
Adjoint Functional Programming

NICHOLAS COLTHARP, ANTON LORENZEN, WESLEY NUZZO, and XIAOTIAN ZHOU

These are the lecture notes for Frank Pfenning’s course at OPLSS 2024.

1 LECTURE 2: FROM PL TO LOGIC AND BACK (x2?)
We will go back and forth between logic and PL. Logic will inform our PL approach. It is important
to be aware of the connection: it is inevitable post-hoc but these features may be confusing to
implement without the knowledge.

The rules from last lecture, summarized:

x : A ⊢ x : A

· ⊢ () : 1

Δ ⊢ e1 : A Γ ⊢ e2 : B
Δ, Γ ⊢ (e1, e2) : A × B

Γ ⊢ e : Ak (k ∈ L)
Γ ⊢ k(e) : + { l : Al }l ∈L

Δ ⊢ e : 1 Γ ⊢ e′ : C
Δ, Γ ⊢ match e with () ⇒ e′ : C

Δ ⊢ e : A × B Γ, x : A, y : B ⊢ e′ : C
Δ, Γ ⊢ match e with (x, y) ⇒ e′ : C

Δ ⊢ e : + { l : Al }l ∈L Γ, x : Al ⊢ e′l : C (∀l ∈ L)
Δ, Γ ⊢ match e with (l(x) ⇒ e′l)l ∈L : C

We have to use every variable exactly once.

1.1 Reduction relation
In the lecture, we will see the intuition for the theorems, but not include proofs. You can do them
yourself if you want.
Next, we will look at a reduction relation for the language. In the dynamic semantics, we want

to show type soundness and also something different: we want to show that there is no garbage at
the end of the evaluation.

We can set up a close correspondence between the static rules and the dynamic rules. The proof
will be easier if the rules are very close. What should then be our runtime interpretation of a
judgement such as:
Γ ⊢ e : A
We interpret the expression e as the program getting evaluated, the type A will not be carried
around and Γ will be a variable map. We write the variable map as 𝜂, and define a judgement for it
as 𝜂 : Γ with:

(·) : (·)
𝜂 : Γ · ⊢ v : A

𝜂, x ↦→ v : (Γ, x : A)
We say that 𝜂 is an environment and Γ is a context.

Under these preconditions, we want to run the program as 𝜂 ⊢ e ↩→ v. But splitting the context
for pairs will create a problem:

1

? ⊢ e1 ↩→ v1 ? ⊢ e2 ↩→ v2
𝜂 ⊢ (e1, e2) ↩→ (v1, v2)

How will we split the environment and fill in the “?” in the rule? We can not split 𝜂, because then
we would always have to traverse e1 (at runtime!) to see which the variables are to figure out how
to do the split.

1.1.1 The subtractive approach. However, we do not actually have to split 𝜂: under the assumption
that this type checks, we can put 𝜂 on both sides, since we know this will be well-formed. One way
to do this: use the subtractive approach. After e1 is finished, we get back an 𝜂1 of variables that are
unused. We then pass 𝜂1 to the evaluation of e2 and get back an empty environment. But actually,
we have to do this everywhere: e2 returns an environment 𝜂2, which we return from the rule:

𝜂 ⊢ e1 ↩→ v1 \𝜂1 𝜂1 ⊢ e2 ↩→ v2 \𝜂2
𝜂 ⊢ (e1, e2) ↩→ (v1, v2) \𝜂2

This also corresponds to how the type checker might check that variables are only used once.
• Q: Is there are more logical way to do this? It seems like much gets hidden here?
• A: Yes, taking some shortcuts here. In the subtractive approach we would write the type rule as:

Γ ⊢ e1 : A \Δ Δ ⊢ e2 : B \Δ′

Γ ⊢ (e1, e2) : A × B \Δ′

Can we write the rest of the rules now? Yes, let’s look at variables:

Γ, x : A ⊢ x : A \Γ

1.1.2 The additive approach. However, it is much better to do things additive. Subtractive has an
issue: It forces left-to-right evaluation, where you have to look at e1 before you look at e2.
In the additive approach: We have a context Γ ⊢ e : A \Ω where Ω are the variables that are

actually used. In contrast, in the subtractive approach we return the remainder . The pair rule
becomes:

Γ ⊢ e1 : A \Ω1 Γ ⊢ e2 : B \Ω2

Γ ⊢ (e1, e2) : A × B \(Ω1, Ω2)
The result Ω1, Ω2 is undefined if there is any overlap between Ω1 and Ω2 (eg. if they share a
variable). Note that in the rule above, Γ can go into both of the preconditions. That is, because we
treat Γ purely as a typing context now, while Ω returns the used variables.
We can relate our new judgement to the old one:

