The Real/ldeal Paradigm

Lecture 1

Alley Stoughton

Boston University

Oregon Programming Languages Summer School
June 3-13, 2024
Boston University

Security

» Security Is about protecting system components from each other.

Honest Malicious

OPLSS 2024
Alley Stoughton

Security Enforcement

* Protection mechanisms: Cryptography
* (hopefully good) randomness
 (hopefully) intractable mathematical problems

 (hopefully) unpredictable complexity (e.g., hash functions)

X
\ y hashing ? >y
/

?

collision resistance pre-image resistance

OPLSS 2024
Alley Stoughton

Security Enforcement

* Protection mechanisms: PL Security
» unforgeable references to objects on heap
» data abstraction

» Can be used to implement dynamic information flow control and access
control

OPLSS 2024
Alley Stoughton

Security Enforcement

* Protection mechanisms: Resource Managers
 resources held by mangers (e.g., operating systems)
» referred to via per-client (forgeable, e.g., integers) resource descriptors

Client Client

I descriptors I

Resource Manager

OPLSS 2024
Alley Stoughton

Defining Security

» But how do we define security?
* One answer is to employ the real/ideal paradigm of theoretical

cryptography

Honest Malicious

OPLSS 2024
Alley Stoughton

Real/ldeal Paradigm

» Security means Adversary can't tell real and ideal systems apart

returns
judgement

prescribes
honest
behavior

--------- Ieakage

real system ideal system

OPLSS 2024
Alley Stoughton

Real/ldeal Paradigm

* In these lectures, we will consider three applications of the real/ideal
paradigm

* |[n the form just presented, also known as simulation-based security
* Two will be related to the EasyCrypt proof assistant
* The third will be situated in two functional languages:
» Concurrent Haskell + the LIO dynamic information flow control library
» Concurrent ML + access control built from data abstraction

* My thesis is that the real/ideal paradigm is applicable much more
generally than just in cryptography

OPLSS 2024
Alley Stoughton

EasyCrypt Introduction

» EasyCrypt (hitps://github.com/EasyCrypt/easycrypt) is an interactive
proof assistant for reasoning about probabilistic imperative programs,

including ones involving black-box code
* |[ts object programming language consists of:

» statements, including conditionals, while loops, ordinary assignments,
and random assignments from probability (sub-)distributions—plus
procedure calls

* modules consisting of procedures plus persistent variables (state),
possibly parameterized by black box code

OPLSS 2024
Alley Stoughton

https://github.com/EasyCrypt/easycrypt

EasyCrypt Introduction

» EasyCrypt has four program logics:
* A Hoare Logic for partial correctness

» A probabilistic Hoare Logic (pHL) for bounding the probability that
procedures terminate with events holding

» A probabilistic Relational Hoare Logic (pRHL) for relational reasoning

* A classical higher-order Ambient Logic for doing ordinary mathematics
and connecting judgments from the other logics

OPLSS 2024
Alley Stoughton

10

EasyCrypt Introduction

* Proofs of lemmas are carried out using tactics in a style similar to that of
Coq (specifically SSReflect)

 Theories combine mathematical definitions, module definitions and
sequences of lemmas and their proofs

* Theory parameters can be instantiated via “cloning”, in which case
EasyCrypt makes one prove any axioms as lemmas

OPLSS 2024
Alley Stoughton

11

EasyCrypt Introduction

module M = {
proc f() : bool = {
var b : bool;
b <$ {0,1}; (* sample a random boolean *)
return b;

$
}.
module N = {
proc f() : bool = {
var bl, b2 : bool;
bl <$ {0,1}; b2 <$ {0,1%};
return bl AA bZ2; (* exclusive or *)
}
}.

