OREGON
PROGRAMMING
LANGUAGES

Lambda-Calculi for Logics — Valeria De Paiva

Lecture 3 - June 25, 2025

1 Linear Functional Programming

o It took us twenty years to combine categorical combinators and linear logic to create categor-
ical abstract machines for linear functional programming. This brought us linear types and
showed how category theory is baked into the language’s syntax

o Although Rust and Haskell have linear type systems, they are not yet mainstream program-
ming languages|1] (and linear type systems in general are not yet mainstream, but have shown
much theoretical promise)

2 Explicit substitution

o Instead of implicit substitution via S-reduction, we want to have explicit substitution
o We have the syntax, but we don’t yet have a semantic-level model for it

e Recall A-calculus. We define the rules and terms, and computations are performed via (-
reduction.

e In classical S-rule, the substitution mechanism usually involves replacing a variable within a
term depending on the context. Traditionally, we store the bindings of terms in an collection,
the language consisting of terms and environments.

e Implementing an efficient S-reduction can be difficult and error-prone. Making it explicit will
make the reasoning and proofing more straightforward and easier

e The syntax of the A-calculus should have a categorical semantics with mathematics as the
source

o We create new rewrite rules that store substitutions in the environment instead of binding
them. This will eliminate substitutions and work for various logic systems.

e The new contexts z: A x B and = : A,y : B are isomorphic

https://github.com/vcvpaiva/DialecticaCategories/blob/master/OPLSS2025/OregonLecture3.pdf

Lambda-Calculi for Logics Valeria De Paiva

3 JMo-calculus

e A-calculus + application of substitutions to a term: f xt
o Every Ao-term is equivalent to some A-term

e Contexts z: Ax B and z: A,y : B are related, but not equal

Substitutions are judgments now, and can be paralleled and composed

o (Part of) rules for substitution evaluation:

Icr 'Ef:A 'kt A 'Ef:A AFt: A
LE():1 FE(f,x—t): Ajx: A 'k fxt: A

'Ef:A AFg: VU
' f;g: ¥

o Composition of substitutions allows more interactions
e We bake substitution operators into language using a set of rewriting rules, but some issues. ..

— Many design choices need to be made to get the best properties possible: which explicit
substitutions? What methodology?

— Ideally, contexts z : A x B and x : A,y : B should be isomorphic

— Counterexample idea: Cyclic substitution leads to non-termination during strong nor-
malization

o We need a categorical, semantic way to express these

4 Categorical Semantics

e We want to extend the Curry-Howard correspondence to a categorical semantics

o Internal language gives term constructs and equational theory

e Indexed category theory as syntax debugging

e In an indexed category D : C°P? — Clat, contexts as objects, morphisms as substitutions
o Empty context as identity, assoc rewriting can be done in assoc compositions

o For every context I', we have a category D(I")

— Objects are variable-type pairs (z : A)
— Morphisms (z : A) — (¢ : B) are judgments of the form I';x : A-t: B
. Py : =

OREGON
Compiled ByI Y< PROGRAMMING

Adam Brohl, Ellen Whalen, Vincent Chan 2

Lambda-Calculi for Logics Valeria De Paiva

o Has some issues:

— No syntax for forming substitutions from terms

— Non-linear nature of indexed categories due to products of types (judgments of the shape
Mx:AFx: A)

5 Context-Handling Categories

e Solutions: Convert D into set 7; Add two new natural transformations
o Define a Symmetric Monoidal Category B with 7 C |B]|

« Define a linear catersian context-handling category L : B — Sets’ with the following
natural transformations:

Suby4 : L(—)A = B(—,A) Termy : B(—,A) = L(—)a

e We still keep the products, but SMCC for linear fibres, otherwise CCC
e We now have two categories F and L
o E-Category
— Type constructors require extra structures on the category
— Given A,B € T, we have A — B, A x B € T with isomorphisms in I':
E((I',A)p) ET)sx EM)p
EM)asB ET)axs

— Naturality distributes explicit substitutions over the terms
frdrt = e.fxt [fx(tu)=(f*t)(f xu)
e L-Category
— Given A, B € T, we have A — B € T with isomorphisms in I:
E((T,A)B)
ET)s-wp
— Tensor product however is not isomorphic

z:A®BX=z:Ay:B

e !-type constructor

— | as the comonad of a monoidal adjunction between CCCs and SMCCs[2]
— ,eca

2 3 ,-v OREGON
H . PROGRAMMING
Compiled By: Y LANGUAGES

Adam Brohl, Ellen Whalen, Vincent Chan 3

Lambda-Calculi for Logics Valeria De Paiva

— Models of explicit substitutions

x E-cat —, X, 1, Ao-calculus
* L-cat —o,®, 1

o FE-categories and underlying CCCs are isomorphic

e Preserves the soundness and completeness for both E and L categories

6 Conclusions

e High-order category theory maps one category to a collection of categories and can be used
to model explicit substitution - mathematical foundation has been shown

o Without explicit substitution, we wouldn’t end up with a type theory with all of the properties
we want /expect

o Contexts are helpful, but we can obtain equivalent systems without them. (Contexts make
proofs more human-legible, but contextless systems are slightly more efficient for computers)

o Extension of Curry-Howard, easier than dependent type and modality

o Can be done in multiple potential modalities/substructural logics

OREGON
Compiled ByI Y< PROGRAMMING

Adam Brohl, Ellen Whalen, Vincent Chan 4

Lambda-Calculi for Logics Valeria De Paiva

References

[1] Jean-Philippe Bernardy et al. “Linear Haskell: practical linearity in a higher-order polymorphic
language”. In: Proceedings of the ACM on Programming Languages 2.POPL (Dec. 2017), pp. 1-
29. 1SSN: 2475-1421. DOI: 10.1145/3158093. URL: http://dx.doi.org/10.1145/3158093.

[2] P. N. Benton. “A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended
Abstract)”. In: Selected Papers from the 8th International Workshop on Computer Science
Logic. CSL ’94. Berlin, Heidelberg: Springer-Verlag, 1994, pp. 121-135. 1SBN: 3540600175.

OREGON
Compiled ByI Y< PROGRAMMING

Adam Brohl, Ellen Whalen, Vincent Chan 5

https://doi.org/10.1145/3158093
http://dx.doi.org/10.1145/3158093

	Linear Functional Programming
	Explicit substitution
	Lambda-sigma-calculus
	Categorical Semantics
	Context-Handling Categories
	Conclusions
	References

