
Alley Stoughton

The Real/Ideal Paradigm
Lecture 3

Oregon Programming Languages Summer School
June 3–13, 2024
Boston University

Boston University

OPLSS 2024
Alley Stoughton

• Our second example of the Real/Ideal Paradigm is concerned with the
security of a three party private count retrieval protocol

• We’ll start this third lecture by reviewing where we got to on this
example in Lecture 2

Example 2: Private Count Retrieval (Review)

2

OPLSS 2024
Alley Stoughton

• The Private Count Retrieval (PCR) Protocol involves three parties:

• a Server, which holds a database

• a Client, which makes queries about the database

• an untrusted Third Party (TP), which mediates between the Server and
Client

• A database is one-dimensional: it consists of a list of elements

• Each query is also an element, and is a request for the count of the
number of times it occurs in the database

Private Count Retrieval Protocol

3

OPLSS 2024
Alley Stoughton

• Informally, the goal is for:

• Client to only learn the counts for its queries, not anything else about
the database (we’ll limit how many queries it can make)

• Server to learn nothing about the queries made by the Client other
than the number of queries that were made

• TP to learn nothing about the database and queries other than certain
element patterns

Security Goals for PCR

4

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

5

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

6

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

7

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

secrets are
bit strings of

length sec_len

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

8

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

9

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

random
shuffle

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

10

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

hash
elem/sec

pairs

tags are
bit strings of

length tag_len

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

11

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

12

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

13

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

hash
qry/sec

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

14

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

15

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

16

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

OPLSS 2024
Alley Stoughton

PCR Protocol Operation

17

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

final result

OPLSS 2024
Alley Stoughton

• E.g., suppose the original database was [0; 1; 1; 2] and the
queries are 1, 2 and 3

• The Server’s shuffled database might be [1; 0; 2; 1]

• TP will get a hashed database [t2; t1; t3; t2] and hash tags t2,
t3 and t4, and so will return to Client counts 2, 1 and 0 (assuming no
hash collisions)

Protocol Example

18

OPLSS 2024
Alley Stoughton

• Next, we’ll continue our treatment of Example 2:

• Considering the EasyCrypt formalization of the protocol and the real
and ideal games for each protocol party

• Giving a high-level sketch of the proof of our security against the three
parties

New Material

19

OPLSS 2024
Alley Stoughton

• Elements (type elem) may be anything

• Secrets (type sec) are bits strings of length sec_len

• Hash tags (type tag) are bit strings of length tag_len

• Hashing is done using a random oracle in which element/secret pairs
are hashed to hash tags

• Like the true random function of Example 1; memoizes answers in a
finite map

• Adversary can query the random oracle, but does not have direct
access to its map

Elements, Secrets and Hashing in EasyCrypt

20

OPLSS 2024
Alley Stoughton

type db = elem list. type hdb = tag list.

…
type server_view = server_view_elem list.
type tp_view = tp_view_elem list.
type client_view = client_view_elem list.

module type ENV = {
 proc init_and_get_db() : db option
 proc get_qry() : elem option
 proc put_qry_count(cnt : int) : unit
 proc final() : bool
}.

PCR Protocol

21

Each party has a view
variable that records

everything it sees

OPLSS 2024
Alley Stoughton

module Protocol (Env : ENV) = {
 module Or = RO.Or
 …
 proc main() : bool = {
 var db_opt : db option; var b : bool;
 init_views(); Or.init();
 server_gen_sec(); client_get_sec();
 db_opt <@ Env.init_and_get_db();
 if (db_opt <> None) {
 server_hash_db(oget db_opt);
 tp_get_hdb();
 client_loop();
 }
 b <@ Env.final();
 return b;
 }
}.