OPLSS 2024
Alley Stoughton

12

EasyCrypt Introduction

» Semantics for PL given b1
via a denotational
semantics using a trge fa}sse

probability monad
» Can be pictured as tree,

where the nodes are b2 b2
basic instructions, with frue false true o lea
edges from random 5 5 5 5

assignments labeled by
chosen values and

probabillities 25 25 25 25

false true true false

* Can have infinite
branches with probability

0 Execution of N. T

OPLSS 2024
Alley Stoughton

EasyCrypt Introduction

« WWe can use pHL to prove that running M. T returns true exactly half the
time:
predicate on memory — includes result

lemma M true &m : |
PriM.f() @ & : res] = 1%r / 2%r.

 Then we can use pRHL to prove this relational judgement:

Llemma M_N_equiv :
equiv[M.f ~ N.T : true ==> res{l} = res{i2;t].

\ /

relations on memories

OPLSS 2024
Alley Stoughton

14

EasyCrypt Introduction

» Understanding the definition of the validity of relational judgements
equiv [M.f ~ N.g : P ==> Q]

uses a concept called probabilistic relational coupling, as relational
postconditions on memories (module variables and procedure results)
need to be lifted to relations on distributions over memories

* But in practice one can think and work more informally

OPLSS 2024
Alley Stoughton

15

EasyCrypt Introduction

* E.g., If we have proved a relational judgement
equiv [M.f ~ N.g : true ==> Q]

E and F are memory predicates for M. f and N. g, respectively, and we
can prove the Ambient Logic implication

Q => E{1} <=> F{2}
then we can conclude the Ambient Logic formula
Pr(M.f() @ & : E] = Pr[N.g() @ &m : F]

OPLSS 2024
Alley Stoughton

16

EasyCrypt Introduction

* [n our example, this lets us go from

Llemma M_N_equiv :

equiv[M.f ~ N.f :

to

true ==> res{1} = res{2}].

lemma M N true &m :

PriM.f() @ &m :

Llemma N true &m :

res] = PrIN.f() @ &m : res].

PriN.f() @ &m : res] = 1%r / 2%r.

OPLSS 2024
Alley Stoughton

17

EasyCrypt Introduction

* |In the key step of proving

Llemma M_N_equiv :
equiv[M.f ~ N.T : true ==> res{l} = res{i2}].

we have the following relational goal.

OPLSS 2024
Alley Stoughton

18

EasyCrypt Introduction

Current goal

&1 (left) : {b : bool}

& (right) : 1bl, b2 : bool; the value of b1 inN. T

was already chosen
pre = true

b <¢ {0,1} (1) b2 <$ {0,1}

post = b{l} = bl{2} ™ b2{2}

OPLSS 2024
Alley Stoughton

19

EasyCrypt Introduction

» We can apply the two-sided rnd tactic with isomorphism (fun x => x
A b14{2}) on the distribution {0, 1}, pushing the random

aSSignmentS into the postcondition: like all other tactics, the rnd tactic has
been proven sound according to the
Current goal validity of relational judgements

&1 (left) : {b : bool}
& (right) : {bl, b2 : bool}

pre = true

post =
(forall (b2R : bool), b2R \in {0,1} => b2R = b2R ™ bl1l{2} ™ bl{2}) &&
forall (bL : bool),

bL \1n {0,1} =>
= bL AN b1{2} ™ bl{2} &&

bl1{2} ~ (bL ™ bl{2})

O
-
[l

OPLSS 2024 20
Alley Stoughton

EasyCrypt Introduction

* [n the supplementary material for my lectures, you can find slide decks
comprising an example-based introduction to EasyCrypt

* The slides were written for a course | co-teach at Boston University

* [n the rest of this lecture and my following lectures, I'm not going to work
with formal proofs in EasyCrypt, but will instead emphasize the big ideas

* But | may do some live coding at the ends of lectures, time-permitting

* And I'll post a few EasyCrypt exercises on slack, which you can
optionally work on — and ask me questions about

OPLSS 2024 21
Alley Stoughton

Cryptographic Security

* Cryptographic schemes (e.g., encryption) and protocols (e.g., key-
Iexchange) can be specified at a high-level in EasyCrypt's programming
anguage

* They generally make use of randomness, which can be modeled by
random assignments from distributions.

