
Alley Stoughton

The Real/Ideal Paradigm
Lecture 4

Oregon Programming Languages Summer School
June 3–13, 2024
Boston University

Boston University

• We’ll start this last lecture with a review of:
• the program architecture of our secure battleship implementations in

Haskell/LIO and Concurrent ML
• our Real/Ideal Paradigm definition of security against a malicious player

interface
• Then we’ll survey the two implementations and consider how we used

our security definition to audit them

Example 3: Battleship (Review)

2

Program Architecture and Behavior

3

Referee

Player 1 Player 2

Server

Client 1 Client 2User 1 User 2

First Client to
connect to
Server gets to
shoot first

Referee holds
and updates
both Players’
boards

4

Trusted Referee

Referee

Player 1 Player 2

Server

• We implemented in Concurrent ML a trusted referee that holds and
updates both player’s boards, enforcing the rules of the game

• But we were also interested in reducing the trusted computing base
(TCB), by splitting the referee into mutually distrustful player interfaces

Splitting Referee into Mutually
Distrustful Player Interfaces (PIs)

5

Referee

Player 1 Player 2

Splitting Referee into Mutually
Distrustful Player Interfaces (PIs)

6

Player
Interface 1

Player
Interface 2

Referee

Player 1 Player 2

How do we define security against a malicious opponent PI?

PIs will rely
on some
trusted
infrastructure

Referee

G M

Security Against Malicious PI (Tentative)

7

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: if there is an execution on one side
resulting in b, then there is an execution on the
other side also resulting in b

Referee

G M

Security Against Malicious PI (Tentative)

8

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots

order,
control,
exfiltration

security: unfortunately, if M doesn’t follow the
protocol, the error behavior (termination) in the
two worlds can be different

Referee

G M

Security Against Malicious PI

9

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

order, board,
shots/result,
opponents’
shots, errors

order,
control,
exfiltration

security: instead, we propagate errors, and
model referee only yields a non-erroneous
result if simulator player says OK

OK or
error

order, board,
shots/result,
opponents’
shots, errors

• On GitHub
https://github.com/alleystoughton/battleship

you can find a link to our PLAS 2014 paper You Sank My Battleship!: A
Case Study in Secure Programming plus the Haskell/LIO and
Concurrent ML code

• Note that the error propagation presented above is not followed by this
code or described in the paper

Pointers to Paper and Code

10

https://github.com/alleystoughton/battleship

Ambiguity Example: Patrol Boat

11

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p s s s
H p d
I d
J d

GD
HC
GC

Ambiguity Example: Patrol Boat

12

A B C D E F G H I J
A
B b
C c c c c c b
D b
E b
F
G p p
H s d
I s d
J s d

GD
HC
GC

• LIO is a library for Concurrent Haskell with dynamic enforcement of
information flow control

• Information flow labels have both secrecy and integrety components
• Provides mutable variables, which can be shared between threads, and

used for communication

LIO

13

• PIs exchange — using trusted code — labeled boards, made of labeled cells:

data LSR = -- labeled shot result
 Miss -- a miss
 | Hit -- hit an unspecified ship
 | Sank Ship -- sank a specified ship

data LC = -- labeled cell
 LC
 (DCLabeled
 (Principal, -- originating player interface
 Principal, -- receiving player interface
 Pos, -- position of cell
 DC LSR -- DC action for shooting cell
))

LIO Battleship

14

LIO Example

15

PI 1 PI 2

Patrol Boat
MVar

LIO Example

16

PI 1 PI 2

Patrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

LIO Example

17

PI 1 PI 2

Patrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

LIO Example

18

PI 1 PI 2

Patrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

LIO Example

19

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

LIO Example

20

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

LIO Example

21

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Yields Hit

LIO Example

22

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Yields Hit

1 : (1, 2, GC, pb) : 1 ∧	2

LIO Example

23

PI 1 PI 2

HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Yields Hit

: (1, 2, GC, pb) : 1 ∧	2

LIO Example

24

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Yields Hit

: (1, 2, GC, pb) : 1 ∧	2

LIO Example

25

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Yields Hit

: (1, 2, GC, pb) : 1 ∧	2

: (1, 2, GC, pb) : 1 ∧	2

LIO Example

26

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Yields Hit

: (1, 2, GC, pb) : 1 ∧	2

: (1, 2, GC, pb) : 1 ∧	2Yields Sank PatrolBoat

LIO Example

27

PI 1 PI 2

GC, HCPatrol Boat
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Still Yields Hit

: (1, 2, GC, pb) : 1 ∧	2

: (1, 2, GC, pb) : 1 ∧	2Yields Sank PatrolBoat

• Concurrent ML is a library for Standard ML (we use the Standard ML of
New Jersey implementation)

• It has no special security features
• But the combination of its abstract types (provided by its rich module

system) and mutable references can be used to program access control

Concurrent ML

28

• PIs exchange — using trusted code — immutable, abstract locked
boards, whose cells can be unlocked using unforgeable keys held by
originating player:

type key (* key *)
type ck (* counted key *)
val labelKey : key * int -> ck
type lb (* locked board *)
datatype lsr =
 Invalid (* invalid counted key *)
 | Repeat (* illegal repetition *)
 | Miss (* missed a ship *)
 | Hit (* hit an unspecified ship *)
 | Sank of ship (* sank the given ship *)
val lockedShoot : lb * pos * ck -> lb * lsr

