
Metaprogramming: Relational Programming — Nada Amin

Lecture 2 - June 27, 2025

1 Introduction

Relational programming is basically: programming with relations instead of functions. No dis-
tinction between input and output; we can get multiple behaviors out of the same relation. The
language shown in the lecture is called miniKanren, which is a pure constraint logic programming
language.1

2 Basic language features

Here’s a “normal” functional append in Scheme:

1 (define (my-append l s)

2 (if (null? l )

3 s

4 (cons (car l) (my-append (cdr l) s))))

And now, here’s a relational version of append (note that the convention here for naming relations
is to add an “o” to the end of the functional analog):

1 (defrel (my-appendo l s ls)

2 ;; conde is similar to cond from before, but relationally takes

3 ;; nondeterministic branch

1“The Reasoned Schemer” is a book that goes into far more detail about miniKanren.

1



Metaprogramming: Relational Programming Nada Amin

4 (conde

5 ((== l '()) (== s ls))

6 ((fresh (a d ds)

7 (== (cons a d) l)

8 (== (cons a ds) ls)

9 (my-appendo d s ds)))))

Note that textttdefrel defines a generic relation, which is a constraint on the search space of our
generator (space of terms that can be generated). Now, here is what happens when we run our
relational my-appendo:

1 (run 1 (q)

2 (my-appendo '(a b c '(d e) q)))

3 ;; we get ((a b c d e))

4

5 (run 1 (q)

6 (my-appendo q '(d e) '(a b c d e)))

7 ;; we get ((a b c))

8

9 (run* (x y)

10 (my-appendo x y '(a b c d e)))

11 ;; returns all possible pairs of lists x, y that can concatenate to (a b c d e)

The primitives here are:

1. conde: similar to standard Scheme conditional operator cond, but takes nondeterministic
branch

2. ==: unification

3. recursive calls to relation

4. fresh to introduce new logical variables

2.1 Unification

1 (run* (q)

2 (== 1 1))

3 ;; gives us (_.0), i.e. a fresh logical variable (unification succeeds!)

Compiled By:

Lucas Du and Amelia Dobis
2



Metaprogramming: Relational Programming Nada Amin

4 (run* (q)

5 (== 1 2))

6 ;; gives us (), an empty list ()

7 (run* (q)

8 (== 1 q))

9 ;; gives us (1)

2.2 conde

1 (run* (q)

2 (conde

3 ((== q 1))

4 ((== q 2))

5 ((== 1 1))))

6 ;; gives us (1 2 _.0)

2.3 lookupo

Writing a relation to look up a variable in the environment.

1 (defrel (lookupo x env t)

2 (fresh (rest y v)

3 (== '((,y . ,v) . ,rest) env)

4 (conde

5 ((==y x) (== v t))

6 ((=/= y x) (lookupo x rest t)))))

7

8 ;; now, using lookupo...

9 (run 1 (q)

10 (lookupo 'y '((x . 1) (y . 2)) q))

11 ;; gives us 2, as expected

An aside: search in miniKanren is an interleaving search that is complete.

Compiled By:

Lucas Du and Amelia Dobis
3



Metaprogramming: Relational Programming Nada Amin

2.4 absento

We don’t want our system to allow for quoting of the internal representation, and absento makes
sure that we can’t quote closures. In other words, it answers the following question: ”Does this
subterm occur anywhere in the term either as a term or another subterm? If so, fail.”.

1 (run 1 (q) (absento 'foo '(foo)))

2 ;; this fails and gives ()

3

4 (run 1 (q) (absento 'foo '(foobar)))

5 ;; succeeds and gives (_.0)

3 Recursive synthesis of append

There is an automated way to get from a function to a relation, i.e. from append to appendo.
Specifically, we start by defining append (i.e. functional append), then wrap it to get some relational
behavior:

1 (test

2 (run* (x y)

3 (evalo

4 `(letrec ((append (lambda (xs ys)

5 (if (null? xs) ys

6 (cons (car xs) (append (cdr xs) ys))))))

7 (append ',x ',y))

8 '(a b c d e)))

9 '(

10 (() (a b c d e))

11 ((a) (b c d e))

12 ((a b) (c d e))

13 ((a b c) (d e))

14 ((a b c d) (e))

15 ((a b c d e) ())

16 ))

Note how the wrapper around append gives us the output we expect from relational appendo.

Compiled By:

Lucas Du and Amelia Dobis
4



Metaprogramming: Relational Programming Nada Amin

There is an alternative approach to turning a function into a relation, which involves trying to
synthesize the relational version by example (using the original function). We can start synthesizing
the relational appendo from append as follows (this is Racket code):

1 (define-term-syntax-rule (append-sketch-and-calls hole)

2 `(letrec ([append

3 (lambda (xs ys)

4 (if (null? xs) ys

5 (cons ,hole (append (cdr xs) ys))))])

6 (list

7 (append '() '())

8 (append '(a) '(b))

9 (append '(c d) '(e f)))))

10

11 ;; unstaged version (slower)

12 (time

13 (run 1 (e)

14 (evalo-unstaged

15 (append-sketch-and-calls e)

16 '(() (a b) (c d e f)))))

17

18 ;; staged version (faster)

19 (time

20 (run 1 (e)

21 (time-staged

22 (evalo-staged

23 (append-sketch-and-calls e)

24 '(() (a b) (c d e f))))))

25 (generated-code)

The second, staged version is a bit faster, but running both result in the correct synthesis of the
term represented by ,hole (in line 5): ’((car xs)).

4 Multi-stage Relational Programming

Talks about staged miniKanren as presented in “Multi-stage Relational Programming” from PLDI
2025.2. Staging:

2https://dl.acm.org/doi/10.1145/3729314

Compiled By:

Lucas Du and Amelia Dobis
5



Metaprogramming: Relational Programming Nada Amin

• First stage performs various deterministic optimizations

• Subsequent stages work with the result of the first stage to improve the generation.

5 Proof by Reflection

”Change theorem proving in the theory into evaluation in the metatheory. Reflection through
metaprogramming is a rough tool that can give one a glimpse of what is possible computationally.”3

A key philosophical shift from reflection as a meta-theoretical add-on to computation as a first-class
citizen, recognizing that:

• Computation and deduction are complementary.

• Many proofs are just computation in disguise.

• The type system itself can encode the soundness of reflection.

Lean’s dependent type theory unifies the object and meta levels of FOL. Both Prop and Bool are
first-class types in Lean.

5.1 FOL vs. Lean

FOL requires manual attachment of computational semantics, while Lean’s type theory has com-
putation built into its core. The function isEven automatically computes during type checking.

FOL manually constructs the reflection infrastructure.

• Explicit representation of terms, formulas, and predicates.

• Manual axioms connecting syntactic and semantic levels.

• Complex axiom to enable reflection.

In contrast, Lean provides a systematic decidability framework. FOL reflection produces theo-
rems as side effects. Lean’s decide tactic produces actual proof terms that can be type-checked
independently. The computation is the proof. The type system enforces the soundness of reflection.

3https://io.livecode.ch/learn/namin/GETFOL

Compiled By:

Lucas Du and Amelia Dobis
6



Metaprogramming: Relational Programming Nada Amin

5.2 Summary

To summarize, there is a discussion between theorem proving in Lean and using metaprogramming
(with FOL). The idea is that proofs through metaprogramming is done by encoding our proofs as
relations that are then unified through evaluation. While this works, it requires explicitly moving
between meta-levels to reason about the proofs, while Lean encodes all of this directly through its
type system, making all of this more ”seamless” to the user.

Compiled By:

Lucas Du and Amelia Dobis
7


