
Metaprogramming: Multi-stage programming and SMT as a backend

— Nada Amin

Lecture 3 - June 28, 2025

1 Outline

Idea: Turning “towers of interpreters” into compilers through staging.

2 Meta-theory Compilers

Goal: How can we turn a tower of interpreters into a one-pass compiler using staging? The idea of
what to do with one of the levels is based in partial evaluation, namely the Futamara projections.

2.1 Futamura projections

Generally, the three Futamura projections formalize the connection between interpreters and com-
pilers through the lens of specialization. More specifically, the Futamura projections (first described
by Yoshihiko Futamura in 1971) are as follows1:

1. 1st projection: specializing an interpreter to a given program yields a compiled version of the
program in the language of the interpreter.

2. 2nd projection: a process that can specialize a given interpreter to any program is equivalent
to a compiler.

3. 3rd projection: a process that can take any interpreter and turn it into a compiler is a compiler
generator (or cogen).

1Taken from “Collapsing Towers of Interpreters,” Amin and Rompf’s paper from POPL 2018.

1



Metaprogramming: Compilation and SMT Nada Amin

Notes directly from the lecturer2, which formalizes things a bit.

Let L be a meta function from a program to the function it computes. Let S and T be programming
languages. The following equations define mix, an S-interpreter int, and an S-to-T-compiler comp.

Equation for partial evaluator mix:

(P ) L p [d1, d2] = L (L mix [p, d1]) d2

Equation for an S-interpreter int written in L:

(I) S pgm data = L int [pgm, data]

Equation for an S-to-T -compiler comp written in L:

(C) S pgm data = T (L comp pgm) data

The following equations define the Futamura projections, which state that given some partial
evaluator mix and an interpreter int, we can compile programs and even generate standalone
compilers and compiler generators by self-applying mix:

(1) L mix [int, pgm] = target

(2) L mix [mix, int] = compiler

(3) L mix [mix, mix] = compiler generator

These equations can be verified using the equations for mix (P ), and for interpreters (I) and
compilers (C) above. Specifically, we can do the following verification:

Verify (1):
S pgm data = L int [pgm, data] by (I)

L int [pgm, data] = L(L mix [int, pgm]) data by (P )

Therefore, (L mix [int, pgm]) acts as target.

Verify (2):
L mix [int, pgm] = target by (1)

L mix [int, pgm] = L(L mix [mix, int]) pgm by (P )
2https://github.com/namin/metaprogramming-lecture-notes/blob/main/3-compilation.tex

Compiled By:

Lucas Du and Amelia Dobis
2

https://github.com/namin/metaprogramming-lecture-notes/blob/main/3-compilation.tex


Metaprogramming: Compilation and SMT Nada Amin

Therefore, (L mix [mix, int]) acts as a compiler.

Verify (3):
L mix [mix, int] = compiler by (2)

L mix [mix, int] = L(L mix [mix, mix]) int by (P )

Therefore, (L mix [mix, mix]) acts as a compiler generator.

The projection is based in the idea of creating a generalized mix procedure that takes a source input
and an interpreter and yields an output in a target language. In a sense, we are “specializing” the
program to some symbolic input—this generates a compiler that will then run on concrete input,
without the overhead ofinterpretation.

2.2 Question: ”What’s binding-time analysis?”

Response: Say you have

f(x) = x + x + (2 + 3)

and you want to optimize it to

f(x) = x^2 + 5

to do this, one could annotate the program in such a way that annotates what its type will be in
future stages, e.g. in Scala x : Rep[Int] tells us that x will be of type Int in a future stage –
figuring out whether or not the type is determined dynamically is called “binding-time analysis.”

In general, binding-time analysis annotates a program, differentiating between parts that are “elim-
inable” (and thus computed during partial evaluation) and those that are “residual” (i.e. the re-
maining parts that are not eliminable). The eliminable parts are then interpreted normally, while
the residual parts generate code that ends up in the residual program. See “A Self-Applicable
Partial Evaluator for the Lambda Calculus” (Gomard) for further details.

2.3 LMS: Lightweight Modular Staging in Scala

Based on MetaML (and partly on MetaOCaml, an OCaml dialect for multi-stage programming). In
practice, most meta theory compilers are implemented in two stages, in order to limit the amount

Compiled By:

Lucas Du and Amelia Dobis
3



Metaprogramming: Compilation and SMT Nada Amin

of reasoning that is required across multiple levels (although it is certainly possible to have more
than two stages). At a high level, the idea of staged programming is to allow the programmer to
control the order (in other words, the timing) of evaluation of terms.

Traditionally, staging is done using the quasiquoting facilities of a language like Scheme or Lisp; in
MetaOCaml and Scala’s LMS, staging is done instead at the type level, i.e. using the distinction
between the types Int and Rep[Int] (as mentioned above).

