
Lambda-Calculi for Logics — Valeria De Paiva

Lecture 3 - June 25, 2025

1 Linear Functional Programming

• It took us twenty years to combine categorical combinators and linear logic to create categor-
ical abstract machines for linear functional programming. This brought us linear types and
showed how category theory is baked into the language’s syntax

• Although Rust and Haskell have linear type systems, they are not yet mainstream program-
ming languages[1] (and linear type systems in general are not yet mainstream, but have shown
much theoretical promise)

2 Explicit substitution

• Instead of implicit substitution via β-reduction, we want to have explicit substitution

• We have the syntax, but we don’t yet have a semantic-level model for it

• Recall λ-calculus. We define the rules and terms, and computations are performed via β-
reduction.

• In classical β-rule, the substitution mechanism usually involves replacing a variable within a
term depending on the context. Traditionally, we store the bindings of terms in an collection,
the language consisting of terms and environments.

• Implementing an efficient β-reduction can be difficult and error-prone. Making it explicit will
make the reasoning and proofing more straightforward and easier

• The syntax of the λ-calculus should have a categorical semantics with mathematics as the
source

• We create new rewrite rules that store substitutions in the environment instead of binding
them. This will eliminate substitutions and work for various logic systems.

• The new contexts z : A×B and x : A, y : B are isomorphic

1

https://github.com/vcvpaiva/DialecticaCategories/blob/master/OPLSS2025/OregonLecture3.pdf

Lambda-Calculi for Logics Valeria De Paiva

3 λσ-calculus

• λ-calculus + application of substitutions to a term: f ∗ t

• Every λσ-term is equivalent to some λ-term

• Contexts z : A×B and x : A, y : B are related, but not equal

• Substitutions are judgments now, and can be paralleled and composed

• (Part of) rules for substitution evaluation:

Γ′ ⊆ Γ

Γ ` 〈〉 : Γ′
Γ ` f : ∆ Γ ` t : A

Γ ` 〈f, x 7→ t〉 : ∆, x : A

Γ ` f : ∆ ∆ ` t : A

Γ ` f ∗ t : A

Γ ` f : ∆ ∆ ` g : Ψ

Γ ` f ; g : Ψ

• Composition of substitutions allows more interactions

• We bake substitution operators into language using a set of rewriting rules, but some issues. . .

– Many design choices need to be made to get the best properties possible: which explicit
substitutions? What methodology?

– Ideally, contexts z : A×B and x : A, y : B should be isomorphic
– Counterexample idea: Cyclic substitution leads to non-termination during strong nor-

malization

• We need a categorical, semantic way to express these

4 Categorical Semantics

• We want to extend the Curry-Howard correspondence to a categorical semantics

• Internal language gives term constructs and equational theory

• Indexed category theory as syntax debugging

• In an indexed category D : Cop → Cat, contexts as objects, morphisms as substitutions

• Empty context as identity, assoc rewriting can be done in assoc compositions

• For every context Γ, we have a category D(Γ)

– Objects are variable-type pairs (x : A)

– Morphisms (x : A) → (t : B) are judgments of the form Γ, x : A ` t : B

• When re-indexing, we use Γ ` f : ∆ to denote a functor D(f) : D(∆) → D(Γ)

Compiled By:
Adam Brohl, Ellen Whalen, Vincent Chan 2

Lambda-Calculi for Logics Valeria De Paiva

• Has some issues:

– No syntax for forming substitutions from terms
– Non-linear nature of indexed categories due to products of types (judgments of the shape

Γ, x : A ` x : A)

5 Context-Handling Categories

• Solutions: Convert Dop into set T ; Add two new natural transformations

• Define a Symmetric Monoidal Category B with T ⊆ |B|

• Define a linear catersian context-handling category L : Bop → SetsT with the following
natural transformations:

SubA : L(−)A ⇒ B(−, A) TermA : B(−, A) ⇒ L(−)A

• We still keep the products, but SMCC for linear fibres, otherwise CCC

• We now have two categories E and L

• E-Category

– Type constructors require extra structures on the category
– Given A,B ∈ T , we have A → B,A×B ∈ T with isomorphisms in Γ:

E((Γ, A)B)

E(Γ)A→B

E(Γ)A × E(Γ)B

E(Γ)A×B

– Naturality distributes explicit substitutions over the terms

f ∗ λx.t = λx.f ∗ t f ∗ (tu) = (f ∗ t)(f ∗ u)

• L-Category

– Given A,B ∈ T , we have A (B ∈ T with isomorphisms in Γ:

E((Γ, A)B)

E(Γ)A(B

– Tensor product however is not isomorphic

z : A⊗B ∼= x : A, y : B

• !-type constructor

– ! as the comonad of a monoidal adjunction between CCCs and SMCCs[2]
– !L-category adjunct E and L cats together, and isomorphisms

Compiled By:
Adam Brohl, Ellen Whalen, Vincent Chan 3

Lambda-Calculi for Logics Valeria De Paiva

– Models of explicit substitutions
∗ E-cat →,×,1, λσ-calculus
∗ L-cat (,⊗, I

• E-categories and underlying CCCs are isomorphic

• Preserves the soundness and completeness for both E and L categories

6 Conclusions

• High-order category theory maps one category to a collection of categories and can be used
to model explicit substitution - mathematical foundation has been shown

• Without explicit substitution, we wouldn’t end up with a type theory with all of the properties
we want/expect

• Contexts are helpful, but we can obtain equivalent systems without them. (Contexts make
proofs more human-legible, but contextless systems are slightly more efficient for computers)

• Extension of Curry-Howard, easier than dependent type and modality

• Can be done in multiple potential modalities/substructural logics

Compiled By:
Adam Brohl, Ellen Whalen, Vincent Chan 4

Lambda-Calculi for Logics Valeria De Paiva

References

[1] Jean-Philippe Bernardy et al. “Linear Haskell: practical linearity in a higher-order polymorphic
language”. In: Proceedings of the ACM on Programming Languages 2.POPL (Dec. 2017), pp. 1–
29. issn: 2475-1421. doi: 10.1145/3158093. url: http://dx.doi.org/10.1145/3158093.

[2] P. N. Benton. “A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended
Abstract)”. In: Selected Papers from the 8th International Workshop on Computer Science
Logic. CSL ’94. Berlin, Heidelberg: Springer-Verlag, 1994, pp. 121–135. isbn: 3540600175.

Compiled By:
Adam Brohl, Ellen Whalen, Vincent Chan 5

https://doi.org/10.1145/3158093
http://dx.doi.org/10.1145/3158093

	Linear Functional Programming
	Explicit substitution
	Lambda-sigma-calculus
	Categorical Semantics
	Context-Handling Categories
	Conclusions
	References

