
Information Flow Type Systems — Limin Jia

Lecture 3 - June 25, 2025

1 Non-interference Proofs

We will extend our type system from the last lecture and introduce state and functions.

values v ::= x | n | (f(x : τ) : pc = e)ℓ

terms e ::= v | e e | e := e | refτ (e) |!e | let x = e in e

types τ ::= intℓ | refℓτ | ([pc]τ → τ)ℓ

Here, τ is a type with a secrecy label. Note that

• Integers (n) have a label;

• References carry two labels, ℓ, which is for the reference itself (pointer label), and τ contains
an additional label for the term which is being referenced.

For functions,

• both the input type (first τ) and return types (second τ) have a label, and the function as an
object has a label (ℓ).

• we need a label for the context (pc) in which we can call the function.

Here are some inference rules to enforce the creation of only good information flow systems.

Allocate new location

Γ, pc ⊢ e : τ

Γ, pc ⊢ refτ (e) : refpcτ

1

Information Flow Type Systems Limin Jia

Create a function

Γ, x : τ, f : ([pc]τ → s)ℓ, pc ⊢ e : s

Γ, pc′ ⊢ (f(x : τ) : pc = e)ℓ : ([pc]τ → s)ℓ

Function application The current PC, pc′, is the context in which the function is being called.
We need it to be a lower or equal level to pc, the context required by the function.

Γ, pc′ ⊢ e1 : ([pc]τ → s)ℓ Γ, pc′ ⊢ e2 : τ pc′ ⊔ ℓ ⊑ pc

Γ, pc′ ⊢ e1 e2 : s

2 Downgrading

Sometimes, we need to leak secret information or endorse untrusted data. Some examples:

• Checking passwords, releasing aggregated data

– Sometimes necessary for the application to work;

– Other times, judged sufficiently safe to release (i.e. heatmaps).

• Using public APIs, downloading programs

– Need to endorse untrusted data;

– Imagine downloading a program from the internet. Most OS’s will emit a warning telling
the user that “this is an untrusted application” before letting you run. Users frequently
will want to endorse that program and run it anyway.

To allow safe downgrading, we need to relax our requirements on non-interference.

Delimited Release Suppose we allow x := declassify(e, ℓ) in our code. We want a notion of
non-interference that still holds in the presence of declassifications. With this in mind, we formally
say that command c is secure as follows.

Suppose c contains declassify(e1, ℓ1), . . . ,declassify(en, ℓn). Then, c is secure if ∀ℓa, ∀σ1 ≈ℓa σ2,

if (∀i ∈ [1, n], JeiKσ1 ≈ℓa JeiKσ2 : ℓi), and

(σ1, c) →∗ (σ′
1, skip) and (σ2, c) →∗ (σ′

2, skip)

then σ′
1 ≈ℓa σ′

2.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
2

Information Flow Type Systems Limin Jia

Intuitively, this says that we do not leak more information than what we intended, i.e. the e1, . . . , en,
and that we still maintain non-interference otherwise.

Example We can write
x = declassify(y mod 2, L)

This does not directly reveal the exact value of y, but it does reveal the parity of y. Now, the
attacker has acquired some information about y, but is unable to discern between the two “bags”
(even and odd).

3 Knowledge-based non-interference

Here is a more intuitive definition of non-interference, based on knowledge: we never want to allow
the attacker to refine their knowledge of our secrets.

Let us define the attacker’s knowledge as the set of all possible values of a variable from the
perspective of an attacker. Knowledge-based non-interference means that we should prevent the
attacker from reducing the space of possibilities (meaning the set of possible values after execution
is a proper subset of the set before execution).

Here are some examples of failing strict non-interference. Suppose x is public and y is secret.

1 x := y

As soon as we do the assignment, the attacker immediately knows the value of y, so their knowledge
is refined.