PCR Protocol

22

OPLSS 2024
Alley Stoughton

proc client_loop() : unit = {
 var cnt : int; var tag : tag;
 var qry_opt : elem option;
 var not_done : bool <- true;
 while (not_done) {
 qry_opt <@ Env.get_qry();
 cv <- cv ++ [cv_got_qry qry_opt];
 if (qry_opt = None) {
 not_done <- false;
 } else {
 tag <@ Or.hash((oget qry_opt, client_sec));
 cnt <@ tp_count_tag(tag);
 cv <- cv ++
 [cv_query_count(oget qry_opt, tag, cnt)];
 Env.put_qry_count(cnt);
 }
 }
}

PCR Protocol

23

OPLSS 2024
Alley Stoughton

• We are modeling what is called semi-honest or honest-but curious
security

• In this model, the Adversary is given access to a given protocol party’s
view—the party’s data—but it is not allowed to modify that data

• The Adversary is also given access to the hash procedure of the random
oracle — this is different from having access to its map

• The Real and Ideal games for each protocol party are parameterized by
the Adversary

• The Adversary tries to learn more from the protocol’s view plus the hash
procedure’s view of the random oracle than it should

• At the end of the games, the Adversary returns a boolean judgement,
trying to make the probability it returns true be as different as possible
in the Real and Ideal games

Adversarial Model

24

OPLSS 2024
Alley Stoughton

• The Real Games for the Server, Third Party and Client are formed as
specializations of Protocol

• For a given party, we define the module type ADV of Adversaries for that
party

• In calls to the Adversary, the party’s current view is supplied

• The Real Game GReal is

• parameterized by Adv : ADV

• defined by giving Protocol an environment Env made out of Adv

Real Games

25

OPLSS 2024
Alley Stoughton

module type ADV(O : RO.OR) = {
 proc init_and_get_db(view : server_view) :
 db option {O.hash}
 proc get_qry(view : server_view) : elem option {O.hash}
 proc qry_done(view : server_view) : unit {O.hash}
 proc final(view : server_view) : bool {O.hash}
}.

• Adversary can do hashing when deciding which database and queries to
choose

• Queries are chosen one by one — adaptively
• qry_done is called with server view, which does not include the count

for the query
• Each time the Adversary is called, it can do hashing to try to increase its

knowledge

Example: Adversary for Server

26

OPLSS 2024
Alley Stoughton

module GReal(Adv : ADV) = {
 module Or = RO.Or
 module A = Adv(Or)

 module Env : ENV = {
 proc init_and_get_db() : db option = {
 var db_opt : db option;
 db_opt <@ A.init_and_get_db(Protocol.sv);
 return db_opt;
 }

 proc get_qry() : elem option = {
 var qry_opt : elem option;
 qry_opt <@ A.get_qry(Protocol.sv);
 return qry_opt;
 }

 proc put_qry_count(cnt : int) : unit = {
 A.qry_done(Protocol.sv);
 }

Example: Real Game for Server

27

OPLSS 2024
Alley Stoughton

 proc final() : bool = {
 var b : bool;
 b <@ A.final(Protocol.sv);
 return b;
 }
 }

 proc main() : bool = {
 var b : bool;
 b <@ Protocol(Env).main();
 return b;
 }
}.

Real Game for Server

28

OPLSS 2024
Alley Stoughton

• A party’s Ideal Game is also parameterized by a Simulator (in addition
to the Adversary)

• Simulator’s job is to convince the Adversary it’s interacting with the real
game: it must simulate the party’s view and the hashing procedure’s
view of the random oracle state

• Because we are working information-theoretically, when assessing the
information leakage from the Ideal Game to the Simulator (and thus
Adversary), we don’t have to scrutinize its Simulator

• It can’t learn more about the database or queries by brute force
computation

• In fact, in our EasyCrypt security theorems, the Simulators are
existentially quantified

Ideal Games

29

OPLSS 2024
Alley Stoughton

• When proving security against a protocol party, in connecting the real
and ideal games we sometimes make use of a reduction, which is itself
proved using a sequence of games (perhaps using a reduction, etc.).

Two Dimensional Sequences of Games

30

H1 H3H2

GReal GIdealG1 G2 G3

reduction

OPLSS 2024
Alley Stoughton

Reminder: Real Game for Server

31

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

Environment
discards count
before calling

Adversary

OPLSS 2024
Alley Stoughton

• What (if anything) can the Server learn about the queries and their
counts?

• We formalize this by asking what can be learned from the Server views
that are passed to the Adversary — plus the ability to run the hash
procedure of the random oracle

• We need to “forget” that the Adversary is choosing the queries, and so
clearly knows them.

