
Metaprogramming — Nada Amin

Lecture 1 - June 27, 2025

1 Introduction

Metaprogramming is writing programs that manipulate programs. Some common examples are

• interpreters, where the input is a program;

• compilers, where both the input and output are programs;

• transformers;

• analyzers;

• discovery engines.

Metaprogramming is a foundational idea. It is deeply related to the concept of computation itself,
since the universal computing machine first introduced the idea that a program is just data that can
be manipulated – A turning machine that can interpret another turning machine –. Metaprogram-
ming is useful because you can build domain-specific languages for tooling, but it is also principled;
for example, you can mechanically turn an interpreter into a compiler.

2 Scheme interpreter

Here are a few components of a very simple interpreter. But first, let us define some Scheme
conventions. We will use functions to represent our environments; thus, an environment is a
function. Each function is responsible for the lookup of a single variable. Therefore, if the input
variable name is equal to the variable defined in the current function, we return its value. Otherwise,
we continue the lookup process by calling another environment. Another adopted convention is
the naming of predicates. Predicates are functions that perform some check, in other words, they
return a boolean. We use the suffix ? while naming predicates.

1

Metaprogramming Nada Amin

1 ;; the empty environment

2 (define empty -env

3 λ (y) (error ’empty -env (format "unbound variable ~s")))

4

5 ;; a tagged expression

6 (define tagged?

7 (λ (tag)

8 (λ (e)

9 (and (pair? e) (eq? (car e) tag)))))

10

11 ;; evaluation function

12 (define evl

13 (λ (exp env)

14 (cond

15 ((number? exp) exp)

16 ;; case for number

17 (((tagged? ’∗) exp)

18 (∗ (evl (cadr exp) env) (evl (caddr exp) env)))

19 ;; case for multiplication

20 (((tagged? ’λ) exp)

21 (let ((x (car (cadr exp)))

22 (body (caddr exp))))

23 (λ (a)

24 (evl body (λ (y) (if (eq? y x) a (env y))))))

25 ;; case for functions

26 (else

27 ((evl (car exp) env) (evl (cadr exp)))))))

28 ;; case for application

29

30 (evl ’(∗ 2 3) empty -env)

31 > 6

32 (evl ’((λ (x) (∗ x 3)) 2) empty -env)

33 > 6

Notation note: If you look
at the case for quotes
(((tagged? ’quote) exp)),
this indicates a notation ’2 or
(quote a).

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
2

Metaprogramming Nada Amin

Important remarks

• If you have a list of things (1 (2 a b) 3 4),

– car gives the first item

– cdr gives the tail

– cadr is car composed with cdr

– caadr is car composed with car composed with cdr

• If we look up in the empty environment, we just emit an error.

Some elaboration on the interpreter above

• Closures are represented as a function. In the ((tagged? ’λ) exp) case above, for example,
we say the name of the variable is x, and define the function body. Only once we have a can
we evaluate the body.

• To see that the code works, we need the application case, where we assume we have a pair
((evl (car exp) env) (evl (cadr exp))).

3 Metacircular interpreter

So now we have written a small interpreter for some Scheme programs. We can scale this up to an
interpreter that is truly metacircular – a Scheme interpreter written in Scheme –.

• When we execute a lambda, we push a new frame onto the stack with the new bindings. We
pop it off when we are done with the body;

• We need a table mapping symbols to underlying scheme language;

• We can run the metacircular interpreter, load its own source code, and create a stack of
frames. The CPU time increases drastically for every frame.

4 Recursion

1 (define factorial

2 (λ (n)

3 (if (= n 0)

4 1

5 (∗ n (factorial (- n 1))))))

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
3

Metaprogramming Nada Amin

If we run this function, we see a list of nested stack frames.

1 (trace factorial)

2 (factorial 6)

3 > | (factorial 3)

4 | | (factorial 2)

5 | | | (factorial 1)

6 | | | | (factorial 0)

7 | | | | 1

8 | | | 1

9 | | 2

10 | 6

11 6

If instead, we defined factorial iteratively, using an accumulator, as in

1 (define fact -iter

2 (λ (n acc)

3 (if (= n 0)

4 acc

5 (fact -iter (- n 1) n acc)))))

We see only one frame

1 > | (fact -iter 3 1)

2 | (fact -iter 2 3)

3 | (fact -iter 1 6)

4 | (fact -iter 0 6)

5 | 6

6 6

We can use continuation-passing style (CPS) to mechanically transform a recursive process
into an iterative one. In CPS, we reify the rest of the computation as a continuation, thus we can
perform a single step and yield the result to the continuation which knows what to do next.