* When these high-level specifications are implemented, this
randomness must be realized using pseudorandom number
generators, whose seeds make use of randomness from the
underlying operating system or hardware

» There is work (e.g., Jasmin, https://formosa-crypto.qgitlab.io/projects/) on
formally connecting high-level EasyCrypt code with efficient low-level

Implementations

OPLSS 2024 29
Alley Stoughton

https://formosa-crypto.gitlab.io/projects/

Example 1: Symmetric Encryption

* |n our first example, we will see how we can:

» define symmetric encryption out of randomness plus a pseudorandom
function (PRF);

 specify security for this scheme (indistinguishability under chosen
plaintext attack, IND-CPA); and

. Brlg\F/e security of this scheme, using a reduction to the security of the

* We will employ a form of the real/ideal paradigm that doesn't use a
simulator

» But the top-level security theorem will use an indistinguishability game,
rather than the real/ideal paradigm

OPLSS 2024 23
Alley Stoughton

Example 1

* The EasyCrypt code for this example can be found on GitHub:

https://github.com/alleystoughton/EasyTeach

OPLSS 2024
Alley Stoughton

24

https://github.com/alleystoughton/EasyTeach

Symmetric Encryption Schemes

* QOur treatment of symmetric encryption schemes is parameterized by
three types:

type key. (x encryption keys, key_len bits)
type text. (x plaintexts, text_len bits x)

type cipher. (% ciphertexts - scheme specific x)

* An encryption scheme is a stateless implementation of this module
interface:

module type ENC = {
proc key_gen() : key (x key generation)
proc enc(k : key, x : text) : cipher (% encryption x)

proc dec(k : key, c : cipher) : text (x decryption)

OPLSS 2024
Alley Stoughton

25

Scheme Correctness

returns true with probability 1 for all arguments:
Enc : ENC) = {

proc main(x : text) : bool = {

* An encr¥ption scheme is correct if and only if the following procedure
(

module Cor

var k : key; var c : cipher; var y : text,;
k <@ Enc.key gen();
Cc <@ Enc.enc(k, Xx):
y <@ Enc.dec(k, c¢);

return X = vy,

}.

» The module Cor is parameterized (may be applied to) an arbitrary
encryption scheme, Enc

OPLSS 2024
Alley Stoughton

26

Encryption Oracles

* To define IND-CPA security of encryption schemes, we need the notion
of an encryption oracle, which both the adversary and IND-CPA game
will interact with:

module type EO = {
(* initialization - generates key)
proc init() : unit
(x encryption by adversary before game's encryption x)
proc enc_pre(x : text) : cipher
(*x one—time encryption by game x)
proc genc(x : text) : cipher
(x encryption by adversary after game's encryption x)

proc enc_post(x : text) : cipher

OPLSS 2024
Alley Stoughton

27

Standard Encryption Oracle

* Here is the standard encryption oracle, parameterized by an encryption
scheme, Enc:

module EncO (Enc : ENC) : EO = {
var key : key
var ctr_pre : 1int

var ctr_post : 1int

proc init() : unit = {
key <@ Enc.key gen();

ctr_pre <= 0; ctr_post <- 0;

OPLSS 2024
Alley Stoughton

28

Standard Encryption Oracle

proc enc_pre(x : text) : cipher = {
var ¢ : cipher;
if (ctr_pre < limit pre) {
ctr_pre <-— ctr_pre + 1,;
c <@ Enc.enc(key, x);
}
else {
c <— ciph_def; (% default result)

h

return c;

OPLSS 2024
Alley Stoughton

29

Standard Encryption Oracle

proc genc(x : text) : cipher = {
var c : cilpher;
C <@ Enc.enc(key, x);

return c;

OPLSS 2024
Alley Stoughton

30

Standard Encryption Oracle

proc enc_post(x : text) : cipher = {
var c : cipher;
if (ctr_post < limit_post) {
ctr_post <- ctr_post + 1;
c <@ Enc.enc(key, x);
I3
else {
c <— ciph_def; (x default result)

