The Real/Ideal Paradigm
Lecture 1

Alley Stoughton

Boston University

Oregon Programming Languages Summer School
June 3–13, 2024
Boston University
Security

- Security is about protecting system components *from each other*.

![Diagram showing interactions between components]

- Honest
- Malicious
- Client
- Client
Security Enforcement

• Protection mechanisms: Cryptography
 • (hopefully good) randomness
 • (hopefully) intractable mathematical problems
 • (hopefully) unpredictable complexity (e.g., hash functions)

\[\begin{align*}
x & \rightarrow y \\
? & \rightarrow y \\
\text{collision resistance} & \quad \text{hashing} & \quad \text{pre-image resistance}
\end{align*} \]
Security Enforcement

• Protection mechanisms: PL Security
• unforgeable references to objects on heap
• data abstraction
• Can be used to implement dynamic information flow control and access control
Security Enforcement

• Protection mechanisms: Resource Managers
• resources held by mangers (e.g., operating systems)
• referred to via per-client (forgeable, e.g., integers) resource descriptors
But how do we define security?

One answer is to employ the real/ideal paradigm of theoretical cryptography

![Diagram showing a real/ideal paradigm with honest and malicious clients.]
Real/Ideal Paradigm

- Security means Adversary can’t tell real and ideal systems apart.

Diagram:
- Adversary
 - real system
 - ideal system
 - H
 - M
 - Simulator
 - M
 - Ideal Functionality
 - leakage

Text:
- Simulator
 - returns boolean judgement
 - prescribes honest behavior
 - honest behavior
 - honest behaviour
In these lectures, we will consider three applications of the real/ideal paradigm:

- In the form just presented, also known as simulation-based security.
- Two will be related to the EasyCrypt proof assistant.
- The third will be situated in two functional languages:
 - Concurrent Haskell + the LIO dynamic information flow control library.
 - Concurrent ML + access control built from data abstraction.
- My thesis is that the real/ideal paradigm is applicable much more generally than just in cryptography.
EasyCrypt Introduction

• EasyCrypt (https://github.com/EasyCrypt/easycrypt) is an interactive proof assistant for reasoning about probabilistic imperative programs, including ones involving black-box code

• Its object programming language consists of:
 • statements, including conditionals, while loops, ordinary assignments, and random assignments from probability (sub-)distributions—plus procedure calls
 • modules consisting of procedures plus persistent variables (state), possibly parameterized by black box code
EasyCrypt Introduction

- EasyCrypt has four program logics:
 - A Hoare Logic for partial correctness
 - A probabilistic Hoare Logic (pHL) for bounding the probability that procedures terminate with events holding
 - A probabilistic Relational Hoare Logic (pRHL) for relational reasoning
 - A classical higher-order Ambient Logic for doing ordinary mathematics and connecting judgments from the other logics
EasyCrypt Introduction

• Proofs of lemmas are carried out using tactics in a style similar to that of Coq (specifically SSReflect)

• Theories combine mathematical definitions, module definitions and sequences of lemmas and their proofs

• Theory parameters can be instantiated via “cloning”, in which case EasyCrypt makes one prove any axioms as lemmas
module M = {
 proc f() : bool = {
 var b : bool;
 b <$ {0,1}; (* sample a random boolean *)
 return b;
 }
}.

module N = {
 proc f() : bool = {
 var b1, b2 : bool;
 b1 <$ {0,1}; b2 <$ {0,1};
 return b1 ^^ b2; (* exclusive or *)
 }
}.
• Semantics for PL given via a denotational semantics using a probability monad

• Can be pictured as tree, where the nodes are basic instructions, with edges from random assignments labeled by chosen values and probabilities

• Can have infinite branches with probability 0

Execution of $N.f$
• We can use pHL to prove that running \(M.f \) returns \texttt{true} exactly half the time:

\[
\text{lemma M_true \&m : } \Pr[M.f() @ \&m : \text{res}] = \frac{1\%r}{2\%r}.
\]

• Then we can use pRHL to prove this relational judgement:

\[
\text{lemma M_N_equiv : } \equiv[M.f \sim N.f : \text{true} \implies \text{res}\{1\} = \text{res}\{2\}].
\]
EasyCrypt Introduction

• Understanding the definition of the validity of relational judgements

\[
equiv \ [M.f \sim N.g : P \implies Q]
\]

uses a concept called \textit{probabilistic relational coupling}, as relational postconditions on memories (module variables and procedure results) need to be lifted to relations on distributions over memories