• Soundness: If Γ ⊢ e : A \Ω then Ω⊢ e : A and Ω ⊆ Γ.
• Completeness: If Ω⊢ e : A and Ω ⊆ Γ, then Γ ⊢ e : A \Ω.
The corresponding rule in the semantics is:

𝜂 ⊢ e1 ↩→ v1 \𝜔1 𝜂 ⊢ e2 ↩→ v2 \𝜔2

𝜂 ⊢ (e1, e2) ↩→ (v1, v2) \(𝜔1, 𝜔2)
If our expression type-checks then 𝜔1 and 𝜔2 will have disjoint domains. If we add non-linear
variables, these can occur on both sides.
• Q: Where would our semantics get stuck if a program does not type-check?
• A: First off, not every program that does not type-check will get stuck. But if it gets stuck: this
can be because the 𝜔1 and 𝜔2 might have overlapping domains, where it would get stuck.

• Q: Is Ω an over-approximation of the variables that are used?

2

• A: No, we want Ω to be exactly the variables used in e.
• Q: If we were to set out to try and prove this, would we need two different versions of the typing
rules?

• A: Yes, you would show that for each derivation of one of them, you get a derivation of the other.
This is rule induction.

• Q: Isn’t there an overapproximation in the relation to the old judgement where we write Ω ⊆ Γ?
• A: No, since our old judgement is always precise in its typing context.
• Q: Why can Ω and Γ not be the same?
• A: Induction would fail in the pair rule, since even if Γ = Ω1,Ω2, then Γ ≠ Ω1 or Γ ≠ Ω2.

1.1.3 Soundness of additive approach. What do we want the program to satisfy? We have to change
our soundness theorem:
Theorem 1. (Soundness (1))
If Γ ⊢ e : A \Ω and 𝜂 : Γ and 𝜔 : Ω then 𝜂 ⊢ e ↩→ v \𝜔 (and v : A).
• Q: Are the v and the 𝜔 existentially quantified in this statement?
• A: Yes, great question! We do not know that e evaluates to v, since that would imply termination.
We want to additionally quantify over the v and 𝜔 :

Theorem 2. (Soundness (2))
If Γ ⊢ e : A \Ω and 𝜂 : Γ and 𝜂 ⊢ e ↩→ v \𝜔 , then 𝜔 : Ω (and v : A).
Since we defined them in the same way, we can now relate them in the same way. We can prove
this theorem with this kind of dynamics.

How do we know that in the end there is no garbage? We write 𝜂 ⊢ e ↩→ v \𝜂 at the toplevel so
that everything in 𝜂 is actually used. We can prove this for the new dynamics. This gives us both
soundness and that there will be no garbage in the end.
• Q: Since we do not have recursion in this language, we can always assume that terms terminate,
right?

• A: Yes, that is true, but then we can not prove that using induction since termination is a stronger
property.

• Q: Don’t we use the evaluation as a precondition in the second soundness theorem and thus can
not catch stuckness?

• A: Yes, this is no longer type soundness. We will use a different approach next lecture.
• Q: Can you explain what 𝜂 : Γ means?
• A: 𝜂 is a map from variables to values. If the variable has type A in Γ, then the value has type A
in 𝜂.

• Q: Will you show a small-step semantics?
• A: Not for this language, but next lecture.
• Q: How does the merge of Ω1,Ω2 handle top-level variables?
• A: We treat them like non-linear variables.

1.1.4 Affine types. We can play a small game: how can we make this system affine so that variable
are used at most once? What happens to the merge operator?
At the top-level we have to check for Γ ⊢ e : A \Ω that Γ = Ω in the linear version to ensure

that everything in Γ is used exactly once. In an affine setting, we can allow Ω ⊆ Γ.
• Q: It seems like the typing tree is equal to the evaluation tree?
• A: Yes, since we have not looked at interesting rules. Inviting comments: is the derivation tree the
same as the evaluation tree? Student: For matches there is a difference, since we pick a branch of
each match in the evaluation tree.

1.1.5 Further typing rules.

3

· ⊢ () ↩→ () \·

𝜂 ⊢ e ↩→ (v1, v2) \𝜔 𝜂, x ↦→ v1, y ↦→ v2 ⊢ e′ ↩→ v ′ \(𝜔 ′, x ↦→ v1, y ↦→ v2)
𝜂 ⊢ match e with (x, y) ⇒ e′ ↩→ v ′ \(𝜔, 𝜔 ′)

1.1.6 Top-level definitions. Not much is happening in the computation. A purely linear type system,
does not allow you to write many interesting programs: we need top-level definitions. However,
studying the whole language is very complicated, so we study the simple case here.
• Q: What is a top-level definition?
• A: For example:

plus (x : nat) (y : nat) : nat
plus x y = ...

These top-level definitions also have something important to tell us logically. I will tell you at the
end of the lecture.