CML + AC Battleship

29

CML + AC Example

30

PI 1 PI 2

lb1

CML + AC Example

31

PI 1 PI 2

lb1 HC

CML + AC Example

32

PI 1 PI 2

lb1HC HC

CML + AC Example

33

PI 1 PI 2

lb1HC (keyHC, 1)HC

CML + AC Example

34

PI 1 PI 2

lb1HC (keyHC, 1)

lb2Hit

HC

CML + AC Example

35

PI 1 PI 2

lb1HC (keyHC, 1)

lb2Hit

HC

GC

CML + AC Example

36

PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC

HC

GC

CML + AC Example

37

PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC (keyGC, 2)

HC

GC

CML + AC Example

38

PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC (keyGC, 2)

lb3Sank PatrolBoat

A counted key is only applicable to a single
locked board, and can’t be deconstructed

HC

GC

Referee

G M

Construction of Simulator Player for CML + AC

39

Adversary

S(M)

Adversary

boolean judgment

simulator
player

Model Referee

M

Referee

G M

Construction of Simulator Player for CML + AC

40

M

S supervisor

supervisor interacts
with M using
reimplementation
of locked board
abstract type

Model Referee

M

Referee

G M

CML + AC: M Doesn’t Learn More Than it Should

41

M

S

Model Referee

CML + AC Simulator Example

42

M

lb1

Supervisor

S(M)

GC HC

Model
Referee

CML + AC Simulator Example

43

M

lb1

Supervisor

S(M)

GC HC

?

Model
Referee

CML + AC Simulator Example

44

M

lb1 HC

Supervisor

S(M)

GC HC

?

Model
Referee

CML + AC Simulator Example

45

M

lb1 HC

Supervisor

HC

S(M)

GC HC

?

Model
Referee

CML + AC Simulator Example

46

M

lb1 HC

Supervisor

HC

HC

S(M)

GC HC

Model
Referee

CML + AC Simulator Example

47

M

lb1 HC

Supervisor

HC

Hit

HC

S(M)

GC HC

Model
Referee

CML + AC Simulator Example

48

M

lb1 HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

49

M

lb1 (keyHC, 1)HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

50

M

lb2Hit

lb1 (keyHC, 1)HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

51

M

lb2Hit

lb1 (keyHC, 1)HC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

?

Model
Referee

CML + AC Simulator Example

52

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

Hit

HC

S(M)

GC HC Hit

?

Model
Referee

CML + AC Simulator Example

53

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

HC

S(M)

GC HC Hit

?

Model
Referee

CML + AC Simulator Example

54

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

HC

GC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

55

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC Hit

Model
Referee

CML + AC Simulator Example

56

M

lb2Hit

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC HitSank PatrolBoat

Model
Referee

CML + AC Simulator Example

57

M

lb2Hit (keyGC, 2)

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC HitSank PatrolBoat

Model
Referee

CML + AC Simulator Example

58

M

lb2Hit (keyGC, 2)

lb3Sank PatrolBoat

lb1 (keyHC, 1)HC

GC

Supervisor

HC

GC

Hit

Sank PatrolBoat

HC

GC

S(M)

GC HC HitSank PatrolBoat

Model
Referee

M

Referee

G M

CML + AC: M Commits to a Board

59

M

S supervisor

abstract type has
two kinds of locked
boards: one for
shooting and
one for extraction;
S extracts board
from locked board M
initially provides

Model Referee

Q: What is the potential pitfall
with this approach?

M

Referee

G M

CML + AC: M Commits to a Board

60

M

S supervisor

abstract type has
two kinds of locked
boards: one for
shooting and
one for extraction;
S extracts from the
locked board M
provides its source
board, to give to G

Model Referee

A: A replay attack in which M gives
G back its own locked board must be
prevented

• We used theoretical cryptography’s real/ideal paradigm to define when
one program interface is secure against a possibly malicious program
interface

• This separates the definition of security from its enforcement
• We gave two secure implementations, using our definition to guide our

design and informally audit it
• Using LIO and information flow control
• Using Concurrent ML + access control

• We found numerous security bugs during our audits

Summary

61

• Safe Haskell mostly automates the check that the malicious player
interface only communicates via its channels

• But we also want to check that it doesn’t do an exit (terminating the
whole program) — and this may have to be checked manually

• In Concurrent ML, it must be manually checked that the malicious PI
only communicates via its channels

Summary

62

• How do we know that a real/ideal paradigm definition says what we
want?

• Designing ideal functionalities is something of an art, and tools for
making their design easier would be useful

• Tools for helping the designer know they got the correct definition
would also be helpful

Research Questions

63

Referee

G M

How Do We Know This Is What We Want?

64

Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator
player

suppose we
forgot to
include
opponent’s
shots

suppose we
forgot to
include
opponent’s
shots

M could learn more than it should in real world, and
S(M) could simulate this by making different shots

• What are alternatives to the real/ideal paradigm for defining the security
of one component against another?

• When is it useful to split a trusted component into two mutually
distrustful ones?

• For Battleship, are there solutions relying on smaller trusted computing
bases?

• When is information flow control necessary to achieve security?
• Why did Battleship not require information flow control?

Research Questions

65

• We want to prove security using a proof assistant
• It must be possible to formalize and reason about a programming language

with
• A rich module system, supporting abstract types
• Concurrency
• Mutable references

• We need to be able to reason about thread scheduling
• We are currently investigating whether the Coq development of the concurrent

separation logic Iris would be a good vehicle for this work
• Joint work with Jared Pincus, Arthur Azevedo de Amorim and Marco Gaboardi

Future Work

66

OPLSS 2024
Alley Stoughton

Questions about
Example 3?

Example 3: Battleship

67

• Let’s end these lectures with an open discussion about the real/ideal
paradigm

• Possible discussion points:
• Difficulty defining ideal functionalities capturing correct security notions
• Approaches to proving security in the real/ideal paradigm
• Applicability to non-cryptographic security
• Possible alternative approaches

Real/Ideal Paradigm Summary and Discussion

68