• But in practice one can think and work more informally
• E.g., if we have proved a relational judgement

equiv \[M.f \sim N.g : \text{true} \implies Q\]

\(E\) and \(F\) are memory predicates for \(M.f\) and \(N.g\), respectively, and we can prove the Ambient Logic implication

\(Q \implies E\{1\} \iff F\{2\}\)

then we can conclude the Ambient Logic formula

\(\text{Pr}[M.f() @ \&m : E] = \text{Pr}[N.g() @ \&m : F]\)
• In our example, this lets us go from

```lean
lemma M_N_equiv :
equiv[M.f ~ N.f : true ==> res{1} = res{2}].
```

to

```lean
lemma M_N_true &m :
Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res].

lemma N_true &m : Pr[N.f() @ &m : res] = 1%r / 2%r.
```
In the key step of proving

\[
\text{lemma M_N_equiv :}
\\quad \text{equiv}[M.f \sim N.f : \text{true } \Rightarrow \text{res}\{1\} = \text{res}\{2\}].
\]

we have the following relational goal:
Current goal

&1 (left) : {b : bool}
&2 (right) : {b1, b2 : bool}

pre = true

b <$> {0,1} \quad (1) \quad b2 <$> {0,1}

post = b{1} = b1{2} \land b2{2}

the value of b1 in N.f was already chosen
EasyCrypt Introduction

- We can apply the two-sided \texttt{rnd} tactic with isomorphism (\texttt{fun x => x ^^ b1\{2\}}) on the distribution \{0,1\}, pushing the random assignments into the postcondition:

\[
\text{Current goal}
\]

\[
&1 \text{ (left) : } \{b : \text{bool}\} \\
&2 \text{ (right) : } \{b1, b2 : \text{bool}\}
\]

\[
\text{pre = true}
\]

\[
\text{post =}
\]

\[
(\forall (b2R : \text{bool}), b2R \in \{0,1\} \Rightarrow b2R = b2R ^^ b1\{2\} ^^ b1\{2\}) \&\&
\]

\[
(\forall (bL : \text{bool}), bL \in \{0,1\} \Rightarrow bL = bL ^^ b1\{2\} ^^ b1\{2\} \&\&
\]

\[
bL = b1\{2\} ^^ (bL ^^ b1\{2\})
\]

like all other tactics, the \texttt{rnd} tactic has been proven sound according to the validity of relational judgements
EasyCrypt Introduction

• In the supplementary material for my lectures, you can find slide decks comprising an example-based introduction to EasyCrypt
• The slides were written for a course I co-teach at Boston University
• In the rest of this lecture and my following lectures, I’m not going to work with formal proofs in EasyCrypt, but will instead emphasize the big ideas
• But I may do some live coding at the ends of lectures, time-permitting
• And I’ll post a few EasyCrypt exercises on slack, which you can optionally work on — and ask me questions about
Cryptographic Security

- Cryptographic schemes (e.g., encryption) and protocols (e.g., key-exchange) can be specified at a high-level in EasyCrypt’s programming language.
- They generally make use of randomness, which can be modeled by random assignments from distributions.
- When these high-level specifications are implemented, this randomness must be realized using pseudorandom number generators, whose seeds make use of randomness from the underlying operating system or hardware.
- There is work (e.g., Jasmin, https://formosa-crypto.gitlab.io/projects/) on formally connecting high-level EasyCrypt code with efficient low-level implementations.
In our first example, we will see how we can:

- define symmetric encryption out of randomness plus a pseudorandom function (PRF);
- specify security for this scheme (indistinguishability under chosen plaintext attack, IND-CPA); and
- prove security of this scheme, using a reduction to the security of the PRF.

We will employ a form of the real/ideal paradigm that doesn’t use a simulator.

But the top-level security theorem will use an indistinguishability game, rather than the real/ideal paradigm.
Example 1

• The EasyCrypt code for this example can be found on GitHub:

https://github.com/alleystoughton/EasyTeach
Symmetric Encryption Schemes

• Our treatment of symmetric encryption schemes is parameterized by three types:

 type key. (* encryption keys, key_len bits *)
 type text. (* plaintexts, text_len bits *)
 type cipher. (* ciphertexts – scheme specific *)

• An encryption scheme is a _stateless_ implementation of this module interface:

 module type ENC = {
 proc key_gen() : key (* key generation *)
 proc enc(k : key, x : text) : cipher (* encryption *)
 proc dec(k : key, c : cipher) : text (* decryption *)
 }.