• We can think that each time the Adversary is called, the Server is
woken up

• To answer and prove this, we need to formalize an Ideal Game

Real Game for Server

32

OPLSS 2024
Alley Stoughton

Ideal Game for Server

33

Simulator Client

Main

db

db res res

qry

done

no hashing

generates secret,
does shuffling,

hashing

Adversary

OPLSS 2024
Alley Stoughton

• The Simulator doesn’t directly learn anything about the queries, and so
the Server views it simulates can’t convey anything about them either

• And the query loop doesn’t modify the random oracle, so
experimentation with the random oracle won’t learn anything either

• But because the Server is woken up each iteration of the query loop, the
Server does learn the number of queries

Ideal Game for Server

34

OPLSS 2024
Alley Stoughton

• We are able to prove perfect security: Real/Ideal games equally likely to
return true:

lemma GReal_GIdeal :

 exists (Sim <: SIM{-GReal, -GIdeal}),

 forall (Adv <: ADV{-GReal, -GIdeal, -Sim}) &m,

 Pr[GReal(Adv).main() @ &m : res] =

 Pr[GIdeal(Adv, Sim).main() @ &m : res].

• The only challenge is dealing with the redundant hashing performed by
the Client in the Real but not the Ideal Game

• We remove it using a variation of a technique due to Benjamin Grégoire

Proof of Security Against Server

35

OPLSS 2024
Alley Stoughton

module type HASHING = {
 proc hash(inp : input) : output (* ordinary hashing *)
 proc rhash(inp : input) : unit (* redundant hashing *)
}.

module type HASHING_ADV(H : HASHING) = {
 proc main() : bool {H.hash H.rhash}
}.

Redundant Hashing

36

Two implementations of HASHING, both built from a random oracle
O:

• NonOptHashing (``non optimized hashing''), in which rhash
hashes its input, but discards the result

• OptHashing (``optimized hashing’'), where rhash does nothing

OPLSS 2024
Alley Stoughton

module GNonOptHashing(HashAdv : HASHING_ADV) = {
 module H = NonOptHashing(Or)
 module HA = HashAdv(H)
 proc main() : bool = {
 var b : bool;
 Or.init(); b <@ HA.main();
 return b;
 }
}.

module GOptHashing(HashAdv : HASHING_ADV) = {
 module H = OptHashing(Or)
 module HA = HashAdv(H)
 proc main() : bool = {
 var b : bool;
 Or.init(); b <@ HA.main();
 return b;
 }
}.

Redundant Hashing

37

OPLSS 2024
Alley Stoughton

lemma GNonOptHashing_GOptHashing
 (HashAdv <: HASHING_ADV{Or}) &m :
 Pr[GNonOptHashing(HashAdv).main() @ &m : res] =
 Pr[GOptHashing(HashAdv).main() @ &m : res].

Redundant Hashing

38

• Proof intuition: redundant hashing can be put off until it’s
superseded by hash or no longer necessary

• Proof uses EasyCrypt’s eager tactics

• To use in Server proof, we define a concrete adversary
HashAdv in such a way that the left side of the gap in the
sequence of games proof can be connected with
GNonOptHashing(HashAdv), and GOptHashing(HashAdv) can
be connected with the right side of the gap

OPLSS 2024
Alley Stoughton

Ideal Game for Third Party

39

Adversary

SimulatorServer Client

Main

db

db res res

hdb

tag

count

qry

done

Server/Client hash elems in private random oracle

OPLSS 2024
Alley Stoughton

• The Adversary is invoked with the TP’s view when the database and
queries are requested by the game and client loop

• In the Ideal Game, Adversary only learns patterns, not anything more
about the database and queries

• It doesn’t have access to the private random oracle used by Server/
Client

• So even though the database and queries were used to derive the
hashed database [t1; …; tn] and query tags s1, …, sm, these tags
were all randomly (but consistently) chosen, and so convey no
information about the particular elements

• And the Server’s random shuffling means it doesn’t learn anything
about the order of the database