1 if y > 0 then x := 1 else x := 0

Now, the attacker’s knowledge is refined because they know whether y is positive or negative. It’s
less refined than the previous case, which refines down to a single value. Neither of these examples
satisfies strict non-interference. However, this is not always desirable; maybe we judge that it is
acceptable to reveal some information related to our secrets.

1 x := declassify(y mod 4, L)

We want to allow this, since we declassified the information.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
3

Information Flow Type Systems Limin Jia

Possible formal definition of knowledge. Knowledge is the set of states that are indistin-
guishable from the current state, possibly after executing a command.

KJσ, cK = {σ′ | σ ≈ℓa σ′, (σ, c) →∗ σf , (σ
′, c) →∗ σ′

f , σf ≈ℓa σ′
f}

Kinit(σ) = {σ′ | σ ≈ℓa σ′}

Here, the security condition (for strict non-interference) is

KJσ, cK ⊇ Kinit(σ).

We can see that the security condition is violated when KJσ, cK ⊂ Kinit(σ), i.e. when the attacker’s
knowledge is refined in the execution of command c.

4 Trace semantics

Additionally, we may want to output information. Using this as motivation, we extend the language
with command output(e, ℓ). Now, a program execution produces an execution trace; each step
produces a possibly empty action α where

α ::= ε | declassify(e, ℓ) | output(e, ℓ)

Now, we define a program trace as a sequence of states along with the action:

T = (σ0, c0)
α1−→ (σ1, c1)

α2−→ . . .
αn−−→ (σn, cn)

The attacker can observe a program trace and possibly gain information from it.

Formally, an attacker’s knowledge from an execution trace is characterized by

KJc, T K = {σ | σ0 ≈ℓa σ, T ≈ℓa T ′},

where T = (σ0, c) →∗(rest of trace), and T ′ = (σ, c) →∗(rest of trace).

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
4

Information Flow Type Systems Limin Jia

Gradual release We would like to declassify some information. Thus, we define a notion of
gradual release, which says the attacker cannot refine knowledge unless a release (i.e. declassify is
invoked) happens. This is stated as

KJc, T α−→ ΣK ⊇ KJc, T K

when α ̸= declassify(−).

We don’t want to allow the attacker to rule out possibilities really quickly. For the password
checker, the attacker was allowed to rule out all passwords with a particular prefix, allowing it to
refine its knowledge too quickly.

5 Examples

Let h be a highly sensitive variable and l a public variable.

1 l := h; output(l, L);

This (above) should be clearly bad, since we are trying to output l as low, revealing the value of h,
which was never declassified.

1 l := h; l := 0; output(l, L)

1 l := declassify (h, L);

2 output (l, L);

1 l := declassify (h, L);

2 output (h, L);

The above three should be morally okay (though may be rejected in the type system).

1 b := declassify (h>0, L)

2 if (b) l:= l; output(l,L)

3 else l:= 0; output (l, L)

This one is OK, since the attacker is only able to refine h by half—whether it’s greater than or less
than 0—which is exactly what we explicitly declassified.

1 if (h > 0) l := 1; output(l, L)

2 else l := 0; output(l, L)

This one should be ruled out, since h > 0 hasn’t been declassified.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
5

Information Flow Type Systems Limin Jia

6 Progress knowledge

1 while (h>0) do skip;

2 l := 1;

3 output(1, L)

Should we rule out this program or not? The knowledge the attacker can obtain is related to the
possible early termination of the program when the while guard is not satisfied.

If we do want to rule it out, we can include it in the model of attacker knowledge. However, if we
want to make it OK to leak knowledge in this manner, we can do that as well.

7 Robust declassification

1 debug:L := false

2 secret:H

3 x:L

4

5 setDebug(f:L) {debug := f}

6 main() {

7 if (debug)

8 x := declassify(secret , L)

9 else

10 skip

11 output(x, L)

12 }

Who controls the declassification? This program is wrong because anyone is allowed to call
setDebug. The attacker should not be able to influence declassification.

We want
KJT K = KJT \AK.

That is, the information determinable by the attacker shouldn’t be affected by any actions the
attacker could take.

