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• Security is about protecting system components from each other.

Security

2

Honest Malicious

Client Client



OPLSS 2024 
Alley Stoughton 

• Protection mechanisms: Cryptography 
• (hopefully good) randomness 
• (hopefully) intractable mathematical problems 
• (hopefully) unpredictable complexity (e.g., hash functions)

Security Enforcement
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• Protection mechanisms: PL Security 
• unforgeable references to objects on heap 
• data abstraction 
• Can be used to implement dynamic information flow control and access 

control

Security Enforcement
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• Protection mechanisms: Resource Managers 
• resources held by mangers (e.g., operating systems) 
• referred to via per-client (forgeable, e.g., integers) resource descriptors

Security Enforcement
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• But how do we define security? 
• One answer is to employ the real/ideal paradigm of theoretical 

cryptography

Defining Security
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• Security means Adversary can’t tell real and ideal systems apart

Real/Ideal Paradigm
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• In these lectures, we will consider three applications of the real/ideal 
paradigm 

• In the form just presented, also known as simulation-based security 
• Two will be related to the EasyCrypt proof assistant 
• The third will be situated in two functional languages: 
• Concurrent Haskell + the LIO dynamic information flow control library 
• Concurrent ML + access control built from data abstraction 

• My thesis is that the real/ideal paradigm is applicable much more 
generally than just in cryptography

Real/Ideal Paradigm
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• EasyCrypt (https://github.com/EasyCrypt/easycrypt) is an interactive 
proof assistant for reasoning about probabilistic imperative programs, 
including ones involving black-box code 

• Its object programming language consists of: 
• statements, including conditionals, while loops, ordinary assignments, 

and random assignments from probability (sub-)distributions—plus 
procedure calls 

• modules consisting of procedures plus persistent variables (state), 
possibly parameterized by black box code

EasyCrypt Introduction
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• EasyCrypt has four program logics: 
• A Hoare Logic for partial correctness 
• A probabilistic Hoare Logic (pHL) for bounding the probability that 

procedures terminate with events holding 
• A probabilistic Relational Hoare Logic (pRHL) for relational reasoning 
• A classical higher-order Ambient Logic for doing ordinary mathematics 

and connecting judgments from the other logics

EasyCrypt Introduction
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• Proofs of lemmas are carried out using tactics in a style similar to that of 
Coq (specifically SSReflect) 

• Theories combine mathematical definitions, module definitions and 
sequences of lemmas and their proofs 

• Theory parameters can be instantiated via “cloning”, in which case 
EasyCrypt makes one prove any axioms as lemmas

EasyCrypt Introduction
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module M = {
  proc f() : bool = {
    var b : bool;
    b <$ {0,1};  (* sample a random boolean *)
    return b;
  }
}.
module N = {
  proc f() : bool = {
    var b1, b2 : bool;
    b1 <$ {0,1}; b2 <$ {0,1};
    return b1 ^^ b2;  (* exclusive or *)
  }
}.

EasyCrypt Introduction
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• Semantics for PL given 
via a denotational 
semantics using a 
probability monad 

• Can be pictured as tree, 
where the nodes are 
basic instructions, with 
edges from random 
assignments labeled by 
chosen values and 
probabilities 

• Can have infinite 
branches with probability 
0

EasyCrypt Introduction

13

b1

b2

true 
.5

b2

true 
.5

true 
.5

false 
.5

false 
.5

false 
.5

.25 
false

.25 
true

.25 
false

.25 
true

Execution of N.f



OPLSS 2024 
Alley Stoughton 

• We can use pHL to prove that running M.f returns true exactly half the 
time: 

lemma M_true &m : 
  Pr[M.f() @ &m : res] = 1%r / 2%r. 

• Then we can use pRHL to prove this relational judgement: 

lemma M_N_equiv : 
  equiv[M.f ~ N.f : true ==> res{1} = res{2}]. 

EasyCrypt Introduction
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• Understanding the definition of the validity of relational judgements 

equiv [M.f ~ N.g : P ==> Q] 

uses a concept called probabilistic relational coupling, as relational 
postconditions on memories (module variables and procedure results) 
need to be lifted to relations on distributions over memories 

• But in practice one can think and work more informally

EasyCrypt Introduction
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• E.g., if we have proved a relational judgement 

equiv [M.f ~ N.g : true ==> Q] 

E and F are memory predicates for M.f and N.g, respectively, and we 
can prove the Ambient Logic implication 

Q => E{1} <=> F{2} 

then we can conclude the Ambient Logic formula 

Pr[M.f() @ &m : E] = Pr[N.g() @ &m : F]

EasyCrypt Introduction
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• In our example, this lets us go from 

lemma M_N_equiv : 
  equiv[M.f ~ N.f : true ==> res{1} = res{2}]. 

to 

lemma M_N_true &m : 
  Pr[M.f() @ &m : res] = Pr[N.f() @ &m : res]. 

lemma N_true &m : Pr[N.f() @ &m : res] = 1%r / 2%r. 

