
Information Flow Type Systems — Limin Jia

Lecture 2 - June 24, 2025

1 Final thoughts from previous lecture

Recall the example of the Strava heatmap, which clearly is a security violation.

• An individual might not mind their anonymized data being shared with Strava. The problem
only arises when the data is from a sensitive location.

• So, here, we have two classifications of sensitivity: the data itself, and the fact that the
aggregated data reveals information about a sensitive area. Therefore, even aggregate data
might not conform to noninterference.

• This is an example of our security properties not appropriately handling the declassification
of information.

• From this, we see that information flow security is a global property and stronger than access
control, which is just local.

• We want to establish local policies that guarantee non-interference.

2 Noninterference for concurrent and nondeterministic systems

Non-interference is a property of a system, and it can be defined as the absence of dependency
between secret inputs and public outputs. In other words, a system satisfies non-interference if any
set of inputs that differ only on secret values have indistinguishable public outputs.

Consider a nondeterministic system. We can formulate a new definition of non-interference for this
system.

Definition (Possible Noninterference) Given two sets of inputs that differ only in secret inputs,
any public outcome for the first inputs is a possible public outcome for the second inputs.

1

Information Flow Type Systems Limin Jia

• This definition is okay for truly nondeterministic programs. However, true nondeterminism
is impossible in practice. For one, any concurrent program’s execution will depend on the
scheduler. Most schedulers are deterministic, i.e. round-robin.

As an example of how this definition fails, consider the program in Figure 1 spread across two
processes.

1 P1

2 if(secret == 0) long_computation;

3 print 0

4

5 P2

6 print 1

Figure 1: Example security flaw for concurrent programs

If both processes are running on a round-robin system, and we pass in 0 as the secret, it will almost
always print 1 followed by 0.

3 Approaches

Suppose we are working with the following security labels: S (secret) and P (public). To ensure a
valid information flow, we must consider the approach to adopt to prevent any invalid flows. One
possibility is to enhance our type checker to assign security labels to terms in addition to just types.
This is a static approach because the type checker catches errors during compile time. However, it
is too conservative and may reject programs that are actually okay — false positives —. In other
words, static analysis over-approximates security-related behaviors.

An alternative solution is to use a runtime monitor. This checks every step of the running program
and either allows it to continue or terminates the program if the execution violates some security
property. This approach is dynamic because infractions are caught during runtime, just before
execution.

4 Information flow type system

We will work with the IMP language.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
2

Information Flow Type Systems Limin Jia

Values v ::= x | n
Terms e ::= v | e1 bop e2 | uop e

Commands c ::= skip | halt | x := e | if e then c1 else c2 | while e do c | c1; c2
Stores σ ::= • | σ, x 7→ v

Security Labels ℓ ::= L | H

In this terse language, values are variables (x) or numerical constants (n). Terms can be a value,
or the binary and unary operators (bop/uop). Here, σ is a store that maps variables to values,
representing our runtime state. ℓ is the syntax category for secrecy labels, on top of which there
exists a partial order ⊑, e.g. L ⊑ H.

For our semantics, we imagine a program e in a store σ will result in a value v. Our programs
evaluate like (σ, c) → (σ′, c′). Also, the meaning of an expression in a store is a value, JeKσ = v,
since terms do not have effects.

Contexts

Γ := x : ℓ A context Γ is a list of secrecy labels (i.e. L,H) assignments to variables. Normally, we
would say something like x : int ℓ. For the sake of simplicity, we will omit the concrete type part
(e.g. int) and focus on labels (ℓ) from now on.

Security typing

The judgment Γ ⊢ e : ℓ asserts that a expression e has label ℓ under the context Γ. Take the
typing rule for bop as an example:

Γ ⊢ e1 : ℓ1 Γ ⊢ e2 : ℓ2
Γ ⊢ e1 bop e2 : ℓ1 ⊔ ℓ2

We can observe that the term has e1 textbop e2, which guarantees that the resulting label is the
greatest upper bound among l1 and l2. To materialize this, let us consider that l1 = L and l2 = H.
An operation involving H should be treated as H.

