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• We’ll start this last lecture with a review of: 
• the program architecture of our secure battleship implementations in 

Haskell/LIO and Concurrent ML 
• our Real/Ideal Paradigm definition of security against a malicious player 

interface 
• Then we’ll survey the two implementations and consider how we used 

our security definition to audit them

Example 3: Battleship (Review)
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Program Architecture and Behavior

3

Referee

Player 1 Player 2

Server

Client 1 Client 2User 1 User 2

First Client to 
connect to 
Server gets to 
shoot first

Referee holds 
and updates 
both Players’ 
boards



4

Trusted Referee

Referee

Player 1 Player 2

Server

• We implemented in Concurrent ML a trusted referee that holds and 
updates both player’s boards, enforcing the rules of the game 

• But we were also interested in reducing the trusted computing base 
(TCB), by splitting the referee into mutually distrustful player interfaces



Splitting Referee into Mutually 
Distrustful Player Interfaces (PIs)
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Player 1 Player 2



Splitting Referee into Mutually 
Distrustful Player Interfaces (PIs)
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Player 
Interface 1

Player 
Interface 2

Referee

Player 1 Player 2

How do we define security against a malicious opponent PI?

PIs will rely 
on some 
trusted 
infrastructure



Referee

G M

Security Against Malicious PI (Tentative)
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Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

order, board, 
shots/result, 
opponents’ 
shots

order, 
control, 
exfiltration

security: if there is an execution on one side 
resulting in b, then there is an execution on the 
other side also resulting in b



Referee

G M

Security Against Malicious PI (Tentative)
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Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

order, board, 
shots/result, 
opponents’ 
shots

order, 
control, 
exfiltration

security: unfortunately, if M doesn’t follow the 
protocol, the error behavior (termination) in the 
two worlds can be different



Referee

G M

Security Against Malicious PI
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Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

order, board, 
shots/result, 
opponents’ 
shots, errors

order, 
control, 
exfiltration

security: instead, we propagate errors, and 
model referee only yields a non-erroneous 
result if simulator player says OK

OK or 
error

order, board, 
shots/result, 
opponents’ 
shots, errors



• On GitHub 
https://github.com/alleystoughton/battleship 

you can find a link to our PLAS 2014 paper You Sank My Battleship!: A 
Case Study in Secure Programming plus the Haskell/LIO and 
Concurrent ML code 

• Note that the error propagation presented above is not followed by this 
code or described in the paper

Pointers to Paper and Code
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https://github.com/alleystoughton/battleship


Ambiguity Example: Patrol Boat
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Ambiguity Example: Patrol Boat
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• LIO is a library for Concurrent Haskell with dynamic enforcement of 
information flow control 

• Information flow labels have both secrecy and integrety components 
• Provides mutable variables, which can be shared between threads, and 

used for communication

LIO
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• PIs exchange — using trusted code — labeled boards, made of labeled cells: 

data LSR =  -- labeled shot result
       Miss       -- a miss
     | Hit        -- hit an unspecified ship
     | Sank Ship  -- sank a specified ship

data LC =  -- labeled cell
  LC
  (DCLabeled
   (Principal,  -- originating player interface
    Principal,  -- receiving player interface
    Pos,        -- position of cell
    DC LSR      -- DC action for shooting cell
   ))

LIO Battleship
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LIO Example
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PI 1 PI 2

Patrol Boat 
MVar



LIO Example
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PI 1 PI 2

Patrol Boat 
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2



LIO Example
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1 : (1, 2, HC, pb) : 1 ∧	2



LIO Example
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LIO Example
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: (1, 2, HC, pb) : 1 ∧	2



LIO Example
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PI 1 PI 2
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: (1, 2, HC, pb) : 1 ∧	2



LIO Example
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PI 1 PI 2

HCPatrol Boat 
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Yields Hit



LIO Example
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LIO Example
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LIO Example

24

PI 1 PI 2
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LIO Example
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LIO Example
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LIO Example
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PI 1 PI 2

GC, HCPatrol Boat 
MVar

1 : (1, 2, GC, pb) : 1 ∧	2

1 : (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2

: (1, 2, HC, pb) : 1 ∧	2Still Yields Hit

: (1, 2, GC, pb) : 1 ∧	2

: (1, 2, GC, pb) : 1 ∧	2Yields Sank PatrolBoat



• Concurrent ML is a library for Standard ML (we use the Standard ML of 
New Jersey implementation) 