¥

return c;

OPLSS 2024
Alley Stoughton

31

Encryption Adversary

* An encryption adversary is parameterized by an encryption oracle:
module type ADV (EO : EO) = {

(x choose a pair of plaintexts, x1/x2 x)

proc choose() : text x text {EO.enc_pre}

(x given ciphertext ¢ based on a random boolean b
(the encryption using EO.genc of x1 if b = true,
the encryption of x2 if b = false), try to guess b
*)
proc guess(c : cipher) : bool {EO.enc_post}
}.
* Adversaries may be probabilistic

OPLSS 2024
Alley Stoughton

32

IND-CPA Game

» The IND-CPA Game is parameterized by an encryption scheme and an
encryption adversary:

module INDCPA (Enc : ENC, Adv : ADV) = {

module EO = EncO(Enc) (x make EO from Enc)
module A = Adv(EO) (x connect Adv to EO)
proc main() : bool = {

var b, b' : bool; var x1, x2 : text; var c : cipher;

EO.init(); (x initialize EO x)

(x1, x2) <@ A.choose(): (x let A choose x1/x2 *)

b <$ {0,1}; (x choose boolean b x)

C <@ EO.genc(b ? x1 : x2); (% encrypt x1 or x2 x)

b' <@ A.guess(c); (x let A guess b from c)

return b = b'; (x see if A won x)

OPLSS 2024
Alley Stoughton

IND-CPA Game

<

OPLSS 2024
Alley Stoughton

34

IND-CPA Game

 |f the value b’ that Adv returns is independent of the random boolean
b, then the probability that Adv wins the game will be exactly 1/2

e E.g., if Adv always returns true, it'll win half the time

* The question is how much better it can do—and we want to prove that it
can't do much better than win half the time

» But this will depend upon the quality of the encryption scheme

* An adversary that wins with probability greater than 1/2 can be
converted into one that /oses with that probability, and vice versa. WWhen
formalizing security, it's convenient to upper-bound the distance
between the probability of the adversary winning and 1/2

OPLSS 2024
Alley Stoughton

35

IND-CPA Security

* |n our security theorem for a given encryption scheme Enc and
adversary Adv, we prove an up_Fer bound on the absolute value of the
difference between the probability that Adv wins the game and 1/2:

“|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| <= .. Adv ..

 |deally, we'd like the upper bound to be 0, so that the probability that
Enc wins is exactly 1/2, but this won't be possible

* The upper bound may also be a function of the number of bits
text_Llenin text and the encryption oracle limits Limit pre and
Limit_post

OPLSS 2024
Alley Stoughton

36

IND-CPA Security

* Q: Because the adversary can call the encryption oracle with the
plaintexts x1/x> it goes on to choose, why isn't it impossible to define a
secure scheme?

* A: Because encryption can (must!) involve randomness.

* Q: What is the rationale for letting the adversary call enc_pre and
enc_post at all?

* A: It models the possibility that the adversary may be able to influence
which plaintexts are encrypted

* Q: What is the rationale for limiting the number of times enc_pre and
enc_post may be called?

* A: There will probably be some limit on the adversary’s influence on
what Is encrypted

OPLSS 2024 37
Alley Stoughton

Pseudorandom Functions

* QOur pseudorandom function (PRF) is an operator F with this type:
op F : key —> text —> text.

» For each value k of type key, (F k) is a function from text to text

« Since key is a bitstring of length key len, then there are at most
2key_len of these functions

 |f we wanted, we could try to spell out the code for F, but we choose to
keep F abstract

» We will talk about the "goodness” of F using the real/ideal paradigm

OPLSS 2024
Alley Stoughton

38

Pseudorandom Functions

« We will assume that dtext (dkey) is a sub-distribution on text (key)
that is a distribution (is “lossless”), and where every element of text
(key) has the same non-zero value:

op dtext : text distr.
op dkey : key distr.