EasyCrypt Introduction
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• In the key step of proving 

lemma M_N_equiv : 
  equiv[M.f ~ N.f : true ==> res{1} = res{2}]. 

we have the following relational goal:

EasyCrypt Introduction
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Current goal 

----------------------------------------------------------- 

&1 (left ) : {b : bool} 

&2 (right) : {b1, b2 : bool} 

pre = true 

b <$  {0,1}                  (1)  b2 <$  {0,1}  

                 

post = b{1} = b1{2} ^^ b2{2} 

EasyCrypt Introduction

19

the value of b1 in N.f 
was already chosen



OPLSS 2024 
Alley Stoughton 

• We can apply the two-sided rnd tactic with isomorphism (fun x => x 
^^ b1{2}) on the distribution {0,1}, pushing the random 
assignments into the postcondition: 

Current goal 
------------------------------------------------------------------------ 
&1 (left ) : {b : bool} 
&2 (right) : {b1, b2 : bool} 

pre = true 

post = 
  (forall (b2R : bool), b2R \in {0,1} => b2R = b2R ^^ b1{2} ^^ b1{2}) && 
  forall (bL : bool), 
    bL \in {0,1} => 
    bL = bL ^^ b1{2} ^^ b1{2} && 
    bL = b1{2} ^^ (bL ^^ b1{2}) 

EasyCrypt Introduction
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• In the supplementary material for my lectures, you can find slide decks 
comprising an example-based introduction to EasyCrypt 

• The slides were written for a course I co-teach at Boston University 
• In the rest of this lecture and my following lectures, I’m not going to work 

with formal proofs in EasyCrypt, but will instead emphasize the big ideas 
• But I may do some live coding at the ends of lectures, time-permitting 
• And I’ll post a few EasyCrypt exercises on slack, which you can 

optionally work on — and ask me questions about

EasyCrypt Introduction
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• Cryptographic schemes (e.g., encryption) and protocols (e.g., key-
exchange) can be specified at a high-level in EasyCrypt’s programming 
language 

• They generally make use of randomness, which can be modeled by 
random assignments from distributions. 

• When these high-level specifications are implemented, this 
randomness must be realized using pseudorandom number 
generators, whose seeds make use of randomness from the 
underlying operating system or hardware 

• There is work (e.g., Jasmin, https://formosa-crypto.gitlab.io/projects/) on 
formally connecting high-level EasyCrypt code with efficient low-level 
implementations

Cryptographic Security
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• In our first example, we will see how we can: 
• define symmetric encryption out of randomness plus a pseudorandom 

function (PRF); 
• specify security for this scheme (indistinguishability under chosen 

plaintext attack, IND-CPA); and 
• prove security of this scheme, using a reduction to the security of the 

PRF 
• We will employ a form of the real/ideal paradigm that doesn’t use a 

simulator 
• But the top-level security theorem will use an indistinguishability game, 

rather than the real/ideal paradigm

Example 1: Symmetric Encryption
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• The EasyCrypt code for this example can be found on GitHub: 

https://github.com/alleystoughton/EasyTeach

Example 1
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• Our treatment of symmetric encryption schemes is parameterized by 
three types: 

type key.     (* encryption keys, key_len bits *) 
type text.    (* plaintexts, text_len bits *) 
type cipher.  (* ciphertexts - scheme specific *) 

• An encryption scheme is a stateless implementation of this module 
interface: 

module type ENC = { 
  proc key_gen() : key              (* key generation *) 
  proc enc(k : key, x : text) : cipher  (* encryption *) 
  proc dec(k : key, c : cipher) : text  (* decryption *) 
}. 

Symmetric Encryption Schemes
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• An encryption scheme is correct if and only if the following procedure 
returns true with probability 1 for all arguments: 

module Cor (Enc : ENC) = { 
  proc main(x : text) : bool = { 
    var k : key; var c : cipher; var y : text; 
    k <@ Enc.key_gen(); 
    c <@ Enc.enc(k, x); 
    y <@ Enc.dec(k, c); 
    return x = y; 
  } 
}. 

