (e.g., Jasmin, <u>https://formosa-crypto.gitlab.io/projects/</u>) on formally connecting high-level EasyCrypt code with efficient low-level implementations

22

- In our first example, we will see how we can: define symmetric encryption out of randomness plus a pseudorandom
 - function (PRF);
 - specify security for this scheme (indistinguishability under chosen) plaintext attack, IND-CPA); and
 - prove security of this scheme, using a reduction to the security of the PRF
- We will employ a form of the real/ideal paradigm that doesn't use a simulator
- But the top-level security theorem will use an indistinguishability game, rather than the real/ideal paradigm

The EasyCrypt code for this example can be found on GitHub:

https://github.com/alleystoughton/EasyTeach

Example 1

- three types:
- type key. (* encryption keys, key_len bits *) type text. (* plaintexts, text_len bits *) type cipher. (* ciphertexts – scheme specific *)
- interface:
- module type ENC = { proc key_gen() : key (* key generation *) proc enc(k : key, x : text) : cipher (* encryption *) proc dec(k : key, c : cipher) : text (* decryption *) }.

Symmetric Encryption Schemes

Our treatment of symmetric encryption schemes is parameterized by

• An encryption scheme is a *stateless* implementation of this module

returns true with probability 1 for all arguments: module Cor (Enc : ENC) = { proc main(x : text) : bool = { var k : key; var c : cipher; var y : text; k <@ Enc.key_gen();</pre> c <@ Enc.enc(k, x);</pre> y <@ Enc.dec(k, c);</pre> return x = y; } }.

• The module Cor is parameterized (may be applied to) an arbitrary encryption scheme, Enc

Scheme Correctness

An encryption scheme is correct if and only if the following procedure

Encryption Oracles

will interact with:

module type $E0 = \{$

(* initialization – generates key *) proc init() : unit

(* encryption by adversary before game's encryption *)

proc enc_pre(x : text) : cipher

(* one-time encryption by game *)

proc genc(x : text) : cipher

(* encryption by adversary after game's encryption *)

proc enc_post(x : text) : cipher

}

 To define IND-CPA security of encryption schemes, we need the notion of an encryption oracle, which both the adversary and IND-CPA game

scheme, Enc:

module Enc0 (Enc : ENC) : $EO = \{$

var key : key

var ctr_pre : int

var ctr_post : int

proc init() : unit = { key <@ Enc.key_gen();</pre> ctr_pre <- 0; ctr_post <- 0;</pre> }

Standard Encryption Oracle

Here is the standard encryption oracle, parameterized by an encryption

Standard Encryption Oracle

```
proc enc_pre(x : text) : cipher = {
  var c : cipher;
  if (ctr_pre < limit_pre) {</pre>
    ctr_pre <- ctr_pre + 1;</pre>
    c <@ Enc.enc(key, x);</pre>
  }
  else {
    c <- ciph_def; (* default result *)</pre>
  }
  return c;
}
```


Standard Encryption Oracle

```
proc genc(x : text) : cipher = {
  var c : cipher;
  c <@ Enc.enc(key, x);
  return c;
}</pre>
```


Standard Encryption Oracle

```
proc enc_post(x : text) : cipher = {
    var c : cipher;
    if (ctr_post < limit_post) {</pre>
      ctr_post <- ctr_post + 1;</pre>
      c <@ Enc.enc(key, x);</pre>
    }
    else {
      c <- ciph_def; (* default result *)</pre>
    }
    return c;
}.
```


 An encryption adversary is parameterized by an encryption oracle: module type ADV (E0 : E0) = $\{$ (* choose a pair of plaintexts, x1/x2 *) proc choose() : text * text {E0.enc_pre} (* given ciphertext c based on a random boolean b (the encryption using E0.genc of x1 if b = true, the encryption of x2 if b = false, try to guess b *) proc guess(c : cipher) : bool {E0.enc_post} }. Adversaries may be probabilistic

encryption adversary:

module INDCPA (Enc : ENC, Adv : ADV) = { module EO = EncO(Enc) (* make EO from Enc *) module A = Adv(E0) (* connect Adv to E0 *) proc main() : bool = { var b, b' : bool; var x1, x2 : text; var c : cipher; (* initialize EO *) EO.init(); (x1, x2) < @ A.choose(); (* let A choose x1/x2 *)b <\$ {0,1}; (* choose boolean b *) c <@ E0.genc(b ? x1 : x2); (* encrypt x1 or x2 *)</pre> return b = b'; (* see if A won *) <u>،</u>

The IND-CPA Game is parameterized by an encryption scheme and an

IND-CPA Game

- If the value b' that Adv returns is independent of the random boolean
 b, then the probability that Adv wins the game will be exactly 1/2
 - E.g., if Adv always returns true, it'll win half the time
- The question is how much better it can do—and we want to prove that it can't do much better than win half the time
 - But this will depend upon the quality of the encryption scheme
- An adversary that wins with probability greater than 1/2 can be converted into one that loses with that probability, and vice versa. When formalizing security, it's convenient to upper-bound the distance between the probability of the adversary winning and 1/2