1.2 Back to Logic
We write a natural deduction system, where Γ ⊢ A says that the assumptions in Γ can prove A.
Δ, Γ B · | Γ, A. However, each assumption needs to be used exactly once, giving us linear logic.

Δ ⊢ A Γ ⊢ B

Δ, Γ ⊢ A ⊗ B

Γ ⊢ A

Γ ⊢ A ⊕ B

Γ ⊢ B

Γ ⊢ A ⊕ B

A ⊢ A

Δ ⊢ A ⊗ B Γ, A, B ⊢ C

Δ, Γ ⊢ C

Δ ⊢ A ⊕ B Γ, A ⊢ C Γ, B ⊢ C

Δ, Γ ⊢ C
Historically, this was the first formulation of linear logic. From it, people later developed linear
type systems. Our operators so far are:
A, B B 1 | A ⊗ B | A ⊕ B

1.2.1 The operators of linear logic. In linear logic, there is one more operator: “of course A”, written
!A. This allows us to reuse assumptions. We can model an ordinary function A⇒ B, as !A ⊸ B
(we will introduce this formally later). Then we have judgements of the form Σ; Γ ⊢ e : A, where
Σ has reused hypothesis and Γ is linear. The full syntax is:
A, BB 1 | A ⊗ B | A ⊕ B

| A⊸ B | A & B
|!A

The first row is “positive” and the second row is “negative”. The first row can be duplicated by
copying, eg. 1 ⊕ 1 ⊢ (1 ⊕ 1) ⊗ (1 ⊕ 1), where we duplicate the boolean 1 ⊕ 1.
• Q: How do you prove this using the logic?
• A: Use the sum-elimination rule, where 1 ⊕ 1 ⊢ 1 ⊕ 1. Thenwe have to show that 1 ⊢ (1 ⊕) ⊗ (1 ⊕ 1).
We use unit elimination so that we have to show · ⊢ (1 ⊕ 1) ⊗ (1 ⊕ 1). Then we use the intro-
duction rules to obtain the term.

1.2.2 Linear Functions. Lastly, we will show the rules for A ⊸ B and A & B.

4

Γ,A ⊢ B

Γ ⊢ A ⊸ B

Δ ⊢ A⊸ B Γ ⊢ A

Δ, Γ ⊢ B
We will not be able to prove A⊸ (B ⊸ A) in general, since B is not used in the result. This is
different from the rules we have seen so far, since we just plug the terms together without modifying
the contexts.

How do we model this in our linear programming language? We use just one arrow → and we
distinguish regular from linear functions using the arguments.

Γ, x : A ⊢ e : B
Γ ⊢ 𝜆x .e : A → B

Δ ⊢ e1 : A⊸ B Γ ⊢ e2 : A
Δ, Γ ⊢ e1 e2 : B

You can not pattern-match against a lambda expression. This is a fundamental distinction between
the positive and the negative types.

1.2.3 Lazy pairs. You can not match on take a function and match on it. Instead you can only
apply it and see what happens. Based on this, what do you think the elements of the A & B type
should be? Let’s look at the logical rule:

Γ ⊢ A Γ ⊢ B

Γ ⊢ A & B
Oh, we duplicate Γ on both sides! How can this be sound?

Γ ⊢ A & B

Γ ⊢ A

Γ ⊢ A & B

Γ ⊢ B
We can only extract one of them! This is similar to thematch-construct for sums. In the programming
language:

Γ ⊢ e1 : A Γ ⊢ e2 : B
Γ ⊢ (e1, e2) : A & B

Γ ⊢ e : A & B

Γ ⊢ e.𝜋1 : A
Γ ⊢ e : A & B

Γ ⊢ e.𝜋2 : B
This is a lazy pair : we do not evaluate the components when constructing the pair. We can only
evaluate one of them when we deconstruct the pair. We can generalize this to &{ l : Al }l ∈L.

Γ ⊢ el : Al (∀l ∈ L)
Γ ⊢ (l = el) : &{ l : Al }l ∈L

Γ ⊢ e : &{ l : Al }l ∈L
Γ ⊢ e.k : Ak

We will use the lazy records for object oriented programming.
The main takeaway: In linear logic we have positive and negative types. We can deconstruct the

positive types. We can not actually deconstruct the negative types.

Created with Madoko.net.

5

https://www.madoko.net

	Abstract
	1 Lecture 2: From PL to Logic and Back (x2?)
	1.1 Reduction relation
	1.1.1 The subtractive approach
	1.1.2 The additive approach
	1.1.3 Soundness of additive approach
	1.1.4 Affine types
	1.1.5 Further typing rules
	1.1.6 Top-level definitions

	1.2 Back to Logic
	1.2.1 The operators of linear logic
	1.2.2 Linear Functions
	1.2.3 Lazy pairs