• The module Cor is parameterized (may be applied to) an arbitrary 
encryption scheme, Enc

Scheme Correctness

26
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• To define IND-CPA security of encryption schemes, we need the notion 
of an encryption oracle, which both the adversary and IND-CPA game 
will interact with: 

module type EO = { 
  (* initialization - generates key *) 
  proc init() : unit 
  (* encryption by adversary before game's encryption *) 
  proc enc_pre(x : text) : cipher 
  (* one-time encryption by game *) 
  proc genc(x : text) : cipher 
  (* encryption by adversary after game's encryption *) 
  proc enc_post(x : text) : cipher 
}. 

Encryption Oracles

27
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• Here is the standard encryption oracle, parameterized by an encryption 
scheme, Enc:

module EncO (Enc : ENC) : EO = { 
  var key : key 
  var ctr_pre : int 
  var ctr_post : int 

  proc init() : unit = { 
    key <@ Enc.key_gen(); 
    ctr_pre <- 0; ctr_post <- 0; 
  } 

Standard Encryption Oracle
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  proc enc_pre(x : text) : cipher = { 
    var c : cipher; 
    if (ctr_pre < limit_pre) { 
      ctr_pre <- ctr_pre + 1; 
      c <@ Enc.enc(key, x); 
    } 
    else { 
      c <- ciph_def;  (* default result *) 
    }   
    return c; 
  } 

Standard Encryption Oracle
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  proc genc(x : text) : cipher = { 
    var c : cipher; 
    c <@ Enc.enc(key, x); 
    return c; 
  } 

Standard Encryption Oracle
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  proc enc_post(x : text) : cipher = { 
    var c : cipher; 
    if (ctr_post < limit_post) { 
      ctr_post <- ctr_post + 1; 
      c <@ Enc.enc(key, x); 
    } 
    else { 
      c <- ciph_def;  (* default result *) 
    }   
    return c; 
  } 
}. 

Standard Encryption Oracle
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• An encryption adversary is parameterized by an encryption oracle: 
module type ADV (EO : EO) = { 
  (* choose a pair of plaintexts, x1/x2 *) 
  proc choose() : text * text {EO.enc_pre} 

  (* given ciphertext c based on a random boolean b 
     (the encryption using EO.genc of x1 if b = true, 
      the encryption of x2 if b = false), try to guess b  
  *) 
  proc guess(c : cipher) : bool {EO.enc_post} 
}. 

• Adversaries may be probabilistic 

Encryption Adversary
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• The IND-CPA Game is parameterized by an encryption scheme and an 
encryption adversary: 

module INDCPA (Enc : ENC, Adv : ADV) = { 
  module EO = EncO(Enc)        (* make EO from Enc *) 
  module A = Adv(EO)           (* connect Adv to EO *) 
  proc main() : bool = { 
    var b, b' : bool; var x1, x2 : text; var c : cipher; 
    EO.init();                 (* initialize EO *) 
    (x1, x2) <@ A.choose();    (* let A choose x1/x2 *) 
    b <$ {0,1};                (* choose boolean b *) 
    c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *) 
    b' <@ A.guess(c);          (* let A guess b from c *) 
    return b = b';             (* see if A won *) 
  }. 

IND-CPA Game
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IND-CPA Game
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• If the value b’ that Adv returns is independent of the random boolean 
b, then the probability that Adv wins the game will be exactly 1/2 

• E.g., if Adv always returns true, it’ll win half the time 

• The question is how much better it can do—and we want to prove that it 
can’t do much better than win half the time 

• But this will depend upon the quality of the encryption scheme 

• An adversary that wins with probability greater than 1/2 can be 
converted into one that loses with that probability, and vice versa. When 
formalizing security, it’s convenient to upper-bound the distance 
between the probability of the adversary winning and 1/2

IND-CPA Game
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• In our security theorem for a given encryption scheme Enc and 
adversary Adv, we prove an upper bound on the absolute value of the 
difference between the probability that Adv wins the game and 1/2: 

`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| <= … Adv … 

• Ideally, we’d like the upper bound to be 0, so that the probability that 
Enc wins is exactly 1/2, but this won’t be possible 

• The upper bound may also be a function of the number of bits 
text_len in text and the encryption oracle limits limit_pre and 
limit_post

IND-CPA Security
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• Q: Because the adversary can call the encryption oracle with the 
plaintexts x1/x2 it goes on to choose, why isn’t it impossible to define a 
secure scheme? 

• A: Because encryption can (must!) involve randomness. 
• Q: What is the rationale for letting the adversary call enc_pre and 
enc_post at all? 

• A: It models the possibility that the adversary may be able to influence 
which plaintexts are encrypted 

• Q: What is the rationale for limiting the number of times enc_pre and 
enc_post may be called? 

