
Formal Verification of Monadic Computations

Steve Zdancewic

June 2024

1 Monad Laws

ret a >>= f === f a

m >>= ret === m

(m >>= f) >>= g === m >>= (\x -> g x >>= h)

These laws amount to saying that the Kliesli category has ret as a unit and
has associative composition.

2 Properness

Bind must respect the monad equivalence
If m1 ≈ m2, k1, k2 : A → MB, and ∀a1, a2 : A.a1 = a2 ⇒ k1a1 ≈ k2a2 then,

xm1k1x ≈ xm2k2x

2.1 Properness for state

The notion of equivalence via ≈ for the state monad is function extensionality

s s ≈

s1s2k s1 s2 ≈ s1k s1 s1

3 Extensible Semantics and the Free Monad

Toy language with just values and addition expressions. Have an interpreter
If we wanted to add a new expression, we could add a new inductive case

for subtraction. Likewise, need to add an inductive case to the interpreter
This ad-hoc addition everywhere does not generalize well. Solution:

1



3.1 Datatypes a la carte

Expressions are now either values or computations. Index the computations by
a type of operations, and give a function that turns a natural number into an
operation expression

We then have an extensible method for adding things to our language
We can likewise have an extensible way to handle the interpreter by generally

folding over an expression tree and providing case-wise methods for turning an
operation into a number

Chain together sequential composition via continuations
After doing all the machinery to parametrize expressions, we can add in

whatever subset of operations we wish. That is, given handlers (algebras) for
Add and Minus, we can combine into a handler that supports both operations

4 Free Monads

Constructor for return
Cosntructor for Do that is again parametrized by a type of operations Do

{X} (op : E X) (k : X \to FFree E R) Think of E as a type constructor.
E X is a type of operations that gives back an X. i.e. index operation by return
type

That is, the operations are dependently indexed by their return type and to
be able to continue after returning and X, we need a continutation k that takes
in an X

4.0.1 FFree Computations

Previously we defined a free monad FFree parameterized by a function E :

Type → Type and a return type R : Type. It was noted that technically FFree

is a freer monad rather than a free monad.

Inductive FFree (E : Type -> Type) (R : Type) : Type :=

| Ret (x : R)

| Do {X} (op : E X) (k : X -> FFree E R).

We now want to consider equivalence for FFree E computations. We do this
through the equivalence relation eq FFree which ensures that the continuations
are extensionally equivalent.

Inductive eq_FFree {E X} : FFree E X -> FFree E X -> Prop :=

| eq_Ret : forall (x:X), eq_FFree (Ret x) (Ret x)

| eq_Do : forall {Y} (op : E Y) (k1 k2 : Y -> FFree E X)

(Heq: forall (y1 y2:Y), y1 = y2 -> eq_FFree (k1 y1) (k2 y2)),

eq_FFree (Do op k1) (Do op k2).

In addition to handling equivalence, we also want to be able to provide a
notion of disjoint unions since our operation types are indexed by their return

2



types. We can do this by defining a sum type and convenient syntax for denoting
that type.

Inductive sumi (E1 E2 : Type -> Type) (X : Type) : Type :=

| inli (_ : E1 X)

| inri (_ : E2 X).

Notation "Op1 +’ Op2" := (sumi Op1 Op2) (at level 10).

We can also compose handlers using this sum type.

Definition hpure_sum {Op1 Op2} (h1 : forall X, Op1 X -> X) (h2 : forall X, Op2 X -> X)

: forall X, (Op1 +’ Op2) X -> X :=

fun _ op => match op with

| inli op => h1 _ op

| inri op => h2 _ op

end.

Finally, we can add in a generic trigger operation to inject an operation into
our free monad. Trigger will be the building block for building up interesting
nodes in our tree.

Definition trigger_ {E X} (e : E X) :=

Do e (fun x => Ret x).

Notation trigger e := (trigger_ (inject e)).

With all this in place, we can use fold pure as an interpreter to evaluate
handlers. We can then write programs using free monads as shown below:

Example e1 : FFree (Plus +’ BoolOp) nat :=

b <- trigger (or true false);;

if (b : bool)

then trigger (add 10 10)

else trigger (add 2 2).

Eval compute in fold_pure (hpure_sum hplus hbool) e1.

3