Ideal Game for Third Party

40

OPLSS 2024
Alley Stoughton

• E.g., suppose the original database was [0; 1; 1; 2]

• The Server’s shuffled database might be [1; 0; 2; 1]
• In the Real Game, TP will get a hashed database [t2, t1, t3, t2],

where t1 = hash(0, sec), t2 = hash(1, sec) and t3 =
hash(2, sec) — for the shared Server/Client sec

• In the Ideal Game, TP will get a hashed database with the same
pattern, [s2; s1; s3; s2], but where the si have no connection with
hash or sec

• In order to tell the games apart, we can prove it has to guess sec, i.e.,
call hash with a pair whose second component is sec

Security Against Third Party

41

OPLSS 2024
Alley Stoughton

• To try to differentiate the games, the Adversary can pick a database with
a large number of distinct elements, where each element appears a
different number of times (e.g., [0; 1; 1; 2; 2; 2; …]).

• When given (in TP’s view) the hashed database that was created in the
Real or Ideal Game from shuffling the database and then hashing its
elements (either paired with sec in the random oracle, or in the private
random oracle), it can (assuming no hash collisions) match the resulting
tags t with their elements e.

• Given a particular (e, t) pair, it can search for a sec’ such that
hashing (e, sec’) results in t. When it finds one, it can check that the
rest of the hashed database is consistent with sec’. Otherwise it can try
another choice of sec’.

Security Against Third Party

42

OPLSS 2024
Alley Stoughton

• This process is guaranteed to succeed in the Real Game, it’s highly
unlikely to succeed in the Ideal Game

• In any event, if the Adversary never calls the random oracle with a pair
whose second component is sec, we can prove it will fail to distinguish
the Real and Ideal Games

Security Against Third Party

43

OPLSS 2024
Alley Stoughton

• To obtain a security theorem, we must limit (limit) the number of
distinct inputs the Adversary may hash

• The Server and Client are unrestricted

• We use a reduction to bridge the Real and Ideal Games — one proved
with up-to-bad reasoning — and so that makes us assume the
Adversary’s procedures are lossless (always terminating), and prove
that the Client Loop always terminates

– When we form GReal and GIdeal, we terminate the Client Loop after
qrys_max steps (in GReal, by returning None from the environment’s
get_qry procedure)

Proof of Security Against Third Party

44

OPLSS 2024
Alley Stoughton

• Here is the relevant part of the Environment for GReal:
 module Env : ENV = {
 var qrys_ctr : int
 ...
 proc get_qry() : elem option = {
 var qry_opt : elem option;
 qry_opt <@ A.get_qry(Protocol.tpv);
 if (qry_opt <> None) {
 if (qrys_ctr < qrys_max) { qrys_ctr <- qrys_ctr + 1; }
 else { qry_opt <- None; }
 }
 return qry_opt;
 }
 ...
 }

Proof of Security Against Third Party

45

OPLSS 2024
Alley Stoughton

• We reduce security against TP to the security of a new abstraction, “Secrecy
Random Oracles”

• They offer limited (limit) hashing of element/secret pairs (what Adversary
does), as well as unlimited hashing of elements (what Server and Client do)

• “Dependent” implementation with single map, where hashing an element is
same as hashing pair of it and sec — connection with Real Game

• “Independent” implementation with separate maps — connection with Ideal
Game

• We prove that a Secrecy Adversary can only tell the games involving the
two implementations apart if it does limited hashing of a pair whose second
component is sec

Third Party Proof

46

OPLSS 2024
Alley Stoughton

• The Secrecy Random Oracles proof is carried out using up-to-bad
reasoning

• As long as the Secrecy Adversary doesn’t do limited hashing with a pair
with right side sec (the “bad” event), we can maintain an invariant:

• keeping the non-sec-part of the map of the dependent implementation
in sync with the non-sec-part of the elem * sec map of the
independent implementation; and

• keeping the sec-part of the map of the dependent implementation in
sync with the elem map of the independent implementation

Third Party Proof

47

OPLSS 2024
Alley Stoughton

• We reduce the upper-bounding of the probability of the bad event
holding to a lemma about another new abstraction, “Secret Guessing
Oracles”