Typing commands

The judgment Γ, pc ⊢ c checks if a command c respects the security context pc — a security label
— in context Γ. The label pc represents the current security label of the systems. We start the
execution of a program by assigning the lowest label (⊥) to pc. Let us define the type checking rule
for if statements:

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
3

Information Flow Type Systems Limin Jia

Γ ⊢ b : ℓ Γ, pc ⊔ ℓ ⊢ c1 Γ, pc ⊔ ℓ ⊢ c2
Γ, pc ⊢ if b then c1 else c2

In this rule, b has the security label ℓ. Notice how c1 and c2 are type-checked under a combined
label pc ⊔ ℓ. This guarantees that we respect the higher label among pc and ℓ. The purpose of
this inference rule is that the type-checking for a branching statement will ensure that the label
for either branch respects the combined label pc ⊔ ℓ. This avoids leaks that could occur if b has a
higher label than its branches.

Another example, for assignment:

Γ ⊢ e : ℓ Γ(x) = ℓ pc ⊑ ℓ

Γ, pc ⊢ x := e

This states that when we assign a term to a variable, the label of the variable and the term must
be compatible and also respect the current pc.

Consider the following rule. We will examine how it violates non-interference:

Γ ⊢ e : ℓ1 ℓ1 ⊑ ℓ2
Γ ⊢ e : ℓ2

When combined with the previous rule, this rule violates non-interference. Namely, we are able to
derive e as a high (ℓ2) value from this rule, but using the previous rule (with x as e, pc as ℓ1, and
ℓ as ℓ2), we have that x is in a low context (pc, or ℓ1).

Attacker label

Let ℓa denote the label of an attacker.

ℓa Equivalence

We define v1 ≈ℓa v2 : ℓ by

ℓ ⊑ ℓa v1 = v2
v1 ≈ℓa v2 : ℓ

If the attacker is at a higher level than the values, the values must be identical in order for them
to be indistinguishable.

ℓ ̸⊑ ℓa
v1 ≈ℓa v2 : ℓ

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
4

Information Flow Type Systems Limin Jia

Otherwise, every value is indistinguishable to the attacker.

ℓa Equivalence of stores

Similarly, we define Γ ⊢ σ1 ≈ℓa σ2 by

Γ ⊢ • ≈ℓa •

Γ ⊢ σ1 ≈ℓa σ2 v1 ≈ℓa v2 : P (x)

Γ ⊢ σ1, x → v1 ≈ℓa σ2, x → v2

Lemma (Noninterference of terms). If Γ ⊢ e : ℓ, and Γ ⊢ σ1 ≈ℓa σ2, then JeKσ1 ≈ℓa JeKσ2 : ℓ.

Sequencing

Evaluation Context E ::= □ | □; c

Stack s ::= · | E ▷ s

State Σ ::= (σ, s, c)

To actually run programs, we evaluate a sequence of commands. Think of the stack as containing
continuations. The sequencing rule for pushing to the stack is

(σ, s, c1; c2) → (σ, (□; c2) ▷ s, c1).

Likewise, for pop, when there is no command to execute immediately (SKIP) but there is some
command pending in the stack ((□; c) ▷ s), we move it out to be the currently executing command.

(σ, (□; c) ▷ s, SKIP) → (σ, s, c)

Here’s an additional rule for SKIP, when we have no immediate command nor pending command
in the stack, we can halt the machine.

(σ,□, SKIP) → (σ,HALT)

Lemma (Noninterference for Commands). If Γ,⊥ ⊢ c, and Γ ⊢ σ1 ≈ℓa σ2, and (σi,□, c) →∗

(σ′
i, HALT) (for i = 1, 2) then Γ ⊢ σ′

1 ≈ℓa σ′
2.

We can prove this by induction on the number of steps.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen
5