• A: There will probably be some limit on the adversary’s influence on 
what is encrypted

IND-CPA Security
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• Our pseudorandom function (PRF) is an operator F with this type: 
op F : key -> text -> text. 

• For each value k of type key, (F k) is a function from text to text 

• Since key is a bitstring of length key_len, then there are at most 
2key_len of these functions 

• If we wanted, we could try to spell out the code for F, but we choose to 
keep F abstract 

• We will talk about the “goodness” of F using the real/ideal paradigm 

Pseudorandom Functions
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• We will assume that dtext (dkey) is a sub-distribution on text (key) 
that is a distribution (is “lossless”), and where every element of text 
(key) has the same non-zero value: 

op dtext : text distr. 
op dkey  : key distr. 

Pseudorandom Functions
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• A random function is a module with the following interface: 
module type RF = { 

  (* initialization *) 

  proc init() : unit 

  (* application to a text *) 

  proc f(x : text) : text 

}. 

Pseudorandom Functions
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• Here is a random function made from our PRF F: 
module PRF : RF = { 
  var key : key 
  proc init() : unit = { 
    key <$ dkey; 
  } 
  proc f(x : text) : text = { 
    var y : text; 
    y <- F key x; 
    return y; 
  } 
}. 

Pseudorandom Functions
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• Here is a random function made from true randomness: 
module TRF : RF = { 
  (* mp is a finite map associating texts with texts *) 
  var mp : (text, text) fmap 
  proc init() : unit = { 
    mp <- empty;  (* empty map *) 
  } 
  proc f(x : text) : text = { 
    var y : text; 
    if (! x \in mp) {   (* give x a random value in *) 
      y <$ dtext;  (* mp if not already in mp's domain *) 
      mp.[x] <- y; 
    } 
   return oget mp.[x];  (* return value of x in mp *) 
  }  (* mp.[x] is: None if x is not in mp’s domain, *) 
}.   (* and Some z if z is the value of x in mp *) 

Pseudorandom Functions
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• A random function adversary is parameterized by a random function 
module: 

module type RFA (RF : RF) = { 
  proc main() : bool {RF.f} 
}. 

Pseudorandom Functions
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• Here is the random function game: 
module GRF (RF : RF, RFA : RFA) = { 
  module A = RFA(RF) 
  proc main() : bool = { 
    var b : bool; 
    RF.init(); 
    b <@ A.main(); 
    return b; 
  } 
}. 

• A random function adversary RFA tries to tell the PRF and TRF apart, by 
returning true with different probabilities 

Pseudorandom Functions
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• Our PRF F is “good” if and only if the following is small, whenever RFA 
is limited in the amount of computation it may do (maybe we say it runs 
in polynomial time): 

   `|Pr[GRF(PRF, RFA).main() @ &m : res] - 
     Pr[GRF(TRF, RFA).main() @ &m : res]| 

• RFA must be limited, because there will typically be many more distinct 
maps from text to text than functions of the form (F k), where k is 
a key (there are at most 2key_len such functions) 

• Since text_len is the number of bits in text, there will be 2text_len 
^ 2text_len distinct maps from text to text (e.g., 28 = 256, 28 ^ 28 
~= 10617) 

• Thus, with enough running time, RFA may be able to tell with 
reasonable probability if it’s interacting with a PRF random function or 
a true random function 

Pseudorandom Functions
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• We construct our encryption scheme Enc out of F: 

(+^) : text -> text -> text  (* bitwise exclusive or *) 

type cipher = text * text.  (* ciphertexts *) 

module Enc : ENC = { 
  proc key_gen() : key = { 
    var k : key; 
    k <$ dkey; 
    return k; 
  } 

Our Symmetric Encryption Scheme
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  proc enc(k : key, x : text) : cipher = { 
    var u : text; 
    u <$ dtext; 
    return (u, x +^ F k u); 
  } 

  proc dec(k : key, c : cipher) : text = { 
    var u, v : text; 
    (u, v) <- c; 
    return v +^ F k u; 
  } 
}. 

Our Symmetric Encryption Scheme
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• Suppose that enc(k, x) returns c = (u, x +^ F k u), where u 
was randomly chosen 

• Then dec(k, c) returns (x +^ F k u) +^ F k u = x 

Correctness
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• At the beginning of Lecture 2, we’ll continue with Example 1: 

• Reviewing the material from today 

• Considering an adversarial attack strategy against our scheme, and 
what it tells us about the statement of our security theorem 

• Giving a high-level sketch of the proof of our security theorem

Next Lecture
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