Using LMS, we can control in which stage our objects are created, e.g. new Array[Int] creates
one in the first stage but NewArray[Int] creates the object in the second stage. We can also define
statically known data through staticData(s). More about Scala LMS can be learned through the
tutorial3. The goal here is to write code that looks like an interpreter but is actually a compiler as
it generates code as a side effect.

This pipeline of turning an interpreter into a compiler yields a naive compiler (not necessarily
an optimized one), but it is a good starting point when developing a larger system, in terms of
removing some of the overhead of abstraction.

2.4 Can this be fully static?

This can be done by encoding lifting and lowering between stages as actual operators in our lan-
guage.

The Lift operator allows us to lift things like closures into lambdas (and similar for other oper-
ations). This is typically referred to as normalization through evaluation. Broadly, this can be
described as collapsing our tower of interpreters4 using a multi-stage evaluator. Collapsing towers
of interpreters can be achieved through stage polymorphism.5

The more dynamic approach relies on a stage-polymorphic VM, where operations are lifted or not
by dynamic dispatched, based on the dynamic types of the arguments.

The more static approach relies on stage polymorphism driven by types and optimizations in LMS.
Any code, even generated code, can be instantiated for interpretation or compilation.

2.5 Stage Polymorphism

Stage polymorphism (or binding-time polymorphism) is essentially the idea that we should be able
to write generic code that is parameterized over the timing of when certain pieces of code are

3https://scala-lms.github.io/tutorials/index.html
4https://www.cs.purdue.edu/homes/rompf/papers/amin-popl18.pdf
5For a more detailed description of the multi-level core language λ↑↓ in which all of this is done, see (again)

“Collapsing Towers of Interpreters” from Amin and Rompf at POPL 2018.

Compiled By:

Lucas Du and Amelia Dobis
4

https://scala-lms.github.io/tutorials/index.html
https://www.cs.purdue.edu/homes/rompf/papers/amin-popl18.pdf


Metaprogramming: Compilation and SMT Nada Amin

generated. For example, in λ↑↓, the multi-level core language that includes the Lift operator, we
would parameterize over Lift itself by replacing lift with calls to a parameter maybe-lift:

1 (define matches (lambda (maybe-lift) (lambda (r) (lambda (s)

2 (if (null? r) (maybe-lift #t) (if (null? s) (maybe-lift #f)

3 (if (eq? (lift (car r)) (car s)) ((matches (cdr r)) (cdr s)) (maybe-lift #f))))))))

This would then allow us to have two versions of the matches function, one generic and one
specialized, in parameterized form:

1 define matches-spec (matches (lambda (e) (lift e))))

2 (define matches-gen (matches (lambda (e) e)))

3 SMT as a backend

Follows the idea that you can use the first stage of a staging interpreter to generate code. Can we
use multi-stage programming to generate SMT constraints to solve programming puzzles?

Specifically, Holey is a Python framework that allows for the generation of SMTLib directly from
a Python expression. The mapping is straightforward between SMTLib and Python functions.

An experimentation with Holey was to see if an LLM can do better than SMT if we give it hints.
At the moment, the conclusion is that LLMs can’t reason about SMTLib constraints, but they
can solve the problem decently through example-driven prompts. The Holey repository contains
specific metrics, along with source code.

3.1 Verification with SMT

Typically when using SMT solvers to verify designs, people tend to use the theory of Hoare logic.
Basically, the user annotates a program with pre-conditions (defined constraints on inputs), post-
conditions (defined expectations about results), and invariants (defined constraints on loop itera-
tions). These are then used to generate verification conditions (VCs), which are going to be the
actual queries we make to the SMT solver. VCs tend to be of the form PRE -> (BODY & POST).

In order to simplify the transformation, one can perform Weakest Precondition computations, which
walk inversely and build out the weakest possible precondition (WP) that satisfies the current post-
conditions and body and then the SMT query becomes WP -> PRE.

Compiled By:

Lucas Du and Amelia Dobis
5

https://github.com/namin/holey


Metaprogramming: Compilation and SMT Nada Amin

Holey shows the general elegance of the staged programming technique: we are able to create a
decent SMT query generator with relatively few lines of code.

Summary Thinking in stages can be a very helpful device when reasoning about code. Staging
itself can be used to define a very precise notion of code being executed in multiple phases, even
though it looks like a monolithic chunk of code. Helps distinguish between things like static and
dynamic evaluation.

That said, there are some difficulties with this kind of multi-stage programming, as pointed out
during the lecture: ”It’s very hard to debug at the high-level when your problem is at the low-
level”. Since multi-stage programming involves moving between different stages (in both directions,
upwards and downwards), it can be difficult to pinpoint at what stage a bug is occurring.

Compiled By:

Lucas Du and Amelia Dobis
6


	Outline
	Meta-theory Compilers
	Futamura projections
	Question: "What's binding-time analysis?"
	LMS: Lightweight Modular Staging in Scala
	Can this be fully static?
	Stage Polymorphism

	SMT as a backend
	Verification with SMT