• It gives the adversary limited (limit) number of chances to guess
sec — but it doesn’t get any feedback during the guessing

• EasyCrypt’s pHL is used to upper bound the probability of the
adversary winning by

limit / 2sec_len

• Both the Secrecy Random Oracles and Secret Guessing Oracles
definitions and proofs are packaged up into reusable theories

Third Party Proof

48

OPLSS 2024
Alley Stoughton

• The theorem for security against the TP upper-bounds the distance
between the probabilities of the Real and Ideal Games returning true by

limit / 2sec_len

Third Party Proof

49

OPLSS 2024
Alley Stoughton

Reminder: Real Game for Client

50

Environment

TPServer Client

Main

sec

db

db res res

hdb

tag

count

qry

count

Environment
discards count
before calling

Adversary

OPLSS 2024
Alley Stoughton

Ideal Game for Client

51

Adversary

SIG Simulator

Main

db

db res res

qry

done

qry/count

done

SIG = Simulator’s
Interface to Game

generates secret,
does hashing

no shuffling or
hashing, uses
elems counts

map

OPLSS 2024
Alley Stoughton

• The Adversary can distinguish the Real and Ideal Games by causing or
forcing a hash collision

• If it can find distinct elem and elem’ such that (elem, sec) and
(elem’, sec) hash to the same hash tag, tag, then it can let db =
[elem] and the only query be elem’

• In Real Game, count will be
1

• In Ideal Game, count will be
0

• It can let db be a list of distinct elements of greater length than number
of distinct hash tags, and work through that same list of elements as
queries

Proof of Security Against Client

52

OPLSS 2024
Alley Stoughton

• Thus we must impose a hashing budget on the Adversary — not just on the
hashing it does directly, but also on the hashing it makes Server and Client do:

• adv_budget — distinct hashing done by Adversary

• db_uniqs_max — maximum number of distinct elements in database

• qrys_max — maximum number of queries

• budget = adv_budget + db_uniqs_max + qrys_max
• If Adversary doesn’t respect budget, we terminate game early (we terminate

the Client Loop after qrys_max steps)

• Because the proof uses up-to-bad reasoning, we need that Adversary is
always terminating and Client Loop terminates

Proof of Security Against Client

53

OPLSS 2024
Alley Stoughton

• We have Budgeted Random Oracles, which provide:
• separate budgeted hashing procedures for the Adversary, Server and

Client
• set a flag when over budget, but keep working
• for Adversary and Server, only distinct inputs matter, but for Client its

the number of hashes
• ordinary (unrestricted) hashing (which the Adversary uses before

making its final judgement)
• There are two implementations of budgeted random oracles:
• a “collision-possible” one in which hash collisions may occur
• a “collision-free-while-within-budget” one in which hash collisions don’t

happen if only budgeted hashing is done and all budgets respected

Proof of Security Against Client

54

OPLSS 2024
Alley Stoughton

• Each move back and forth between the collision-possible and collision-
free-while-within-budget versions incurs a penalty of

(budget * (budget - 1)) / 2tag_len + 1

• This is proved using up-to-bad reasoning, where the “bad” event is when
a collision occurs

• EasyCrypt’s failure event lemma and pHL are used to bound the
probability that failure occurs

• The proof is packaged into a reusable theory

Proof of Security Against Client

55

OPLSS 2024
Alley Stoughton

• Move to collision-possible budgeted random oracle
• Move to collision-free-while-within-budget random oracle
• Use complex relational invariant to switch to Server, TP and Client

using an elements counts map instead of hashed database (but Server
still does hashing)

• Switch back to collision-possible budgeted random oracle
• Switch back to ordinary random oracle (Adversary still subjected to

budget)
• Get rid of Server’s hashing, which is now seen to be redundant
• Show that computing elements counts map works out same without first

shuffling database
• Final refactoring

Client Proof

56

OPLSS 2024
Alley Stoughton

• Theorem for security against the Client upper bounds the distance
between the probabilities of the Real and Ideal Games returning true by

(budget * (budget - 1)) / 2tag_len

 which is two times
(budget * (budget - 1)) / 2tag_len + 1

Client Proof

57

OPLSS 2024
Alley Stoughton

• Size of EasyCrypt formalization:

– About 380 lines of theorem statements and relevant definitions
(random oracles, protocol definition, etc.)