In this example, we have
KJsetDebug(true), σK = {secret = n},

and
KJσK = {secret = 0, secret = 1, . . . }.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
6

Information Flow Type Systems Limin Jia

They are not equal, so this program violates the condition that the attacker should not be able to
influence declassification.

8 Runtime monitors

One advantage of a dynamic approach is that it can allow behaviors that might be impossible
with a static approach. For example, while the program is running, the runtime monitor tracks
whether we are in a high or low context, the current state of variables, and the actual program
being executed. With the use of a runtime monitor, we can choose whether to taint variables or
not, which means promoting low variables to high if necessary.

With tainting x is tainted because it is assigned to a high variable.

L

xL 7→ 1, yH 7→ 2, zL 7→ 3

x := y

7→
L

xH 7→ 2, yH 7→ 2, zL 7→ 3

SKIP

x is tainted because it is assigned in a high context.

H

xL 7→ 1, yH 7→ 2, zL 7→ 3

x := z

7→
H

xH 7→ 3, yH 7→ 2, zL 7→ 3

SKIP

Non-sensitive upgrade (NSU) With a strict runtime monitor, both programs would be aborted
as we do not allow tainting.

Tainting might lead us to a situation known as PC creep, where we end up promoting too many
things and getting stuck in a high context.

9 Implicit leaks

1 xH

2 yL := true;

3 zL := true;

4 if (x) y := false;

5 if (y) z := false;

6 output(z,L)

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
7

Information Flow Type Systems Limin Jia

In this example, we are leaking the value of x, even though we are not using an output or a
declassification operation with x directly. Independent of the value of x, after execution, z, a
low value, is the same value as x, a high value. Thus, we are leaking x, but actually, nothing
technically wrong happened; a type checker is not able to detect that we are leaking information
about x through the branch not taken.

10 Gradual typing

We can adopt both approaches (static and dynamic) simultaneously to achieve the best of both
worlds by making typing by the user optional. A type system will only check parts that are typed,
and for the untyped terms, refine the dynamic types during execution. If we face a type error
during runtime, we abort the program.

Formally, we want parts of the program to be statically typed

x : τ ℓ,

and parts to be dynamically
x : τ ?.

with typing rules

? ⊑ gℓ ℓ ⊑ g?

The ? label means “all possible label intervals on the lattice.” Gradually, we will refine the range
that the label lives in. For example, we could have

xH 7→ (H,H)true, y? 7→ (L,H)true

After running

1 if x then y? := true

then the type of y is refined to
y? 7→ (H,H)true.

Static gradual guarantee. Programs that type check with precise type annotations will also
type check with less precise types.

Dynamic gradual guarantee. Programs that run to completion with precise type annotations
will also run to completion with less precise types.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
8

Information Flow Type Systems Limin Jia

For example, if this more precise program type checks or runs to completion,

1 xH := true;

2 if x then yH := true;

then this less precise program will also type check or run to completion:

1 xH := true;

2 if x then y? := true

Example. Gradual systems are tricky. Consider the following program.

1 xH

2 y? := true?;

3 zL := trueL;

4 if (x) y := false;

5 if (y) z := false;

6 output(z,L)

Let’s consider both cases of whether y is low or high. If y is low, this could be an implicit information
leak. If y is high, then the assignment to z when branching on y is bad.

To modify this to work,

1 xH

2 y? := trueH;

3 if (x) y := false;

4 output(y,H)

Hybrid approach In a hybrid approach, we update the labels of the writes in both branches
upon entering the branch. If the labels do not agree after joining both sides of the branch, reject.
This approach satisfies gradual guarantees, but requires more effort from the monitor.

Consider the above code. In either branch, we need y to have a high label—if x is true, then the
write requires y to be high, and if not then the output(y, H) requires y to be high. Thus, this
should be valid.

Compiled By:

Adriano Corbelino II, Daniel Neshyba-Rowe, Laura Zielinski, Yanning Chen, Kevin Ye
9