IND-CPA Security

- In our security theorem for a given encryption scheme Enc and adversary Adv, we prove an upper bound on the absolute value of the difference between the probability that Adv wins the game and 1/2:
- `|Pr[INDCPA(Enc, Adv).main() @ &m : res] 1%r / 2%r| <= ... Adv ...</pre>
- Ideally, we'd like the upper bound to be 0, so that the probability that Enc wins is exactly 1/2, but this won't be possible
- The upper bound may also be a function of the number of bits text_len in text and the encryption oracle limits limit_pre and limit_post

IND-CPA Security

- Q: Because the adversary can call the encryption oracle with the plaintexts x₁/x₂ it goes on to choose, why isn't it impossible to define a secure scheme?
 - A: Because encryption can (must!) involve randomness.
- Q: What is the rationale for letting the adversary call enc_pre and enc_post at all?
 - A: It models the possibility that the adversary may be able to influence which plaintexts are encrypted
- Q: What is the rationale for limiting the number of times enc_pre and enc_post may be called?
 - A: There will probably be some limit on the adversary's influence on what is encrypted

Our pseudorandom function (PRF) is an operator F with this type:

op F : key -> text -> text.

- For each value k of type key, (F k) is a function from text to text
 Since key is a bitstring of length key_len, then there are at most
- Since key is a bitstring of length 2^{key_len} of these functions
- If we wanted, we could try to spell out the code for F, but we choose to keep F abstract
- We will talk about the "goodness" of F using the real/ideal paradigm

- (key) has the same non-zero value:
- op dtext : text distr.
- op dkey : key distr.

 We will assume that dtext (dkey) is a sub-distribution on text (key) that is a distribution (is "lossless"), and where every element of text

 A random function is a module with the following interface: module type RF = { (* initialization *) proc init() : unit (* application to a text *) proc f(x : text) : text }.

Pseudorandom Functions


```
• Here is a random function made from our PRF F:
module PRF : RF = {
 var key : key
 proc init() : unit = {
   key <$ dkey;</pre>
  }
 proc f(x : text) : text = {
    var y : text;
    y <- F key x;
    return y;
  }
```

Pseudorandom Functions

The "real" version


```
    Here is a random function made from true randomness:

module TRF : RF = \{
  (* mp is a finite map associating texts with texts *)
  var mp : (text, text) fmap
  proc init() : unit = {
    mp <- empty; (* empty map *)</pre>
  }
  proc f(x : text) : text = {
    var y : text;
    if (! x \in mp) { (* give x a random value in *)
      y <$ dtext; (* mp if not already in mp's domain *)</pre>
      mp.[x] <- y;
   return oget mp.[x]; (* return value of x in mp *)
  } (* mp.[x] is: None if x is not in mp's domain, *)
     (* and Some z if z is the value of x in mp *)
```

The "ideal" version

module:

module type RFA (RF : RF) = { proc main() : bool {RF.f} }.

Pseudorandom Functions

A random function adversary is parameterized by a random function


```
• Here is the random function game:
module GRF (RF : RF, RFA : RFA) = {
  module A = RFA(RF)
  proc main() : bool = {
    var b : bool;
    RF.init();
    b <@ A.main();</pre>
    return b;
  }
}.
```

returning true with different probabilities

Pseudorandom Functions

A random function adversary RFA tries to tell the PRF and TRF apart, by

 Our PRF F is "good" if and only if the following is small, whenever RFA
is limited in the amount of computation it may do (maybe we say it runs) in polynomial time):

`|Pr[GRF(PRF, RFA).main() @ &m : res] -

Pr[GRF(TRF, RFA).main() @ &m : res]

- RFA must be limited, because there will typically be many more distinct maps from text to text than functions of the form (F k), where k is a key (there are at most 2^{key_len} such functions)
 - Since text len is the number of bits in text, there will be 2^{text_len}
 2^{text_len} distinct maps from text to text (e.g., 2⁸ = 256, 2⁸ ^ 2⁸ ~= **10**⁶¹⁷)
 - Thus, with enough running time, RFA may be able to tell with reasonable probability if it's interacting with a PRF random function or a true random function


```
• We construct our encryption scheme Enc out of F:
(+^) : text -> text -> text (* bitwise exclusive or *)
type cipher = text * text. (* ciphertexts *)
module Enc : ENC = {
 proc key_gen() : key = {
   var k : key;
   k <$ dkey;</pre>
    return k;
  }
```

Our Symmetric Encryption Scheme

Our Symmetric Encryption Scheme

```
proc enc(k : key, x : text) : cipher = {
 var u : text;
  u <$ dtext;
  return (u, x +^ F k u);
}
```

```
proc dec(k : key, c : cipher) : text = {
   var u, v : text;
   (u, v) <- c;
   return v +^ F k u;
  }
}.
```


- was randomly chosen
- Then dec(k, c) returns (x + F k u) + F k u = x

Correctness

• Suppose that enc(k, x) returns c = (u, x + F k u), where u

- At the beginning of Lecture 2, we'll continue with Example 1:
 - Reviewing the material from today
 - Considering an adversarial attack strategy against our scheme, and what it tells us about the statement of our security theorem
 - Giving a high-level sketch of the proof of our security theorem

Next Lecture