Scheme Correctness

• An encryption scheme is *correct* if and only if the following procedure returns *true* with probability 1 for all arguments:

```plaintext
module Cor (Enc : ENC) = {
  proc main(x : text) : bool = {
    var k : key; var c : cipher; var y : text;
    k <@ Enc.key_gen();
    c <@ Enc.enc(k, x);
    y <@ Enc.dec(k, c);
    return x = y;
  }
}.
```

• The module *Cor* is parameterized (may be applied to) an arbitrary encryption scheme, *Enc*
Encryption Oracles

• To define IND-CPA security of encryption schemes, we need the notion of an encryption oracle, which both the adversary and IND-CPA game will interact with:

```ocaml
module type EO = {
    (* initialization - generates key *)
    proc init() : unit
    (* encryption by adversary before game's encryption *)
    proc enc_pre(x : text) : cipher
    (* one-time encryption by game *)
    proc genc(x : text) : cipher
    (* encryption by adversary after game's encryption *)
    proc enc_post(x : text) : cipher
}.
```
Here is the standard encryption oracle, parameterized by an encryption scheme, Enc:

```plaintext
module EncO (Enc : ENC) : EO = {
    var key : key
    var ctr_pre : int
    var ctr_post : int

    proc init() : unit = {
        key <$> Enc.key_gen();
        ctr_pre <- 0; ctr_post <- 0;
    }
}
```
proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <- @ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
}
proc genc(x : text) : cipher = {
 var c : cipher;
 c <-- Enc.enc(key, x);
 return c;
}
proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
}
Encryption Adversary

• An *encryption adversary* is parameterized by an encryption oracle:

```ocaml
module type ADV (EO : EO) = {
  (* choose a pair of plaintexts, x1/x2 *)
  proc choose() : text * text {EO.enc_pre}

  (* given ciphertext c based on a random boolean b
   (the encryption using EO.genc of x1 if b = true,
    the encryption of x2 if b = false), try to guess b
   *)
  proc guess(c : cipher) : bool {EO.enc_post}
}.
```

• Adversaries may be probabilistic
The IND-CPA Game is parameterized by an encryption scheme and an encryption adversary:

```
module INDCPA (Enc : ENC, Adv : ADV) = {
    module EO = Enc0(Enc)        (* make EO from Enc *)
    module A = Adv(EO)           (* connect Adv to EO *)
    proc main() : bool = {
        var b, b' : bool; var x1, x2 : text; var c : cipher;
        EO.init();                 (* initialize EO *)
        (x1, x2) <@ A.choose();    (* let A choose x1/x2 *)
        b <$ {0,1};                (* choose boolean b *)
        c <@ EO.genc(b ? x1 : x2); ( encrypt x1 or x2 *)
        b' <@ A.guess(c);          (* let A guess b from c *)
        return b = b';             (* see if A won *)
    }.
```
IND-CPA Game
IND-CPA Game

• If the value b' that Adv returns is independent of the random boolean b, then the probability that Adv wins the game will be exactly $1/2$

• E.g., if Adv always returns true, it’ll win half the time

• The question is how much better it can do—and we want to prove that it can’t do much better than win half the time

• But this will depend upon the quality of the encryption scheme

• An adversary that wins with probability greater than $1/2$ can be converted into one that loses with that probability, and vice versa. When formalizing security, it’s convenient to upper-bound the distance between the probability of the adversary winning and $1/2$
IND-CPA Security

• In our security theorem for a given encryption scheme Enc and adversary Adv, we prove an upper bound on the absolute value of the difference between the probability that Adv wins the game and $1/2$:

```
$|\Pr[\text{INDCPA}(\text{Enc}, \text{Adv}).\text{main}() @ &m : \text{res}] - 1/2| \leq ... \text{Adv} ...
```

• Ideally, we’d like the upper bound to be 0, so that the probability that Enc wins is exactly $1/2$, but this won’t be possible.

• The upper bound may also be a function of the number of bits text_len in text and the encryption oracle limits limit_pre and limit_post.
IND-CPA Security

• Q: Because the adversary can call the encryption oracle with the plaintexts x_1/x_2 it goes on to choose, why isn’t it impossible to define a secure scheme?
 • A: Because encryption can (must!) involve randomness.
• Q: What is the rationale for letting the adversary call `enc_pre` and `enc_post` at all?
 • A: It models the possibility that the adversary may be able to influence which plaintexts are encrypted
• Q: What is the rationale for limiting the number of times `enc_pre` and `enc_post` may be called?
 • A: There will probably be some limit on the adversary’s influence on what is encrypted
Our pseudorandom function (PRF) is an operator F with this type:

$\text{op } F : \text{key} \rightarrow \text{text} \rightarrow \text{text}.$

For each value k of type key, $(F \ k)$ is a function from text to text.