– About 5,275 lines of proof (which one can trust EasyCrypt to check)

• Formalizing Protocol once — parameterized by Environment — and
then specializing to Real Games works well

• Because we work information-theoretically, Simulators are existentially
quantified (so part of proof, not specification)

• Removing redundant hashing was crucial, and our version of Grégoire’s
technique was proved once and used twice

Summary/Lessons Learned

58

OPLSS 2024
Alley Stoughton

• Use of budgeted random oracles in Client proof let us do the hard step
of the proof without worrying about hash collisions

• EasyCrypt made it easy to obtain concrete upper bounds in terms of
game parameters on the distances between real and ideal games

Summary/Lessons Learned

59

OPLSS 2024
Alley Stoughton

• Q: In the PCR Protocol, does the Client always get correct counts for its
queries?

• A: Not in the highly unlikely event of hash collisions

• Q: Why do we let the Adversary choose the database and queries?

• A: This models how it may have inside information about what
elements (e.g., people’s names) are likely to appear in the database or
in queries

• E.g., TP, when analyzing the tags it sees, might guess that a tag
appearing numerous times corresponds to “Alice”, based on
knowledge of an organization. But it won’t be able to confirm that
guess.

Discussion

60

OPLSS 2024
Alley Stoughton

• Q: Is it realistic to assume two parties can communicate, without the
other one eavesdropping?

• A: Yes. The Adversary works on behalf of a given party, and has no
special access to the network

Discussion

61

OPLSS 2024
Alley Stoughton

• Q: Are the restrictions we place on the Adversary realistic?

• A: Server:

• No restrictions

• A: TP:

• Limit on distinct hashes

• A: Client:

• Budget for Adversary’s distinct hashing

• Budget on number of distinct elements in database

• Budget on number of queries

Discussion

62

in reality, the
Adversary

doesn’t choose
the database

or queries

OPLSS 2024
Alley Stoughton

Questions about
Example 2?

Example 2: Private Count Retrieval

63

• In our final example, we’ll apply the Real/Ideal Paradigm to the security
of the two-player board game Battleship

• We’ll be looking at program security in Haskell with the LIO (Labeled IO
Information Flow Control) Library, and Concurrent ML with home-grown
access control — both of which are implemented using data abstraction

• We’ll define security in this non-probabilistic (but possibilistic, due to
thread scheduling) setting.

• And we’ll explain how we used the definition of security to audit our
Battleship implementations

• Joint work with former colleagues at MIT Lincoln Laboratory

Example 3: Battleship

64

Battleship Rules
Ship Placement

65

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Battleship Rules
Ship Placement

66

A B C D E F G H I J
A
B
C c c c c c
D
E
F
G
H
I
J

Carrier

Battleship Rules
Ship Placement

67

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G
H
I
J

Battleship

Battleship Rules
Ship Placement

68

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G s s s
H
I
J

Submarine

Battleship Rules
Ship Placement

69

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G s s s
H d
I d
J d

Destroyer

Battleship Rules
Ship Placement

70

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

Patrol
Boat

Battleship Rules
Shooting

71

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Battleship Rules
Shooting

72

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C
D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CG – “Miss”

Battleship Rules
Shooting

73

A B C D E F G H I J
A
B b
C c c c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CG – “Miss”

Battleship Rules
Shooting

74

A B C D E F G H I J
A
B b
C c c c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CB – “Hit”

Battleship Rules
Shooting

75

A B C D E F G H I J
A
B b
C c C c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CB – “Hit”

Battleship Rules
Shooting

76

A B C D E F G H I J
A
B b
C c C c c c b ★

D b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D
E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot DB – “Miss”

Battleship Rules
Shooting

77

A B C D E F G H I J
A
B b
C c C c c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot DB – “Miss”

Battleship Rules
Shooting

78

A B C D E F G H I J
A
B b
C c C c c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CC – “Hit”

Battleship Rules
Shooting

79

A B C D E F G H I J
A
B b
C c C C c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Shoot CC – “Hit”