1 (define factorial -cps

2 (λ (n k)

3 (if (= n 0)

4 (k 1)

5 (factorial -cps (- n 1) (λ (v) (k (∗ n v)))))

6

7 (factorial -cps 6 (λ (x) x))

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
4

Metaprogramming Nada Amin

Now we get a series of calls, like the iterative version, but not a stack. The idea of CPS is
that we send the value of our current execution to a “continuation,” and never return. In this
code, we make a new recursive call and give it the continuation λ (v) (k (∗ n v)), which sends
n ∗ factorial-cps (- n 1) to the current continuation. We don’t need to keep the current stack
frame because we never return.

5 call/cc

call/cc does a function call with the current continuation.

1 > (∗ 2 (call/cc (λ (k) (+ (k 3) (k 6)))))

2 6

3 > (∗ 2 (call/cc (λ (k) (+ (k 3) (k 7)))))

4 6

5 > (λ (hole) (∗ 2 hole))

6 <procedure >

Scheme has a call-by-value evaluation order; thus, when evaluating a function application, we
must first evaluate its arguments. In this example, 2 is already evaluated, so next the thing to
evaluate is: call/cc (λ (k) (+ (k 3) (k 7)))). call/cc reifies the current evaluation context
as continuation – ∗ 2 □ –, and exposes it as k. You may think that a continuation is a special
function that does not return when invoked. So, during the evaluation of this term, when we do the
first k call – (k 3)–, we immediately jump to our previous evaluation context (∗ 2 □) and discard
the remainder computation, and immediately plug in 3 and evaluate 2 ∗ 3. This allows us to escape
the current expression and provide a value to plug into the current continuation; thus, the k call
k 6 never gets evaluated.

6 Trampolining

1 (define factorial -tra

2 (λ (n k)

3 (λ ()

4 (if (= n 0)

5 (k 1)

6 (factorial -tra (- n 1) (λ (v) (k (∗ n v))))))))

7

8 (define driver

9 (λ (p)

10 (while (procedure? p)

11 (set! p (p)) p)))

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
5

Metaprogramming Nada Amin

Trampolining inserts thunks on each call. So factorial-tra only resumes execution on each
invocation, not forcing the full evaluation. One advantage of trampolining in this case is that you
get the benefit of no stack overflows. We can use a driver whose purpose is to repeatedly force the
evaluation of factorial-tra until termination.

7 CPS in our interpreter

We only need to perform minor changes to make your interpreter follow a continuation-passing
style

• Add a parameter k to the evl input.

• Instead of returning, invoke k.

When you have two recursive calls, you have to make a choice about the order of evaluation and
set up the correct continuation to follow the evaluation. So,

1 (define evl

2 (λ (exp env k)

3 (cond

4 ((number? exp) (k exp))

5 (((tagged? ’∗) (k exp))

6 (∗ (evl (cadr exp) env)

7 (λ (v1) (evl (caddr exp) env

8 (λ (v2) (k (∗ v1 v2)))))))

9 (((tagged? ’λ) exp)

10 (let ((x (car (cadr exp)))

11 (body (caddr exp)))

12 (k (λ (a cont)

13 (evl body (λ (y) (if (eq? y x) a (env y))) cont)))))

14 (else

15 ((evl (car exp) env) λ (f)

16 (evl (cadr exp) env) (λ (v) (f v k)))))))

Now we can even add call/cc to our interpreter.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
6

Metaprogramming Nada Amin

1 (((tagged? ’call/cc) exp)

2 (evl (cadr exp) env

3 (λ (f)

4 f (λ (v k0) (k v)) k))))

5

6 (∗ 2 (call/cc (λ (k) (+ (k 3) (k 7)))))

7 > 6

Note that the argument of call/cc is anything that evaluates to a procedure.

8 Reflection

From the program, we might want to be able to reason and operate with the program itself. We
can adopt a methodology of using two operations: reify, to transform our current code into data
– go one level up –, and reflect to transform data back into code – go down one level –. By using
this methodology, we can create a distinction between the base language and the languages that
can operate on the programs of the base language. Therefore, with those operations, we can make
a reflective tower of interpreters, in which we can freely move between its levels of meta languages.

• reify: program → data

• reflect: data → program

. . .

Metan level

. . .

Meta2 level

Meta level

User level

reflect

reflect

reflect

reify

reify

reify

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
7