• It has no special security features 
• But the combination of its abstract types (provided by its rich module 

system) and mutable references can be used to program access control

Concurrent ML
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• PIs exchange — using trusted code — immutable, abstract locked 
boards, whose cells can be unlocked using unforgeable keys held by 
originating player: 

type key (* key *)
type ck  (* counted key *)
val labelKey : key * int -> ck
type lb  (* locked board *)
datatype lsr =
           Invalid       (* invalid counted key *)
         | Repeat        (* illegal repetition *)
         | Miss          (* missed a ship *)
         | Hit           (* hit an unspecified ship *)
         | Sank of ship  (* sank the given ship *)
val lockedShoot : lb * pos * ck -> lb * lsr

CML + AC Battleship
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CML + AC Example
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PI 1 PI 2

lb1



CML + AC Example
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PI 1 PI 2

lb1 HC



CML + AC Example
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PI 1 PI 2

lb1HC HC



CML + AC Example
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PI 1 PI 2

lb1HC (keyHC, 1)HC



CML + AC Example
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CML + AC Example

35

PI 1 PI 2

lb1HC (keyHC, 1)

lb2Hit

HC

GC



CML + AC Example
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CML + AC Example
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CML + AC Example
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PI 1 PI 2

lb1HC (keyHC, 1)

lb2HitGC (keyGC, 2)

lb3Sank PatrolBoat

A counted key is only applicable to a single 
locked board, and can’t be deconstructed

HC

GC



Referee

G M

Construction of Simulator Player for CML + AC
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Model Referee



M

Referee

G M

Construction of Simulator Player for CML + AC
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M

S supervisor

supervisor interacts 
with M using 
reimplementation 
of locked board 
abstract type

Model Referee



M

Referee

G M

CML + AC: M Doesn’t Learn More Than it Should
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Model Referee



CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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CML + AC Simulator Example
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M

Referee

G M

CML + AC: M Commits to a Board
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M

S supervisor

abstract type has 
two kinds of locked 
boards: one for 
shooting and 
one for extraction; 
S extracts board 
from locked board M 
initially provides

Model Referee

Q: What is the potential pitfall 
with this approach?



M

Referee

G M

CML + AC: M Commits to a Board
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M

S supervisor

abstract type has 
two kinds of locked 
boards: one for 
shooting and 
one for extraction; 
S extracts from the 
locked board M 
provides its source 
board, to give to G

Model Referee

A: A replay attack in which M gives 
G back its own locked board must be 
prevented



• We used theoretical cryptography’s real/ideal paradigm to define when 
one program interface is secure against a possibly malicious program 
interface 

• This separates the definition of security from its enforcement 
• We gave two secure implementations, using our definition to guide our 

design and informally audit it 
• Using LIO and information flow control 
• Using Concurrent ML + access control 

• We found numerous security bugs during our audits

Summary
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• Safe Haskell mostly automates the check that the malicious player 
interface only communicates via its channels 

• But we also want to check that it doesn’t do an exit (terminating the 
whole program) — and this may have to be checked manually 

• In Concurrent ML, it must be manually checked that the malicious PI 
only communicates via its channels

Summary
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• How do we know that a real/ideal paradigm definition says what we 
want? 

• Designing ideal functionalities is something of an art, and tools for 
making their design easier would be useful 

• Tools for helping the designer know they got the correct definition 
would also be helpful

Research Questions
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Referee

G M

How Do We Know This Is What We Want?
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Model Referee

Adversary

S(M)

Adversary

boolean judgment

simulator 
player

suppose we 
forgot to 
include 
opponent’s 
shots

suppose we 
forgot to 
include 
opponent’s 
shots

M could learn more than it should in real world, and 
S(M) could simulate this by making different shots



• What are alternatives to the real/ideal paradigm for defining the security 
of one component against another? 

• When is it useful to split a trusted component into two mutually 
distrustful ones? 

• For Battleship, are there solutions relying on smaller trusted computing 
bases? 

• When is information flow control necessary to achieve security? 
• Why did Battleship not require information flow control?

Research Questions
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• We want to prove security using a proof assistant 
• It must be possible to formalize and reason about a programming language 

with 
• A rich module system, supporting abstract types 
• Concurrency 
• Mutable references 

• We need to be able to reason about thread scheduling 
• We are currently investigating whether the Coq development of the concurrent 

separation logic Iris would be a good vehicle for this work 
• Joint work with Jared Pincus, Arthur Azevedo de Amorim and Marco Gaboardi

Future Work
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OPLSS 2024 
Alley Stoughton 

Questions about 
Example 3?

Example 3: Battleship
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• Let’s end these lectures with an open discussion about the real/ideal 
paradigm 

• Possible discussion points: 
• Difficulty defining ideal functionalities capturing correct security notions 
• Approaches to proving security in the real/ideal paradigm 
• Applicability to non-cryptographic security 
• Possible alternative approaches

Real/Ideal Paradigm Summary and Discussion
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