OPLSS 2024
Alley Stoughton

39

Pseudorandom Functions

* A random function is a module with the following interface:
module type RF = {

(x initialization x)

proc init() : unit

(x application to a text x)

proc f(x : text) : text

OPLSS 2024
Alley Stoughton

40

Pseudorandom Functions

e Here is a random function made from our PRF F:

module PRF : RF = {
var key : key
proc init() : unit = {
key <$ dkey;
}

oroc f(x : text) : text = { The “real” version
var y : text,
y <— F key X;

return vy,

OPLSS 2024
Alley Stoughton

41

Pseudorandom Functions

e Here is a random function made from true randomness:

module TRF : RF = {

(x mp is a finite map associating texts with texts x)
var mp : (text, text) fmap

proc init() : unit = {
mp <- empty; (% empty map *)
}

proc f(x : text) : text = { The “ideal” version
var y : text;
if (! x \in mp) A (x give X a random value in x)
y <$ dtext; (x mp if not already in mp's domain)
mp. [x] <- vy;
}
return oget mp.[x]; (x return value of x in mp x)
y (x mp.[x] is: None if x is not in mp’s domain,)
T (x and Some z if z is the value of x in mp)

OPLSS 2024
Alley Stoughton

42

Pseudorandom Functions

* A random function adversary is parameterized by a random function
module:

module type RFA (RF : RF) = {
proc main() : bool {RF.f}

}.

OPLSS 2024
Alley Stoughton

43

Pseudorandom Functions

» Here is the random function game:

module GRF (RF : RF, RFA : RFA) = {
module A = RFA(RF)
proc main() : bool = {
var b : bool:
RF.init();
b <@ A.main();
return b;

}.

* A random function adversary RFA tries to tell the PRF and TRF apart, by
returning true with different probabilities

OPLSS 2024
Alley Stoughton

44

Pseudorandom Functions

 Our PRF F is “good” if and only if the following is small, whenever RFA
IS limited in the amount of computation it may do (maybe we say it runs
iIn polynomial time):
" |Pr[GRF(PRF, RFA).main() @ &m : res] -
PrIGRF(TRF, RFA).main() @ &m : res]|

 RFA must be limited, because there will typically be many more distinct
maps from text to text than functions of the form (F "k), where K is
a key (there are at most 2key_ten such functions)

 Since text Llen is the number of bits in text, there will be 2text_len

"_21t5g<1t7_)1e”6istinct maps from text to text (e.g., 28 = 256, 28 A 28

* Thus, with enough running time, RFA may be able to tell with

reasonable probability if it's interacting with a PRF random function or
a true random function

OPLSS 2024
Alley Stoughton

Our Symmetric Encryption Scheme

* \We construct our encryption scheme Enc out of F:

(+~) : text —> text —> text (% bitwise exclusive or x)

type cipher = text x text. (% ciphertexts x)

module Enc : ENC = {
proc key gen() : key = {
var k : key;
K <$ dkey;

return k;

OPLSS 2024
Alley Stoughton

46

Our Symmetric Encryption Scheme

proc enc(k : key, x : text) : cipher = {
var u : text;
u <$ dtext;
return (u, x +~ F k u);

}

proc dec(k : key, c : cipher) : text = {

var u, v : text;
(u, v) <— c;
return v +~ F k u:

OPLSS 2024
Alley Stoughton

47

Correctness

» Suppose that enc(k, x) retunsc=(u, x +~ F k u), where u
was randomly chosen

e Thendec(k, c) returns (x + F k u) + F k u=x

OPLSS 2024
Alley Stoughton

48

Next Lecture

» At the beginning of Lecture 2, we'll continue with Example 1:
» Reviewing the material from today

» Considering an adversarial attack strategy against our scheme, and
what it tells us about the statement of our security theorem

» Giving a high-level sketch of the proof of our security theorem

OPLSS 2024
Alley Stoughton

49