Battleship Rules
Shooting

80

A B C D E F G H I J
A
B b
C c C C c c b ★

D ★ b
E b
F
G p s s s
H p d
I d
J d

A B C D E F G H I J
A
B
C ✚ ✚ ★

D ★

E
F
G
H
I
J

Player’s Board Opponent’s Shooting Record

Skipping Ahead …

Battleship Rules
Shooting

81

A B C D E F G H I J
A
B b
C c C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot CA – “Sank Carrier”

Battleship Rules
Shooting

82

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot CA – “Sank Carrier”

Battleship Rules
Shooting

83

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C ✚ ✚ ✚ ✚ ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Position Inference – Carrier

Battleship Rules
Shooting

84

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S s
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚

H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot GG – “Sank Submarine”

Battleship Rules
Shooting

85

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot GG – “Sank Submarine”

Battleship Rules
Shooting

86

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ d

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★

Player’s Board Opponent’s Shooting Record

Shoot JG – “Sank Destroyer”

Battleship Rules
Shooting

87

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Shoot JG – “Sank Destroyer”

Battleship Rules
Shooting

88

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H ✚

I ★ ✚

J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Position Inference – Destroyer

Battleship Rules
Shooting

89

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ ✚ ✚ S
H D
I ★ D
J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Position Inference – Submarine

Battleship Rules
Shooting

90

A B C D E F G H I J
A
B b
C C C C C C b ★

D ★ ★ b
E b ★

F
G ★ p S S S
H p D
I ★ D
J ★ ★ ★ D

A B C D E F G H I J
A
B
C C C C C C ★

D ★ ★

E ★

F
G ★ S S S
H D
I ★ D
J ★ ★ ★ D

Player’s Board Opponent’s Shooting Record

Program Architecture and Behavior

91

Referee

Player 1 Player 2

Server

Client 1 Client 2User 1 User 2

First Client to
connect to
Server gets to
shoot first

Referee holds
and updates
both Players’
boards

92

Trusted Referee

Referee

Player 1 Player 2

Server

• We implemented in Concurrent ML a trusted referee that holds and
updates both player’s boards, enforcing the rules of the game

• But we were also interested in reducing the trusted computing base
(TCB), by splitting the referee into mutually distrustful player interfaces

Splitting Referee into Mutually
Distrustful Player Interfaces (PIs)

93

Referee

Player 1 Player 2

Splitting Referee into Mutually
Distrustful Player Interfaces (PIs)

94

Player
Interface 1

Player
Interface 2

Referee

Player 1 Player 2

How do we define security against a malicious opponent PI?

PIs will rely
on some
trusted
infrastructure

Real Protocol

P1 P2

Theoretical Cryptography’s Real/Ideal Paradigm

95

Ideal Functionality

Adversary

S(P2)

Adversary

boolean judgment

security: real and ideal games have close to same
probability of returning true, for all adversaries

simulator

honest
party
inputs/
ouputs

malicious
party
inputs/
outputs

leakage

honest
party
inputs/
ouputs

simulated I/O

Referee

G M

Security Against Malicious PI (Tentative)

96

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: as scheduling is possibilistic, not
probabilistic, what do we want for security?

Referee

G M

Security Against Malicious PI (Tentative)

97

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: if there is an execution on one side
resulting in b, then there is an execution on the
other side also resulting in b

Referee

G M

Security Against Malicious PI (Tentative)

98

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: unfortunately, if M doesn’t follow the
protocol, the error behavior (termination) in the
two worlds can be different

Referee

G M

Security Against Malicious PI

99

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots, errors

order,
control,
exfiltration

security: instead, we propagate errors, and
model referee only yields a non-erroneous
result if simulator player says OK

OK or
error

order, board,
shots/result,
opponents’
shots, errors

• In the next lecture with we’ll start with review of:
• the program architecture of our secure battleship implementations in

Haskell/LIO and Concurrent ML
• our Real/Ideal Paradigm definition of security against a malicious player

interface
• Then we’ll survey the two implementations and consider how we used

our security definition to audit them

Example 3: Battleship

100