Since key is a bitstring of length key_len, then there are at most $2^{\text{key_len}}$ of these functions.

If we wanted, we could try to spell out the code for F, but we choose to keep F abstract.

We will talk about the “goodness” of F using the real/ideal paradigm.
We will assume that \texttt{dtext (dkey)} is a sub-distribution on \texttt{text (key)} that is a distribution (is “lossless”), and where every element of \texttt{text (key)} has the same non-zero value:

\begin{verbatim}
op dtext : text distr.
op dkey : key distr.
\end{verbatim}
A random function is a module with the following interface:

```ocaml
type RF = {
  (* initialization *)
  proc init() : unit
  (* application to a text *)
  proc f(x : text) : text
}.
```

Pseudorandom Functions
Pseudorandom Functions

Here is a random function made from our PRF F:

```ocaml
module PRF : RF = {
  var key : key
  proc init() : unit = {
    key <$> dkey;
  }
  proc f(x : text) : text = {
    var y : text;
    y <- F key x;
    return y;
  }
}.
```

The “real” version
Pseudorandom Functions

Here is a random function made from true randomness:

module TRF : RF = {
 (* mp is a finite map associating texts with texts *)
 var mp : (text, text) fmap
 proc init() : unit = {
 mp <- empty; (* empty map *)
 }
 proc f(x : text) : text = {
 var y : text;
 if (! x \in mp) { (* give x a random value in *)
 y <$ dtext; (* mp if not already in mp's domain *)
 mp.[x] <- y;
 }
 return oget mp.[x]; (* return value of x in mp *)
 } (* mp.[x] is: None if x is not in mp’s domain, *)
}. (* and Some z if z is the value of x in mp *)
Pseudorandom Functions

• A *random function adversary* is parameterized by a random function module:

```plaintext
module type RFA (RF : RF) = {
    proc main() : bool {RF.f}
}.
```
Pseudorandom Functions

• Here is the random function game:

```plaintext
module GRF (RF : RF, RFA : RFA) = {
  module A = RFA(RF)
  proc main() : bool = {
    var b : bool;
    RF.init();
    b <@ A.main();
    return b;
  }
}.

• A random function adversary RFA tries to tell the PRF and TRF apart, by returning true with different probabilities
```
Pseudorandom Functions

- Our PRF F is “good” if and only if the following is small, whenever RFA is limited in the amount of computation it may do (maybe we say it runs in polynomial time):

  ```
  \left| \Pr[\text{GRF(PR, RFA).main()} @ &m : \text{res}] - \Pr[\text{GRF(TRF, RFA).main()} @ &m : \text{res}] \right|
  ```

- RFA must be limited, because there will typically be many more distinct maps from text to text than functions of the form \((F k)\), where \(k\) is a key (there are at most \(2^{\text{key_len}}\) such functions)

- Since \(\text{text_len}\) is the number of bits in text, there will be \(2^{\text{text_len}} \cdot 2^{\text{text_len}}\) distinct maps from text to text (e.g., \(2^8 = 256, 2^8 \cdot 2^8 \approx 10^{617}\))

- Thus, with enough running time, RFA may be able to tell with reasonable probability if it’s interacting with a PRF random function or a true random function
Our Symmetric Encryption Scheme

• We construct our encryption scheme Enc out of F:

\((+^) : \text{text} \rightarrow \text{text} \rightarrow \text{text} \quad (* \text{bitwise exclusive or} *)\)

\(\text{type cipher = text * text. \quad (* \text{ciphertexts} *)}\)

module Enc : ENC = {
 proc key_gen() : key = {
 var k : key;
 k <$> dkey;
 return k;
 }
}
Our Symmetric Encryption Scheme

proc enc(k : key, x : text) : cipher = {
 var u : text;
 u <$> dtext;
 return (u, x +^ F k u);
}

proc dec(k : key, c : cipher) : text = {
 var u, v : text;
 (u, v) <- c;
 return v +^ F k u;
}.
Correctness

- Suppose that $\text{enc}(k, x)$ returns $c = (u, x \oplus^ F k u)$, where u was randomly chosen.
- Then $\text{dec}(k, c)$ returns $(x \oplus^ F k u) \oplus^ F k u = x$.
At the beginning of Lecture 2, we’ll continue with Example 1:

- Reviewing the material from today
- Considering an adversarial attack strategy against our scheme, and what it tells us about the statement of our security theorem
- Giving a high-level sketch of the proof of our security theorem