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These are the lecture notes for Frank Pfenning’s lecture at OPLSS 2024.

1 LECTURE 5: DATA LAYOUT

Recap:
Programs: Small Values: Continuations: Types:
P = write ¢ V V= (a, b) Ki=(xy=P A XB
| read ¢ K [0 |O= P 1
| cut x P; Q | k(a) [ ()= Pier  +{l: A}1 a1
|ida b | <a> |<x>= P 1A
| call fa

1.1 Dynamics

In the style of SSOS.

cell a3 Vy, cell @z Vy, ..., proc Py, proc P, ...

In substructural operational semantics, you write down:

proc (cut x P(x); Q(x)) — cell a O; proc(P(a)); proc (Q())

cell @ O; proc (write @ S) — cell ¢ S

cell a O; cell b'S; proc (id a b) — cella S

We do not have to note down the things that stay the same, this is more modular. In the third line,

the cell b is de-allocated since we assume that everything is linear here.

e Q: Do we allow mutating cells that contain values already?

e A:No, we only write to empty cells. We will discuss reuse later.

cell ¢S, proc (read ¢ S”) — proc (S »S')

(a, b) » ((x, y)= P(x, y)) = P(a, b)

O0>O=P =P

k(a) » (I(x) = Pi(x))ier = Pr(a)

<a> »(<x>= P(x)) = P(a)

e Q: Why is this substructural?

e A:Since you can read the rules in logical form, where, is the linear conjunction and — is a linear
function arrow.

Let’s consider functions:

I, Av B
I'tA—B
How would we interpret this in the store rules?
Ix:A+rP::(y:B)

'+ writec((x, yy= P) :: (¢c: A— B)
The axiom for the usual left-rule of functions is:

A, A—-o B+ B



a:A c:A—oBrreadc(a, b) :: (b: B)
We pass (@, b) to the continuation in the cell c. To achieve this, we say that a store variable is either
a value or a continuation:

S =V |K
We then change:
P = write ¢ S Small Values: Continuations: Types:
| read ¢ S V= (a b) Ki=(x, y)= P A XB A—B
: 10 lO= P 1
| cutx P; Q
lidab | k(a) 1 UCO= Prer +{1: Abrer &{1: At
| call fa | <a> | <x>= P LA TA

Why do we not a have counter-part for 1? Because it would be bottom. It happens not to be too
important, because it is not inhabited.

1.2 Negatives

Logical rules for the lazy record:

'-A I'+B
TrA&B A&Br A A&Br B
Process rules:
(WMleL)y TrP::(x: A
T'+ write c (I(x) = Pi(x)) :: (c: &{l : Ai}1er)

k el

c: &{l: A}t read ¢ (k(a)) :: (a : Ap)
Remember: Right rules write.

1.2.1  Reuse. How do we do reuse? One way: when we read from a cell, rather than deleting it, but
it on the other side with content (. Then we can reuse the cell for another one of the same type.
Using the same types, ensures that the cells have the same size at runtime.

1.2.2  No garbage. In the final configuration, we only have cells and no more processes. There is
no garbage, if everything can be reached from the final destination. Non-linear things might still
be around and could be unreachable.

Reference counting is not very compatible with parallelism, because there can be contention
when several threads access a reference count. For this reason, we will stick with a more traditional
garbage collector.

1.3 Cuts and Snips

The data layout we have considered so far is quite pointer-intensive. For example, A ® (B ® C)
would be laid out as two allocations, but in practice it should be laid out as one allocation. But this
is hard to express logically.



How can we derive the associativity of ®? It turns out that we need a cut rule somewhere:
A BFrA®B A®B Cr(A®B) ®C
A B C-(A®B) ®C
A B®BFr(A®B) ®C
AQBQC)r(A®B) ®C
So we can not have cut-elimination. So how can we recover? Use snips instead of cuts. We mark
subformulas by an underline:

A BrA®B k1

ArA ©B B-A ®B
The snip rule is:

ArA T, A C
ATEC

Then, instead of allocating:

a:A b:Brwritec(a, b) :: (c: A ®B)
... we can just write the addresses. This performs no computation at runtime:

cm A, ey s BRwritec(, ) :: (¢c: A ®B)
Snips correspond to address computation and cuts correspond to allocation. When you have a
subformula, then you can compute the address of the subformula. For the application rule:

A A— Bt B A&BF A

This determines a calling convention for functions. This happens to be a good way to represent
lambdas. This is currently unpublished, but supported in the compiler.

1.4 SNAX backend
Continuing in the file from last lecture.
type list[m k] = +{nil: 1, cons: <std[k]> x <list[m kI1>}
decl append (xs : list[m k1) (ys : list[m k1) : list[m k]
defn append xs ys = match xs with
| 'nil => ys
| ’cons(<x>, <xs> => ’cons(<x>, <append xs ys>)
inst append (xs : list[L UJ]) (ys : list[L UJ) : list[L U]
The compiled code is (without reuse):



proc appenc/@ ($0 : list[L UJ) (xs : list [L U]) (ys : list[L U]) =
read xs =>
| 'nil (L) =>
read xs.nil () =>
id:list[L U] $0 ys % : list[L U]
‘cons (L) =>
read xs.cons (_, _) =>
read xs.cons.pil <$1> =>
read xs.cons.pi2 <$2> =>
write $0.cons.pil <$1>
cut $4:1ist[L U]
call appenc/0 $4 $2 ys
write $0.cons.pi2 <$4>
write $0.cons (_,_)
write $0 ’cons(_)

With reuse:

proc append/@ ($0 : list[L UJ) (xs : list [L UJ) (ys : list[L U]) =
read xs =>
| "nil() =>

read xs.nil () =>

id:1ist[L U] $0 ys % : list[L U]

"cons (L) =>

read xs.cons (_, _) =>

read xs.cons.pil <$1> =>

read xs.cons.pi2 <$2> =>

write $0.cons.pil <$1>

cut $4 = xs : list[L U] % reuse
call appenc/0 $4 $2 ys

write $0.cons.pi2 <$4>

write $0.cons (_,_)

write $0 ’cons(_)

Notice that we do an unnecessary write before the cut, since the element is already in the right
place. In future work, this will be eliminated.
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